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Classification: Diabetes Example

• Observation per patient: White blood cell count & glucose value.

• p(x | t = k) for each class is shaped like an ellipse
=⇒ we model each class as a multivariate Gaussian
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Overview

• Last week, we started our tour of probabilistic models, and
introduced the fundamental concepts in the discrete setting.

• Continuous random variables:
! Manipulating Gaussians to tackle interesting problems requires

lots of linear algebra, so we’ll begin with a linear algebra review.
! Additional reference: See also Chapter 4 of Mathematics for Machine

Learning, by Desienroth et al. https://mml-book.github.io/

• Regression: Linear regression as maximum likelihood estimation
under a Gaussian distribution.

• Generative classifier for continuous data: Gaussian discriminant
analysis, a Bayes classifier for continuous variables.

• Next week’s lecture (PCA) draws heavily on today’s linear algebra
content, so be sure to review it offline.
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Eigenvectors and Eigenvalues

• Let B be a square matrix.
• An eigenvector of B is a non-zero vector v such that

Bv = λv

for a scalar λ, which is called an eigenvalue.
• A matrix of size D ×D has at most D distinct eigenvalues,
but may have fewer.

• We will focus on symmetric matrices.

5



Spectral Theorem

For a symmetric D ×D matrix,

• All of the eigenvalues are real-valued.

• There is a full set of D linearly independent eigenvectors.
These eigenvectors form a basis for RD .

• The eigenvectors can be chosen to be real-valued.

• The eigenvectors can be chosen to be orthonormal.
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Spectral Decomposition

Factorize a symmetric matrix A with the Spectral Decomposition:

A = QΛQ⊤

where

• Q is an orthogonal matrix
! The columns qi of Q are eigenvectors.

• Λ is a diagonal matrix.
! The diagonal entries λi are the corresponding eigenvalues.

Check that this is reasonable:

Aqi =

7

Q = [a, . . . .p
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Spectral Decomposition

• Because A has a full set of orthonormal eigenvectors {qi},
we can use these as an orthonormal basis for RD .

• A vector x can be written in an alternate coordinate system:

x = x̃1q1 + · · ·+ x̃DqD

• Converting between the two coordinate systems:

x̃ = Q⊤x x = Qx̃

• In the alternate coordinate system,
A acts by re-scaling the individual coordinates:

Ax = x̃1Aq1 + · · ·+ x̃DAqD

= λ1x̃1q1 + · · ·+ λDx̃DqD
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PSD Matrices

Symmetric matrices represent quadratic forms, f(v) = v⊤Av.

• If v⊤Av > 0 for all v ̸= 0, A is positive definite, denoted A ≻ 0.
• If v⊤Av ≥ 0 for all v, A is positive semi-definite, denoted A ≽ 0.
• If v⊤Av < 0 for all v ̸= 0, A is negative definite, denoted A ≺ 0.
• If v⊤Av can be positive or negative, A is indefinite.

positive definite non-strictly PSD

negative definite indefinite
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PSD Matrices

• Exercise: Non-negative linear combinations of PSD matrices are
PSD.

• Related: If A is a random matrix which is always PSD, then E[A]
is PSD.

• Exercise: For any matrix B, the matrix BB⊤ is PSD.

• Corollary: For a random vector x, the covariance matrix
Cov(x) = E[(x− µ)(x− µ)⊤] is a PSD matrix. (Special case of
above, since x− µ is a column vector, i.e. a D × 1 matrix.)
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PSD Matrices

Claim: A is positive definite (PSD) if and only if
all of its eigenvalues are positive (non-negative).

Proof: Write v in terms of the eigenbases,

ṽ = Q⊤v.

Then, we have

v⊤Av = v⊤QΛQ⊤v

= ṽ⊤Λṽ

=
∑

i

λiṽ
2
i

This is positive (nonnegative) for all v if and only if
all the λi are positive (nonnegative).
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PSD Matrices

• If A is positive definite, then the contours of the quadratic form
are elliptical.

• If A is both diagonal and positive definite (i.e. its diagonal entries
are positive), then the ellipses are axis-aligned.

