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Lecture 8 - Multivariate Gaussians, GDA
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Classification: Diabetes Example

. Observationﬁer patient: White blood cell count & glucose value.
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- p(x |t = k) for each class is shaped like an ellipse
= we model each class as a multivariate Gaussian



Overview

- Last week, we started our tour of probabilistic models, and
introduced the fundamental concepts in the discrete setting.

- Continuous random variables:

» Manipulating Gaussians to tackle interesting problems requires
lots of linear algebra, so we'll begin with a linear algebra review.

» Additional reference: See also Chapter 4 of Mathematics for Machine
Learning, by Desienroth et al. https://mml-book.github.io/

- Regression: Linear regression as maximum likelihood estimation
under a Gaussian distribution.

- Generative classifier for continuous data: Gaussian discriminant
analysis, a Bayes classifier for continuous variables.

- Next week’s lecture (PCA) draws heavily on today’s linear algebra
content, so be sure to review it offline.



Linear Algebra Review
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Eigenvectors and Eigenvalues

- Let B be a square matrix.
- An eigenvector of B is a non-zero vector v such that

Bv =)\v

for a scalar A\, which is called an eigenvalue.

- A matrix of size D x D has at most D distinct eigenvalues,
but may have fewer.

- We will focus on symmetric matrices.



Spectral Theorem

For a symmetric D x D matrix,

All of the eigenvalues are real-valued.

- There is a full set of D linearly independent eigenvectors.
These eigenvectors form a basis for RP.

- The eigenvectors can be chosen to be real-valued.

- The eigenvectors can be chosen to be orthonormal
\[ \l' ;
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Spectral Decomposition

Factorize a symmetric matrix A with the Spectral Decomposition:

A =QAQT

|
where Q = [‘M - }

- Q is an orthogonal matrix l
» The columns q,; of Q are eigenvectors.
- A is a diagonal matrix.
» The diagonal entries \; are the corresponding eigenvalues.

Check that this is reasonable:

Aq; = \[\—- = C\l\\G

~

O ol



Spectral Decomposition

- Because A has a full set of orthonormal eigenvectors {q;},
we can use these as an orthonormal basis for R,

- A vector x can be written in an alternate coordinate system:
X =I1q1+ -+ 2Zpap

- Converting between the two coordinate systems:
x=Q'x x=0Qx

- In the alternate coordinate system,
A acts by re-scaling the individual coordinates:

Ax = :ilAql qP °o0 F SEDAqD
= A\1Z1q1 + -+ ApTpap
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PSD Matrices

Symmetric matrices represent quadratic forms, f(v) = v’ Av.

- If vI Av > 0 forall v # 0, A is positive definite, denoted A > 0.

- If v Av > 0 for all v, A is positive semi-definite, denoted A > 0.
- If v Av < 0forall v # 0, A is negative definite, denoted A < 0.
- If vI Av can be positive or negative, A is indefinite.

A 7/ = \ . N
\‘) "~ /

positive definite non-strictly PSD




PSD Matrices

- Exercise: Non-negative linear combinations of PSD matrices are
PSD.

- Related: If A is a random matrix which is always PSD, then E[A]
is PSD.
- Exercise: For any matrix B, the matrix BB is PSD.

- Corollary: For a random vector x, the covariance matrix
Cov(x) = E[(x — p)(x — u) "] is a PSD matrix. (Special case of

above, since x — p is a column vector, i.e. a D x 1 matrix.)
10



PSD Matrices

Claim: A is positive definite (PSD) if and only if
all of its eigenvalues are positive (non-negative).
Proof: Write v in terms of the eigenbases,
v=Q'v.
Then, we have . Ax D
Taw— ol T U :
v Av=v QAQ v
ne 906

A ORT | ®®

=5\ « 10
= (xD - T

This is positive (nonnegative) for all v if and only it~ 4 < g
all the \; are positive (nonnegative). f(\,l\l' Q ZVL (\3\9

Z/Cn \72 \2;&3\




PSD Matrices

- If A is positive definite, then the contours of the quadratic form
are elliptical.

- If A is both diagonal and positive definite (i.e. its diagonal entries
are positive), then the ellipses are axis-aligned.

0.5 0
A= (V)

f(v)=v'Av

= E aw?

3
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PSD Matrices

For a positive definite A = QAQ', the contours of the quadratic form
are elliptical, and the principal axes of the ellipses are aligned with
the eigenvectors.

a=(43)

fv)=v'QAQ'v

= v AV

= At}

In this example, A1 > Ao.

All symmetric matrices are diagonal if you choose the right coordinate
system. "



By the Spectral Decomposition, we can square a symmetric A:

A’=(QAQT)’=QA QTQ AQT = QA*QT

7I
We can take the k-th power of A:
If A is invertible, we calculate its inverse:
ATl =(Q")7ATIQT =QAT'q
If A is PSD, then we can calculate its square root:

A1/2 QAl/QQT

14



Determinant Properties

Claim: The determinant of a symmetric matrix equals
the product of its eigenvalues.

