CSC 311: Introduction to Machine Learning

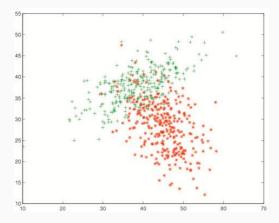
Lecture 8 - Multivariate Gaussians, GDA

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

Classification: Diabetes Example

• Observation per patient: White blood cell count & glucose value.



• $p(\mathbf{x} | t = k)$ for each class is shaped like an ellipse \implies we model each class as a multivariate Gaussian

Overview

- Last week, we started our tour of probabilistic models, and introduced the fundamental concepts in the discrete setting.
- Continuous random variables:
 - Manipulating Gaussians to tackle interesting problems requires lots of linear algebra, so we'll begin with a linear algebra review.
 - Additional reference: See also Chapter 4 of Mathematics for Machine Learning, by Desienroth et al. https://mml-book.github.io/
- **Regression:** Linear regression as maximum likelihood estimation under a Gaussian distribution.
- Generative classifier for continuous data: Gaussian discriminant analysis, a Bayes classifier for continuous variables.
- Next week's lecture (PCA) draws heavily on today's linear algebra content, so be sure to review it offline.

Linear Algebra Review

- 2) Multivariate Gaussian Distribution
- 3 Gaussian Maximum Likelihood
- 4 Revisiting Linear Regression
- 5 Gaussian Discriminant Analysis

- \cdot Let ${f B}$ be a square matrix.
- \cdot An eigenvector of ${\bf B}$ is a non-zero vector ${\bf v}$ such that

$\mathbf{B}\mathbf{v} = \lambda \mathbf{v}$

for a scalar λ , which is called an **eigenvalue**.

- A matrix of size $D \times D$ has at most D distinct eigenvalues, but may have fewer.
- We will focus on symmetric matrices.

For a symmetric $D \times D$ matrix,

- All of the eigenvalues are real-valued.
- There is a full set of D linearly independent eigenvectors. These eigenvectors form a basis for \mathbb{R}^{D} .
- The eigenvectors can be chosen to be real-valued.
- The eigenvectors can be chosen to be orthonormal.

Factorize a symmetric matrix ${\bf A}$ with the Spectral Decomposition:

 $\mathbf{A} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top$

where

- $\cdot \, {f Q}$ is an orthogonal matrix
 - The columns \mathbf{q}_i of \mathbf{Q} are eigenvectors.
- \cdot Λ is a diagonal matrix.
 - The diagonal entries λ_i are the corresponding eigenvalues.

Check that this is reasonable:

 $\mathbf{A}\mathbf{q}_i =$

Spectral Decomposition

- Because A has a full set of orthonormal eigenvectors $\{q_i\}$, we can use these as an orthonormal basis for \mathbb{R}^D .
- \cdot A vector \mathbf{x} can be written in an alternate coordinate system:

$$\mathbf{x} = \tilde{x}_1 \mathbf{q}_1 + \dots + \tilde{x}_D \mathbf{q}_D$$

Converting between the two coordinate systems:

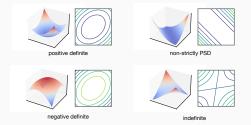
$$\tilde{\mathbf{x}} = \mathbf{Q}^{\top} \mathbf{x} \qquad \mathbf{x} = \mathbf{Q} \tilde{\mathbf{x}}$$

In the alternate coordinate system,
 A acts by re-scaling the individual coordinates:

$$\mathbf{A}\mathbf{x} = \tilde{x}_1 \mathbf{A} \mathbf{q}_1 + \dots + \tilde{x}_D \mathbf{A} \mathbf{q}_D$$
$$= \lambda_1 \tilde{x}_1 \mathbf{q}_1 + \dots + \lambda_D \tilde{x}_D \mathbf{q}_D$$

Symmetric matrices represent quadratic forms, $f(\mathbf{v}) = \mathbf{v}^{\top} \mathbf{A} \mathbf{v}$.