A =

(
0.5 0
0 1

)

f(v) = v⊤Av

=
∑

i

aiv
2
i
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PSD Matrices

For a positive definite A = QΛQ⊤, the contours of the quadratic form
are elliptical, and the principal axes of the ellipses are aligned with
the eigenvectors.

A =

(
1 −1
−1 2

)

f(v) = v⊤QΛQ⊤v

= ṽ⊤Λṽ

=
∑

i

λiṽ
2
i

In this example, λ1 > λ2.

All symmetric matrices are diagonal if you choose the right coordinate
system. 13



Matrix Powers

By the Spectral Decomposition, we can square a symmetric A:

A2 = (QΛQ⊤)2 = QΛQ⊤Q︸ ︷︷ ︸
=I

ΛQ⊤ = QΛ2Q⊤

We can take the k-th power of A:

Ak = QΛkQ⊤.

If A is invertible, we calculate its inverse:

A−1 = (Q⊤)−1Λ−1Q−1 = QΛ−1Q⊤.

If A is PSD, then we can calculate its square root:

A1/2 = QΛ1/2Q⊤.
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Determinant Properties

Claim: The determinant of a symmetric matrix equals
the product of its eigenvalues.

|A| = |QΛQ⊤| = |Q||Λ||Q⊤| = |Λ| =
∏

i

λi.

Corollary: The determinant of a PSD (positive definite) matrix is
non-negative (positive).

Basic properties of a determinant:

• |BC| = |B| · |C|
• |B| = 0 iff B is singular
• |B−1| = |B|−1 if B is invertible (nonsingular)
• |B⊤| = |B|
• If Q is orthogonal, then |Q| = ±1
(i.e. orthogonal transformations preserve volume)

• If Λ is diagonal with entries {λi}, then |Λ| =
∏

i λi.
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Multivariate Gaussian Distribution
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Univariate Gaussian distribution

N (x;µ,σ2) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)

• Parameterized by mean µ and variance σ2.
• Why is Gaussian so popular?

! Sums of lots of independent random variables are approximately
Gaussian (Central Limit Theorem).

! Machine learning uses Gaussians a lot because they make the
calculations easy.
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Multivariate Mean and Covariance

Mean

µ = E[x] =

⎛

⎜⎝
µ1
...

µD

⎞

⎟⎠

Covariance

Σ = Cov(x) = E[(x− µ)(x− µ)⊤] =

⎛

⎜⎜⎜⎝

σ2
1 σ12 · · · σ1D

σ12 σ2
2 · · · σ2D

...
... . . . ...

σD1 σD2 · · · σ2
D

⎞

⎟⎟⎟⎠

(µ and Σ) uniquely define a multivariate Gaussian (or Normal)
distribution, denoted N (µ,Σ) or N (x;µ,Σ).
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PDF of Gaussian Distribution

PDF of the univariate Gaussian distribution (d = 1, Σ = σ2):

N (x;µ,σ2) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)

PDF of the multivariate Gaussian distribution:

N (x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

19

·
Thadraticform .

2
-



Univariate Shift + Scale

• All univariate Gaussian distributions are shaped like
the standard normal distribution.

• Obtain N (µ,σ2) by starting with N (0, 1), shifting by µ, and
stretching by σ =

√
σ2.

20
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Multivariate Shift + Scale

• Start with a standard Gaussian x ∼ N (0, I). So E[x] = 0 and
Cov(x) = I.

• What happens if we apply the map x̂ = Sx+ b?
• By linearity of expecation,

E[x̂] = SE[x] + b = b.

• By the linear transformation rule for covariance,

Cov(x̂) = SCov(x)S⊤ = SS⊤.

• x̂ is also Gaussian distributed.
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Multivariate Shift + Scale

E[Sx+ b] = b

Cov(Sx+ b) = SS⊤.

• To obtain N (µ,Σ), we start with N (0, I),
shift by µ, and scale by the matrix square root Σ1/2.

! Recall: Σ1/2 = QΛ1/2Q.
! For each eigenvector qi with eigenvalue λi, we stretch by a factor

of
√
λi in the direction qi.