Al =1QAQT|=QIIAIIQT| = |A| = HA

Corollary: The determinant of a PSD (positive definite) matrix is
non-negative (positive).
Basic properties of a determinant:

- |BC| = [B] - C]|

- |B| =0 iff B is singular

- |B~Y = |B|7Lif B is invertible (nonsingular)

* [BT| =B

- If Q is orthogonal, then |Q| = £1

(i.e. orthogonal transformations preserve volume)
- If Ais diagonal with entries {);}, then |[A] =T, A

15



Multivariate Gaussian Distribution
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Univariate Gaussian distribution

N (5 p,0%) = \/21?0 exp <_(93—M)2>

- Parameterized by mean p and variance o?.

- Why is Gaussian so popular?
» Sums of lots of independent random variables are approximately
Gaussian (Central Limit Theorem).
» Machine learning uses Gaussians a lot because they make the
calculations easy.



Multivariate Mean and Covariance

Mean
M1
p=Ex =1 :
KD
Covariance
Uf 012 -+ 01D
D
O12 05 02D
% = Cov(x) = E[(x — ) (x — )] =
oOp1 Op2 --- U%

(1 and X) uniquely define a multivariate Gaussian (or Normal)
distribution, denoted N (p, ) or N (x; p, ).



PDF of Gaussian Distribution

1 < (z —p)?
Ry S GO o
V2ro P 202

PDF of the multivariate Gaussian distribution:

N(x;p,0%) =

N(x;p, 2) = (QWWi\El/? exp {—;(X - = (x - N)]
e

19



Univariate Shift + Scale

- All univariate Gaussian distributions are shaped like
the standard normal distribution.

- Obtain N (u, 0?) by starting with A(0, 1), shifting by p, and
stretching by o = v/o2.

nGa,09

20



Multivariate Shift + Scale

- Start with a standard Gaussian x ~ A(0,I). So E[x] = 0 and

Cov(x) =1 D¢+ Dxl
- What happens if we apply the map x = Sx + b? ;\ e\R
- By linearity of expecation, DD Dxl

E[%] = SE[x] + b = b.
- By the linear transformation rule for covariance,
Cov(x) = SCov(x)ST =SS".

- x is also Gaussian distributed.

21



Multivariate Shift + Scale

E[Sx+b]=b
Cov(Sx +b) =SS".

- To obtain M (u, X), we start with N(0,T),
shift by p, and scale by the matrix square root /2
» Recall: /2 — QA/2Q.
» For each eigenvector q; with eigenvalue \;, we stretch by a factor
of v/X; in the direction q;.

Z - ”S;\\"quu o

22



Bivariate Gaussian

TR

Probability Density

2

Figure 1: Probability 2density function
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Figure 2: Contour plot of the pdf
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Probability Density

Figure 3: Probability density function
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Figure 4 Contour plot of the pdf
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Bivariate Gaussian

Probability Density

Probability density function
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Figure 6: Contour plot of the pdf ~
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Gaussian Maximum Likelihood




9 Gaussian Maximum Likelihood
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Maximum Likelihood for Multivariate Gaussian

Model the distribution of highest and lowest temperatures in Toronto

in March, and recorded the following observations 8’
-12.1-175) (-89,-13.9) (-6.0,-11.1)
x " S
N=5

from a Gaussian distribution N (, X).

wl\oJ’ is Hhe MAL ﬁ'
j,u—dlmmn
% ﬁl«l/r Y,




Maximum Likelihood for Univariate Gaussian

28



Maximum Likelihood for Univariate Gaussian

N
o 0 1 5
= [Z—Qlog2ﬂ—10g0—2 2(X()—,u)Ql
N
10 0 0 1
— -2 = _ =~ (x® 2
; 28010g27T 8010g0 8020(X )
N
11,
:ZO—E“‘;(X()—M)Q
i=1
N
N 1
I ;Z(X(” —p)?=0
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Maximum Likelihood for Multivariate Gaussian

Log-likelihood function:
id

- 1 L G —1(, (i
U(p,X) = IOgH {WW eXP{_Q(X() - #)Tz I(X( ) — H)H

I
Amz

1 1 . )
- () NI =1 (1)
og[(%)m‘z,l/gexp{ L0 — )T u>H

—log(2m)%? —log |B|/? — }(x(i) ~ ) TE 1 xO — p)
1 2
constant

=1

I
AMZ

)
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Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

@:_Z@§(X/__L)E 6 =) = T 2
=1
N
=-> &P —p)=0 using idenE)ty VX'XTAX = 2Ax
=t _ ‘1&2]— ()(m_,,\ =0
Solving for u, we get go N\\\Nw e
{ N
<M o» . LN 57 ( ( )___ o)
o : o1 Q) 2 -
S e S

The best estimate for p is the sample mean of the observed values,
or the empirical mean.