- If $\mathbf{v}^{\top} \mathbf{A} \mathbf{v} > 0$ for all $\mathbf{v} \neq \mathbf{0}$, \mathbf{A} is **positive definite**, denoted $\mathbf{A} \succ \mathbf{0}$.
- If $\mathbf{v}^{\top} \mathbf{A} \mathbf{v} \geq 0$ for all \mathbf{v} , \mathbf{A} is positive semi-definite, denoted $\mathbf{A} \succeq \mathbf{0}$.
- If $\mathbf{v}^{\top} \mathbf{A} \mathbf{v} < 0$ for all $\mathbf{v} \neq \mathbf{0}$, \mathbf{A} is negative definite, denoted $\mathbf{A} \prec \mathbf{0}$.
- · If $\mathbf{v}^\top \mathbf{A} \mathbf{v}$ can be positive or negative, \mathbf{A} is indefinite.



• **Exercise:** Non-negative linear combinations of PSD matrices are PSD.

- Related: If ${\bf A}$ is a random matrix which is always PSD, then $\mathbb{E}[{\bf A}]$ is PSD.
- **Exercise:** For any matrix **B**, the matrix $\mathbf{B}\mathbf{B}^{\top}$ is PSD.

• Corollary: For a random vector \mathbf{x} , the covariance matrix $\operatorname{Cov}(\mathbf{x}) = \mathbf{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}]$ is a PSD matrix. (Special case of above, since $\mathbf{x} - \boldsymbol{\mu}$ is a column vector, i.e. a $D \times 1$ matrix.)

Claim: A is positive definite (PSD) if and only if all of its eigenvalues are positive (non-negative).

Proof: Write \mathbf{v} in terms of the eigenbases,

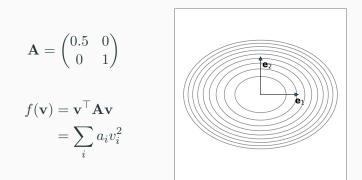
$$\tilde{\mathbf{v}} = \mathbf{Q}^{\top} \mathbf{v}.$$

Then, we have

$$egin{aligned} \mathbf{v}^{ op} \mathbf{A} \mathbf{v} &= \mathbf{v}^{ op} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{ op} \mathbf{v} \ &= ilde{\mathbf{v}}^{ op} \mathbf{\Lambda} ilde{\mathbf{v}} \ &= \sum_i \lambda_i ilde{v}_i^2 \end{aligned}$$

This is positive (nonnegative) for all \mathbf{v} if and only if all the λ_i are positive (nonnegative).

- If ${\bf A}$ is positive definite, then the contours of the quadratic form are elliptical.
- If **A** is both diagonal and positive definite (i.e. its diagonal entries are positive), then the ellipses are axis-aligned.



For a positive definite $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$, the contours of the quadratic form are elliptical, and the principal axes of the ellipses are aligned with the eigenvectors.

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$
$$f(\mathbf{v}) = \mathbf{v}^{\top} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top} \mathbf{v}$$
$$= \tilde{\mathbf{v}}^{\top} \mathbf{\Lambda} \tilde{\mathbf{v}}$$
$$= \sum_{i} \lambda_{i} \tilde{v}_{i}^{2}$$

In this example, $\lambda_1 > \lambda_2$.

All symmetric matrices are diagonal if you choose the right coordinate system.

Matrix Powers

By the Spectral Decomposition, we can square a symmetric \mathbf{A} :

$$\mathbf{A}^2 = (\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\top)^2 = \mathbf{Q} \mathbf{\Lambda} \underbrace{\mathbf{Q}^\top \mathbf{Q}}_{=\mathbf{I}} \mathbf{\Lambda} \mathbf{Q}^\top = \mathbf{Q} \mathbf{\Lambda}^2 \mathbf{Q}^\top$$

We can take the k-th power of **A**:

$$\mathbf{A}^k = \mathbf{Q} \mathbf{\Lambda}^k \mathbf{Q}^\top.$$

If \mathbf{A} is invertible, we calculate its inverse:

$$\mathbf{A}^{-1} = (\mathbf{Q}^{\top})^{-1} \Lambda^{-1} \mathbf{Q}^{-1} = \mathbf{Q} \Lambda^{-1} \mathbf{Q}^{\top}.$$

If \mathbf{A} is PSD, then we can calculate its square root:

$$\mathbf{A}^{1/2} = \mathbf{Q} \mathbf{\Lambda}^{1/2} \mathbf{Q}^{\top}.$$

Claim: The determinant of a symmetric matrix equals the product of its eigenvalues.

$$|\mathbf{A}| = |\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{ op}| = |\mathbf{Q}| |\mathbf{\Lambda}| |\mathbf{Q}^{ op}| = |\mathbf{\Lambda}| = \prod_i \lambda_i.$$

Corollary: The determinant of a PSD (positive definite) matrix is non-negative (positive).