22
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ = 0.5

(
1 0
0 1

)
Σ = 2

(
1 0
0 1

)

Figure 1: Probability density function

Figure 2: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
2 0
0 1

)
Σ =

(
1 0
0 2

)

Figure 3: Probability density function

Figure 4: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5
0.5 1

)
Σ =

(
1 0.8
0.8 1

)

= Q1

(
1.5 0.
0. 0.5

)
Q⊤

1 = Q2

(
1.8 0.
0. 0.2

)
Q⊤

2

Figure 5: Probability density function

Figure 6: Contour plot of the pdf
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Gaussian Maximum Likelihood



1 Linear Algebra Review

2 Multivariate Gaussian Distribution

3 Gaussian Maximum Likelihood

4 Revisiting Linear Regression

5 Gaussian Discriminant Analysis

26



Maximum Likelihood for Multivariate Gaussian

Model the distribution of highest and lowest temperatures in Toronto
in March, and recorded the following observations

(-2.5,-7.5) (-9.9,-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution N (µ,Σ).
We want to estimate µ and Σ using data.
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Maximum Likelihood for Univariate Gaussian

∂ℓ

∂µ
= − 1

σ2

N∑

i=1

x(i) − µ = 0

µ̂ML =
1

N

N∑

i=1

x(i)

28
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Maximum Likelihood for Univariate Gaussian

∂ℓ

∂σ
=

∂

∂σ

[
N∑

i=1

−1

2
log 2π − log σ − 1

2σ2
(x(i) − µ)2

]

=
N∑

i=1

−1

2

∂

∂σ
log 2π − ∂

∂σ
log σ − ∂

∂σ

1

2σ
(x(i) − µ)2

=
N∑

i=1

0− 1

σ
+

1

σ3
(x(i) − µ)2

= −N

σ
+

1

σ3

N∑

i=1

(x(i) − µ)2 = 0

σ̂ML =

√√√√ 1

N

N∑

i=1

(x(i) − µ)2
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Maximum Likelihood for Multivariate Gaussian

Log-likelihood function:

ℓ(µ,Σ) = log
N∏

i=1

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=
N∑

i=1

log

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=
N∑

i=1

− log(2π)d/2︸ ︷︷ ︸
constant

− log |Σ|1/2 − 1

2
(x(i) − µ)TΣ−1(x(i) − µ)
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Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

dℓ

dµ
= −

N∑

i=1

d

dµ

1

2
(x(i) − µ)TΣ−1(x(i) − µ)

= −
N∑

i=1

Σ−1(x(i) − µ) = 0 using identity ∇xx
⊤Ax = 2Ax

Solving for µ, we get

µ̂ =
1

N

N∑

i=1

x(i).

The best estimate for µ is the sample mean of the observed values,
or the empirical mean.
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Maximum Likelihood for Multivariate Gaussians

We can do a similar calculation for the covariance matrix Σ.

∂ℓ

∂Σ
= 0

Σ̂ =
1

N

N∑

i=1

(x(i) − µ̂)(x(i) − µ̂)⊤

=
1

N
(X− 1µ⊤)⊤(X− 1µ⊤)

where 1 is an N-dimensional vector of 1s.

The best estimate for Σ is the empirical covariance.
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Revisiting Linear Regression
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Recap: Linear Regression

• Given a training set of inputs and targets {(x(i), t(i))}Ni=1

• Linear model:
y = w⊤x

• Squared error loss:
L(y, t) = 1

2
(t− y)2

• L2 regularization:
R(w) =

λ

2
∥w∥2

• Closed-form solution:

w = (X⊤X+ λI)−1X⊤t

• Gradient descent update rule:

w← (1− αλ)w − αX⊤(y − t)

34
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Linear Regression as Maximum Likelihood

• Let’s give linear regression a probabilistic interpretation.
• Assume a Gaussian noise model.

t |x ∼ N (w⊤x, σ2)

• Linear regression is just maximum likelihood under this model:

1

N

N∑

i=1

log p(t(i) |x(i);w, b) =
1

N

N∑

i=1

logN (t(i);w⊤x,σ2)