Basic properties of a determinant:

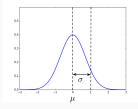
- $\cdot |\mathbf{B}\mathbf{C}| = |\mathbf{B}| \cdot |\mathbf{C}|$
- $\cdot |\mathbf{B}| = 0$ iff \mathbf{B} is singular
- $|\mathbf{B}^{-1}| = |\mathbf{B}|^{-1}$ if **B** is invertible (nonsingular)
- $\cdot |\mathbf{B}^\top| = |\mathbf{B}|$
- If \mathbf{Q} is orthogonal, then $|\mathbf{Q}| = \pm 1$ (i.e. orthogonal transformations preserve volume)
- If Λ is diagonal with entries $\{\lambda_i\}$, then $|\Lambda| = \prod_i \lambda_i$.

Multivariate Gaussian Distribution

- 2 Multivariate Gaussian Distribution
- 3 Gaussian Maximum Likelihood
- 4 Revisiting Linear Regression
- 5 Gaussian Discriminant Analysi

Univariate Gaussian distribution

$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$



- Parameterized by mean μ and variance σ^2 .
- Why is Gaussian so popular?
 - Sums of lots of independent random variables are approximately Gaussian (Central Limit Theorem).
 - Machine learning uses Gaussians a lot because they make the calculations easy.

Multivariate Mean and Covariance

Mean

$$\boldsymbol{\mu} = \mathbb{E}[\mathbf{x}] = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_D \end{pmatrix}$$

Covariance

$$\boldsymbol{\Sigma} = \operatorname{Cov}(\mathbf{x}) = \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}] = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1D} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{D1} & \sigma_{D2} & \cdots & \sigma_D^2 \end{pmatrix}$$

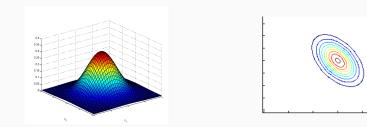
 $(\mu \text{ and } \Sigma)$ uniquely define a multivariate Gaussian (or Normal) distribution, denoted $\mathcal{N}(\mu, \Sigma)$ or $\mathcal{N}(\mathbf{x}; \mu, \Sigma)$.

PDF of Gaussian Distribution

PDF of the univariate Gaussian distribution $(d = 1, \Sigma = \sigma^2)$: $\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

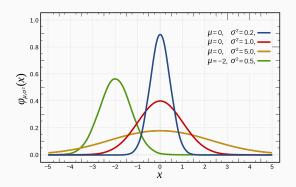
PDF of the multivariate Gaussian distribution:

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$



Univariate Shift + Scale

- All univariate Gaussian distributions are shaped like the **standard normal distribution**.
- Obtain $\mathcal{N}(\mu, \sigma^2)$ by starting with $\mathcal{N}(0, 1)$, shifting by μ , and stretching by $\sigma = \sqrt{\sigma^2}$.



- Start with a standard Gaussian $\mathbf{x}\sim\mathcal{N}(\mathbf{0},\mathbf{I}).$ So $\mathbb{E}[\mathbf{x}]=\mathbf{0}$ and $\mathrm{Cov}(\mathbf{x})=\mathbf{I}.$
- What happens if we apply the map $\hat{\mathbf{x}} = \mathbf{S}\mathbf{x} + \mathbf{b}$?
- By linearity of expecation,

$$\mathbb{E}[\hat{\mathbf{x}}] = \mathbf{S}\mathbb{E}[\mathbf{x}] + \mathbf{b} = \mathbf{b}.$$

• By the linear transformation rule for covariance,

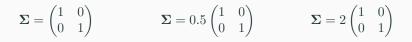
$$\operatorname{Cov}(\hat{\mathbf{x}}) = \mathbf{S} \operatorname{Cov}(\mathbf{x}) \mathbf{S}^{\top} = \mathbf{S} \mathbf{S}^{\top}.$$

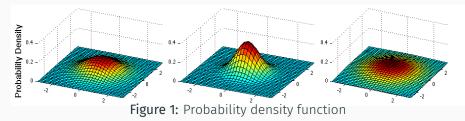
+ $\hat{\mathbf{x}}$ is also Gaussian distributed.