=
1

N

N∑

i=1

log

[
1√
2πσ

exp

(
−(t(i) −w⊤x)2

2σ2

)]

= const− 1

2Nσ2

N∑

i=1

(t(i) −w⊤x)2
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Regularization as MAP Inference

• View an L2 regularizer as MAP inference with a Gaussian prior.
• Recall MAP inference:

argmax
w

log p(w | D) = argmax
w

[log p(w) + log p(D |w)]

• We just derived the likelihood term log p(D |w):

log p(D |w) = − 1
2Nσ2

N∑

i=1

(t(i) −w⊤x)2 + const

• Assume a Gaussian prior, w ∼ N (m,S):
log p(w) = logN (w;m,S)

= log

[
1

(2π)D/2|S|1/2 exp
(
− 1

2 (w −m)⊤S−1(w −m)
)]

= − 1
2 (w −m)⊤S−1(w −m) + const

• Commonly, m = 0 and S = ηI, so

log p(w) = − 1
2η

∥w∥2 + const.

This is just L2 regularization!
36
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Gaussian Discriminant Analysis
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Generative vs Discriminative (Recap)

Two approaches to classification:

• Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

! Model p(t|x) directly (logistic regression models)
! Learn mappings from inputs to classes (linear/logistic regression,

decision trees etc)
! Tries to solve: How do I separate the classes?

• Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

! Model p(x|t)
! Apply Bayes Rule to derive p(t|x).
! Tries to solve: What does each class ”look” like?
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Classification: Diabetes Example

• Gaussian discriminant analysis (GDA) is a Bayes classifier for
continuous-valued inputs.

• Observation per patient: White blood cell count & glucose value.

• p(x | t = k) for each class is shaped like an ellipse
=⇒ we model each class as a multivariate Gaussian 39



Gaussian Discriminant Analysis

• Gaussian Discriminant Analysis in its general form assumes that p(x|t)
is distributed according to a multivariate Gaussian distribution

• Multivariate Gaussian distribution:

p(x | t = k) =
1

(2π)D/2|Σk|1/2
exp

[
−1

2
(x− µk)

TΣ−1
k (x− µk)

]

where |Σk| denotes the determinant of the matrix.

• Each class k has associated mean vector µk and covariance matrix Σk

• How many parameters?
! Each µk has D parameters, for DK total.
! Each Σk has O(D2) parameters, for O(D2K) — could be hard to

estimate (more on that later).

40
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GDA: Learning

• Learn the parameters for each class using maximum likelihood
• For simplicity, assume binary classification

p(t |φ) = φt(1− φ)1−t

• You can compute the ML estimates in closed form (φ and µk are easy,
Σk is tricky)

φ =
1

N

N∑

i=1

r(i)1

µk =

∑N
i=1 r

(i)
k · x(i)

∑N
i=1 r

(i)
k

Σk =
1

∑N
i=1 r

(i)
k

N∑

i=1

r(i)k (x(i) − µk)(x
(i) − µk)

⊤

r(i)k = [t(i) = k]
41
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GDA Decision Boundary

• Recall: for Bayes classifiers, we compute the decision boundary with
Bayes’ Rule:

p(t |x) = p(t) p(x | t)∑
t′ p(t

′) p(x | t′)
• Plug in the Gaussian p(x | t):

log p(tk|x) = log p(x|tk) + log p(tk)− log p(x)

= −D

2
log(2π)− 1

2
log |Σk|−

1

2
(x− µk)

⊤Σ−1
k (x− µk) +

+ log p(tk)− log p(x)

• Decision boundary:
(x− µk)

⊤Σ−1
k (x− µk) = (x− µℓ)

⊤Σ−1
ℓ (x− µℓ) + Const

• What’s the shape of the boundary?
! We have a quadratic function in x, so the decision boundary is a

conic section!
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GDA Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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GDA Decision Boundary

• Our equation for the decision boundary:

(x− µk)
⊤Σ−1

k (x− µk) = (x− µℓ)
⊤Σ−1

ℓ (x− µℓ) + Const

• Expand the product and factor out constants (w.r.t. x):

x⊤Σ−1
k x− 2µ⊤

k Σ
−1
k x = x⊤Σ−1

ℓ x− 2µ⊤
ℓ Σ

−1
ℓ x+Const

• What if all classes share the same covariance Σ?
! We get a linear decision boundary!