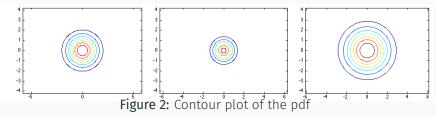
$$\mathbb{E}[\mathbf{S}\mathbf{x} + \mathbf{b}] = \mathbf{b}$$
$$\operatorname{Cov}(\mathbf{S}\mathbf{x} + \mathbf{b}) = \mathbf{S}\mathbf{S}^{\top}$$

- To obtain $\mathcal{N}(\mu, \Sigma)$, we start with $\mathcal{N}(\mathbf{0}, \mathbf{I})$, shift by μ , and scale by the matrix square root $\Sigma^{1/2}$.
 - Recall: $\Sigma^{1/2} = \mathbf{Q} \Lambda^{1/2} \mathbf{Q}$.
 - For each eigenvector q_i with eigenvalue λ_i, we stretch by a factor of √λ_i in the direction q_i.

Bivariate Gaussian







Bivariate Gaussian

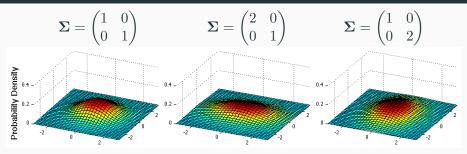
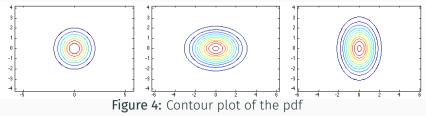
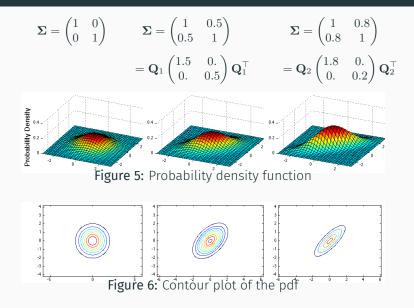


Figure 3: Probability density function



Bivariate Gaussian



Gaussian Maximum Likelihood

- Multivariate Gaussian Distribution
- Gaussian Maximum Likelihood
 - 4 Revisiting Linear Regression

Model the distribution of highest and lowest temperatures in Toronto in March, and recorded the following observations

(-2.5,-7.5) (-9.9,-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they're drawn from a Gaussian distribution $\mathcal{N}(\mu, \Sigma)$. We want to estimate μ and Σ using data.

Maximum Likelihood for Univariate Gaussian

$$\frac{\partial \ell}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^{N} \mathbf{x}^{(i)} - \mu = 0$$
$$\hat{\mu}_{\rm ML} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$$

Maximum Likelihood for Univariate Gaussian

$$\begin{aligned} \frac{\partial \ell}{\partial \sigma} &= \frac{\partial}{\partial \sigma} \left[\sum_{i=1}^{N} -\frac{1}{2} \log 2\pi - \log \sigma - \frac{1}{2\sigma^2} (\mathbf{x}^{(i)} - \mu)^2 \right] \\ &= \sum_{i=1}^{N} -\frac{1}{2} \frac{\partial}{\partial \sigma} \log 2\pi - \frac{\partial}{\partial \sigma} \log \sigma - \frac{\partial}{\partial \sigma} \frac{1}{2\sigma} (\mathbf{x}^{(i)} - \mu)^2 \\ &= \sum_{i=1}^{N} 0 - \frac{1}{\sigma} + \frac{1}{\sigma^3} (\mathbf{x}^{(i)} - \mu)^2 \\ &= -\frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \mu)^2 = 0 \\ \hat{\sigma}_{\mathrm{ML}} &= \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \mu)^2} \end{aligned}$$

Log-likelihood function:

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{N} \left[\frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{ -\frac{1}{2} (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) \right\} \right]$$

$$= \sum_{i=1}^{N} \log \left[\frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{ -\frac{1}{2} (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) \right\} \right]$$

$$= \sum_{i=1}^{N} \underbrace{-\log(2\pi)^{d/2}}_{\text{constant}} - \log |\boldsymbol{\Sigma}|^{1/2} - \frac{1}{2} (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu})$$

Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

$$\begin{split} \frac{\mathrm{d}\ell}{\mathrm{d}\boldsymbol{\mu}} &= -\sum_{i=1}^{N} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\mu}} \frac{1}{2} (\mathbf{x}^{(i)} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) \\ &= -\sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) = 0 \qquad \text{using identity } \nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{A} \mathbf{x} = 2\mathbf{A} \mathbf{x} \end{split}$$

Solving for μ , we get

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}.$$

The best estimate for μ is the sample mean of the observed values, or the empirical mean.

Maximum Likelihood for Multivariate Gaussians

We can do a similar calculation for the covariance matrix Σ .

$$\begin{aligned} \frac{\partial \ell}{\partial \boldsymbol{\Sigma}} &= 0\\ \hat{\boldsymbol{\Sigma}} &= \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}) (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}})^{\top} \\ &= \frac{1}{N} (\mathbf{X} - \mathbf{1} \boldsymbol{\mu}^{\top})^{\top} (\mathbf{X} - \mathbf{1} \boldsymbol{\mu}^{\top})^{\top} \end{aligned}$$

where $\mathbf{1}$ is an *N*-dimensional vector of 1s.

The best estimate for Σ is the **empirical covariance**.

Revisiting Linear Regression

- 2) Multivariate Gaussian Distribution
- 3 Gaussian Maximum Likelihood

Gaussian Discriminant Analysis

Recap: Linear Regression

- Given a training set of inputs and targets $\{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^{N}$
- Linear model:

$$y = \mathbf{w}^\top \mathbf{x}$$

• Squared error loss:

$$\mathcal{L}(y,t) = \frac{1}{2}(t-y)^2$$

• L_2 regularization:

$$\mathcal{R}(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Closed-form solution:

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{t}$$

• Gradient descent update rule:

$$\mathbf{w} \leftarrow (1 - \alpha \lambda) \mathbf{w} - \alpha \mathbf{X}^{\top} (\mathbf{y} - \mathbf{t})$$

Linear Regression as Maximum Likelihood

- Let's give linear regression a probabilistic interpretation.
- Assume a Gaussian noise model.

$$t \mid \mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\top} \mathbf{x}, \ \sigma^2)$$

• Linear regression is just maximum likelihood under this model:

$$\frac{1}{N} \sum_{i=1}^{N} \log p(t^{(i)} | \mathbf{x}^{(i)}; \mathbf{w}, b) = \frac{1}{N} \sum_{i=1}^{N} \log \mathcal{N}(t^{(i)}; \mathbf{w}^{\top} \mathbf{x}, \sigma^2)$$
$$= \frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(t^{(i)} - \mathbf{w}^{\top} \mathbf{x})^2}{2\sigma^2} \right) \right]$$
$$= \operatorname{const} - \frac{1}{2N\sigma^2} \sum_{i=1}^{N} (t^{(i)} - \mathbf{w}^{\top} \mathbf{x})^2$$

Regularization as MAP Inference

- View an L₂ regularizer as MAP inference with a Gaussian prior.
- Recall MAP inference:

$$\arg\max_{\mathbf{w}} \log p(\mathbf{w} \mid \mathcal{D}) = \arg\max_{\mathbf{w}} \left[\log p(\mathbf{w}) + \log p(\mathcal{D} \mid \mathbf{w}) \right]$$

• We just derived the likelihood term $\log p(\mathcal{D} \mid \mathbf{w})$:

$$\log p(\mathcal{D} \mid \mathbf{w}) = -\frac{1}{2N\sigma^2} \sum_{i=1}^{N} (t^{(i)} - \mathbf{w}^{\top} \mathbf{x})^2 + \text{const}$$