−2µ⊤
k Σ

−1x = −2µ⊤
ℓ Σ

−1x+Const

(µk − µℓ)
⊤Σ−1x = Const

44
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GDA Decision Boundary: Shared Covariances

variances may be 
different 

45



GDA Decision Boundary: Linear vs Quadratic

Classes that share the same covariance have linear decision boundaries.
With classes that don’t share the same covariance, the decision boundary is

necessarily non-linear (quadratic discriminant).
Source: PRML Bishop, 2006
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GDA vs Logistic Regression

• Binary classification: If you examine p(t = 1 |x) under GDA and assume
Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t |x,φ,µ0,µ1,Σ) =
1

1 + exp(−wTx− b)

where (w, b) are chosen based on (φ,µ0,µ1,Σ).

• Same model as logistic regression!
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GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

• GDA makes a stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

! If this is true, GDA is asymptotically efficient (best model in limit of
large N)

! If it’s not true, the quality of the predictions might suffer.

• Many class-conditional distributions lead to logistic classifier.
! When these distributions are non-Gaussian (i.e., almost always), LR

usually beats GDA

• GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

• What if x is high-dimensional?
! The Σk have O(D2K) parameters, which can be a problem if D is

large.
! We already saw we can save some a factor of K by using a shared

covariance for the classes.
! Any other idea you can think of?

• Naive Bayes: Assumes features independent given the class

p(x | t = k) =
D∏

j=1

p(xj | t = k)

• Assuming likelihoods are Gaussian, how many parameters required for
Naive Bayes classifier?

! This is equivalent to assuming the xj are uncorrelated, i.e. Σ is
diagonal.

! Hence, only D parameters for Σ!
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Gaussian Naïve Bayes

• Gaussian Naïve Bayes classifier assumes that the likelihoods are
Gaussian:

p(xj | t = k) =
1√

2πσjk

exp

[
−(xj − µjk)2

2σ2
jk

]

(this is just a 1-dim Gaussian, one for each input dimension)
• Model the same as GDA with diagonal covariance matrix
• Maximum likelihood estimate of parameters

µjk =

∑N
i=1 r

(i)
k x(i)

j
∑N

i=1 r
(i)
k

σ2
jk =

∑N
i=1 r

(i)
k (x(i)

j − µjk)2

∑N
i=1 r

(i)
k

r(i)k = [t(i) = k]
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Decision Boundary: Isotropic

• We can go even further and assume the covariances are spherical, or
isotropic.

• In this case: Σ = σ2I (just need one parameter!)
• Going back to the class posterior for GDA:

log p(tk|x) = log p(x | tk) + log p(tk)− log p(x)

= −D

2
log(2π)− 1

2
log |Σ−1

k |− 1

2
(x− µk)

⊤Σ−1
k (x− µk) +

+ log p(tk)− log p(x)

• Suppose for simplicity that p(t) is uniform. Plugging in Σ = σ2I and
simplifying a bit,

log p(tk |x)− log p(tℓ |x) = −
1

2σ2

[
(x− µk)

⊤(x− µk)− (x− µℓ)
⊤(x− µℓ)

]

= − 1

2σ2

[
∥x− µk∥2 − ∥x− µℓ∥2

]
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Decision Boundary: Isotropic

* ? 

• The decision boundary bisects the class means!
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Example
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Generative models - Recap

• GDA has quadratic (conic) decision boundary.

• With shared covariance, GDA is similar to logistic regression.

• Generative models:
! Flexible models, easy to add/remove class.
! Handle missing data naturally.
! More “natural” way to think about things, but usually doesn’t work

as well.

• Tries to solve a hard problem (model p(x)) in order to solve a
easy problem (model p(t |x)).

Next up: Unsupervised learning with PCA!
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