+ Assume a Gaussian prior, $\mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{S})$:

$$\log p(\mathbf{w}) = \log \mathcal{N}(\mathbf{w}; \mathbf{m}, \mathbf{S})$$

=
$$\log \left[\frac{1}{(2\pi)^{D/2} |\mathbf{S}|^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{w} - \mathbf{m})^{\top} \mathbf{S}^{-1} (\mathbf{w} - \mathbf{m}) \right) \right]$$

=
$$-\frac{1}{2} (\mathbf{w} - \mathbf{m})^{\top} \mathbf{S}^{-1} (\mathbf{w} - \mathbf{m}) + \text{const}$$

 \cdot Commonly, $\mathbf{m}=\mathbf{0}$ and $\mathbf{S}=\eta\mathbf{I}$, so

$$\log p(\mathbf{w}) = -\frac{1}{2\eta} \|\mathbf{w}\|^2 + \text{const.}$$

This is just L_2 regularization!

Gaussian Discriminant Analysis

1 Linear Algebra Review

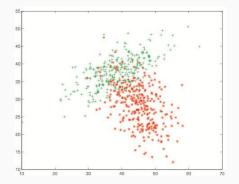
- 2 Multivariate Gaussian Distribution
- 3 Gaussian Maximum Likelihood
- 4 Revisiting Linear Regression

Two approaches to classification:

- **Discriminative approach:** estimate parameters of decision boundary/class separator directly from labeled examples.
 - Model $p(t|\mathbf{x})$ directly (logistic regression models)
 - Learn mappings from inputs to classes (linear/logistic regression, decision trees etc)
 - Tries to solve: How do I separate the classes?
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier).
 - Model $p(\mathbf{x}|t)$
 - Apply Bayes Rule to derive $p(t|\mathbf{x})$.
 - Tries to solve: What does each class "look" like?

Classification: Diabetes Example

- Gaussian discriminant analysis (GDA) is a Bayes classifier for continuous-valued inputs.
- Observation per patient: White blood cell count & glucose value.



• $p(\mathbf{x} | t = k)$ for each class is shaped like an ellipse \implies we model each class as a multivariate Gaussian ₃₉

Gaussian Discriminant Analysis

- Gaussian Discriminant Analysis in its general form assumes that $p(\mathbf{x}|t)$ is distributed according to a multivariate Gaussian distribution
- Multivariate Gaussian distribution:

$$p(\mathbf{x} \mid t = k) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}_k|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix.

- \cdot Each class k has associated mean vector $oldsymbol{\mu}_k$ and covariance matrix $oldsymbol{\Sigma}_k$
- How many parameters?
 - Each μ_k has D parameters, for DK total.
 - ► Each Σ_k has $\mathcal{O}(D^2)$ parameters, for $\mathcal{O}(D^2K)$ could be hard to estimate (more on that later).

GDA: Learning

- Learn the parameters for each class using maximum likelihood
- For simplicity, assume binary classification

$$p(t \mid \phi) = \phi^t (1 - \phi)^{1-t}$$

- You can compute the ML estimates in closed form (ϕ and μ_k are easy, $\mathbf{\Sigma}_k$ is tricky)

$$\phi = \frac{1}{N} \sum_{i=1}^{N} r_1^{(i)}$$

$$\mu_k = \frac{\sum_{i=1}^{N} r_k^{(i)} \cdot \mathbf{x}^{(i)}}{\sum_{i=1}^{N} r_k^{(i)}}$$

$$\Sigma_k = \frac{1}{\sum_{i=1}^{N} r_k^{(i)}} \sum_{i=1}^{N} r_k^{(i)} (\mathbf{x}^{(i)} - \mu_k) (\mathbf{x}^{(i)} - \mu_k)^{\top}$$

$$r_k^{(i)} = \mathbb{1}[t^{(i)} = k]$$

GDA Decision Boundary

• Recall: for Bayes classifiers, we compute the decision boundary with Bayes' Rule:

$$p(t \mid \mathbf{x}) = \frac{p(t) \, p(\mathbf{x} \mid t)}{\sum_{t'} p(t') \, p(\mathbf{x} \mid t')}$$

• Plug in the Gaussian $p(\mathbf{x} | t)$:

$$\log p(t_k | \mathbf{x}) = \log p(\mathbf{x} | t_k) + \log p(t_k) - \log p(\mathbf{x})$$

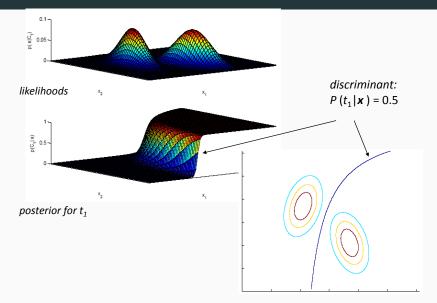
= $-\frac{D}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{\Sigma}_k| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) + \log p(t_k) - \log p(\mathbf{x})$

• Decision boundary:

$$(\mathbf{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) = (\mathbf{x} - \boldsymbol{\mu}_\ell)^\top \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{x} - \boldsymbol{\mu}_\ell) + \text{Const}$$

- What's the shape of the boundary?
 - We have a quadratic function in x, so the decision boundary is a conic section!

GDA Decision Boundary



GDA Decision Boundary

• Our equation for the decision boundary:

$$(\mathbf{x} - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) = (\mathbf{x} - \boldsymbol{\mu}_\ell)^{\top} \boldsymbol{\Sigma}_\ell^{-1} (\mathbf{x} - \boldsymbol{\mu}_\ell) + \text{Const}$$

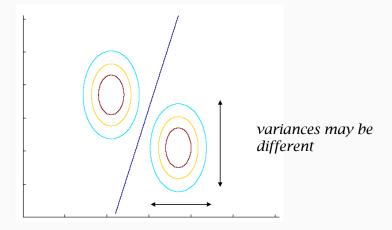
 \cdot Expand the product and factor out constants (w.r.t. \mathbf{x}):

$$\mathbf{x}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x} - 2\boldsymbol{\mu}_{k}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x} = \mathbf{x}^{\top} \boldsymbol{\Sigma}_{\ell}^{-1} \mathbf{x} - 2\boldsymbol{\mu}_{\ell}^{\top} \boldsymbol{\Sigma}_{\ell}^{-1} \mathbf{x} + \text{Const}$$

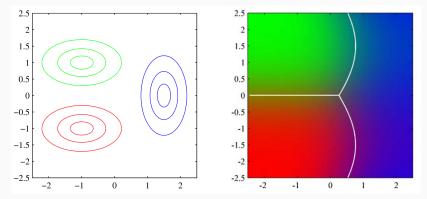
- What if all classes share the same covariance Σ ?
 - We get a linear decision boundary!

$$-2\boldsymbol{\mu}_{k}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x} = -2\boldsymbol{\mu}_{\ell}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x} + \text{Const}$$
$$(\boldsymbol{\mu}_{k} - \boldsymbol{\mu}_{\ell})^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x} = \text{Const}$$

GDA Decision Boundary: Shared Covariances



GDA Decision Boundary: Linear vs Quadratic



Classes that share the same covariance have linear decision boundaries. With classes that don't share the same covariance, the decision boundary is necessarily non-linear (quadratic discriminant). Source: PRML Bishop, 2006 • Binary classification: If you examine $p(t = 1 | \mathbf{x})$ under GDA and assume $\Sigma_0 = \Sigma_1 = \Sigma$, you will find that it looks like this:

$$p(t \mid \mathbf{x}, \phi, \boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x} - b)}$$

where (\mathbf{w}, b) are chosen based on $(\phi, \mu_0, \mu_1, \Sigma)$.

• Same model as logistic regression!

When should we prefer GDA to logistic regression, and vice versa?

- GDA makes a stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
 - If this is true, GDA is asymptotically efficient (best model in limit of large N)
 - ► If it's not true, the quality of the predictions might suffer.
- Many class-conditional distributions lead to logistic classifier.
 - When these distributions are non-Gaussian (i.e., almost always), LR usually beats GDA
- GDA can handle easily missing features (how do you do that with LR?)

Gaussian Naive Bayes

- \cdot What if \mathbf{x} is high-dimensional?
 - The Σ_k have $\mathcal{O}(D^2K)$ parameters, which can be a problem if D is large.
 - ► We already saw we can save some a factor of *K* by using a shared covariance for the classes.
 - Any other idea you can think of?
- Naive Bayes: Assumes features independent given the class

$$p(\mathbf{x} | t = k) = \prod_{j=1}^{D} p(x_j | t = k)$$

- Assuming likelihoods are Gaussian, how many parameters required for Naive Bayes classifier?
 - This is equivalent to assuming the x_j are uncorrelated, i.e. Σ is diagonal.
 - Hence, only D parameters for Σ !

Gaussian Naïve Bayes

• Gaussian Naïve Bayes classifier assumes that the likelihoods are Gaussian:

$$p(x_j \mid t = k) = \frac{1}{\sqrt{2\pi}\sigma_{jk}} \exp\left[\frac{-(x_j - \mu_{jk})^2}{2\sigma_{jk}^2}\right]$$

(this is just a 1-dim Gaussian, one for each input dimension)

- Model the same as GDA with diagonal covariance matrix
- Maximum likelihood estimate of parameters

$$\mu_{jk} = \frac{\sum_{i=1}^{N} r_k^{(i)} x_j^{(i)}}{\sum_{i=1}^{N} r_k^{(i)}}$$
$$\sigma_{jk}^2 = \frac{\sum_{i=1}^{N} r_k^{(i)} (x_j^{(i)} - \mu_{jk})^2}{\sum_{i=1}^{N} r_k^{(i)}}$$
$$r_k^{(i)} = \mathbb{1}[t^{(i)} = k]$$

Decision Boundary: Isotropic

- We can go even further and assume the covariances are **spherical**, or **isotropic**.
- In this case: $\mathbf{\Sigma} = \sigma^2 \mathbf{I}$ (just need one parameter!)
- Going back to the class posterior for GDA:

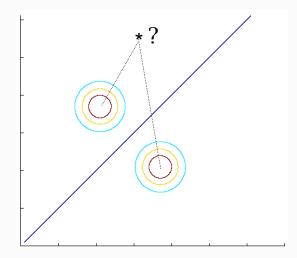
$$\log p(t_k | \mathbf{x}) = \log p(\mathbf{x} | t_k) + \log p(t_k) - \log p(\mathbf{x})$$

= $-\frac{D}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{\Sigma}_k^{-1}| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^\top \mathbf{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) + \log p(t_k) - \log p(\mathbf{x})$

- Suppose for simplicity that p(t) is uniform. Plugging in $\mathbf{\Sigma}=\sigma^2\mathbf{I}$ and simplifying a bit,

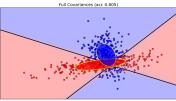
$$\log p(t_k | \mathbf{x}) - \log p(t_\ell | \mathbf{x}) = -\frac{1}{2\sigma^2} \left[(\mathbf{x} - \boldsymbol{\mu}_k)^\top (\mathbf{x} - \boldsymbol{\mu}_k) - (\mathbf{x} - \boldsymbol{\mu}_\ell)^\top (\mathbf{x} - \boldsymbol{\mu}_\ell) \right]$$
$$= -\frac{1}{2\sigma^2} \left[\|\mathbf{x} - \boldsymbol{\mu}_k\|^2 - \|\mathbf{x} - \boldsymbol{\mu}_\ell\|^2 \right]$$

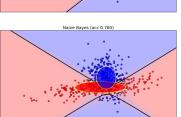
Decision Boundary: Isotropic

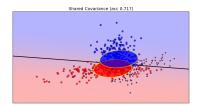


• The decision boundary bisects the class means!

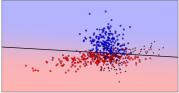
Example







Logistic regression (acc 0.722)



Generative models - Recap

- GDA has quadratic (conic) decision boundary.
- With shared covariance, GDA is similar to logistic regression.
- Generative models:
 - Flexible models, easy to add/remove class.
 - ► Handle missing data naturally.
 - More "natural" way to think about things, but usually doesn't work as well.
- Tries to solve a hard problem (model $p(\mathbf{x})$) in order to solve a easy problem (model $p(t | \mathbf{x})$).

Next up: Unsupervised learning with PCA!