31



Maximum Likelihood for Multivariate Gaussians

We can do a similar calculation for the covariance matrix X.

o _

Mz
3
4|

(X—-1p") (X —1pT)

=2 =5

where 1 is an N-dimensional vector of 1s.

The best estimate for X is the empirical covariance.

32



Revisiting Linear Regression




e Revisiting Linear Regression
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Recap: Linear Regression

- Given a training set of inputs and targets {(x®, @)}
- Linear model:

- Squared error loss:

- Lo regularization:

R(w) = || ||2 7 - A ((w“
i ) (+ y) +d
Leg(“)) o

- Closed-form solution:
w=(X"X+A)Xt

- Gradient descent update rule:
—(1-—aNw—aX"(y—t)

34



Linear Regression as Maximum Likelihood

- Let's give linear regression a probabilistic interpret

- Assume a Gaussian noise model. B"—)

tlx ~N(w'x, 0?) _7

- Linear regressmn Is just megxbmum |<e ihood u derthls m L
kab\lnwo) 1
7210gpt(1 | x@; w,b) Zlog/\/ w ' x,0%) gom(f.

i=1 N . . D/
1 () — wTx)?
w3 7 ( =)
N
= const — SN o2 Z(t w!x)>2
i=1 T

35



Regularization as MAP Inference

. : TN . .
- View an Lo regularizer@s MAP Iﬂ@lth a Gaussian prior.

- Recall MAP inference:
arg max log?;(w | D) > arg max [log p(w) + log p(D | w)]
-+ We just derived the likelihood term log p(D | w):

1
2N o2

N
Z(t(i) —w'x)? + const

i=1

logp(D | w) = —

- Assume a Gaussian prior, w ~ N (m, S):

log p(w) = log N'(w; m, S)

= log {W exp (—%(w —m) S H(w— m))]

=—1(w-— m) 'S~ (w — m) + const

, T.
- Commonly, m = 0 and S = nI, so = '/’Z w T U.))
1, s BT
logp(w) = —%HWH +const. ) “ " l( 2

This is just Lo regularization!
36



Gaussian Discriminant Analysis




@ Gaussian Discriminant Analysis
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Generative vs Discriminative (Recap)

Two approaches to classification:

- Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

» Model p(t|x) directly (logistic regression models)

» Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

» Tries to solve: How do | separate the classes?

- Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

» Model p(x]t)
» Apply Bayes Rule to derive p(t|x).
» Tries to solve: What does each class "look” like?

38



Classification: Diabetes Example

- Gaussian discriminant analysis (GDA) is a Bayes classifier for
continuous-valued inputs.

- Observation per patient: White blood cell count & glucose value.

- p(x|t = k) for each class is shaped like an ellipse
= we model each class as a multivariate Gaussian 3q



Gaussian Discriminant Analysis

- Gaussian Discriminant Analysis in its general form assumes that p(x|t)
is distributed according to a multivariate Gaussian distribution

- Multivariate Gaussian distribution:

1 1
t=k)= — —Z(x — Ty =1l
p(XI ) (27T)D/2|Ek|1/2 CeXp 2(X I‘l‘k) k (X’j l’l’k)
M(,Zp

where |3, | denotes the determinant of the matrix. M 2
( |
- Each class k has associated mean vector u,, and covariance matrix X
- How many parameters?

» Each p, has D parameters, for DK total.
» Fach 2 has O(D?) parameters, for O(D?K) — could be hard to
estimate (more on that later).

40



GDA: Learning

- Learn the parameters for each class using maximum likelihood
- For simplicity, assume binary classification ?(5\ L+ ;\L/>

p(t|¢) = ¢'(1—¢)' "

- You can compute the ML estimates in closed form (¢ and p,, are easy,

5 is tricky)
1 2L
¢ = ~ 27.57/)
z]'\i1 Tl(ci) -x®
K = = N i
dic 7’1(@)
1 N .
Yy = ——= Zr,(:)(x(l) — ) (x® — ) T

N i
> i1 Tl(c) i=1

r® = 1O =k
4



GDA Decision Boundary

- Recall: for Bayes classifiers, we compute the decision boundary with
Bayes' Rule:

w10 = 5D

- Plug in the Gaussian p(x|t):

logp(telx) = logp(x|ty) + logp(tk) — log p(x)

= T log(2m) — 5 log S| — 5 (x — ) D7 (x — ) +
+log p(tx) — log p(x)
- Decision boundary:
(x = ) "B (x = ) = (x = pg) T2 (x — pay) + Const

- What's the shape of the boundary?

» We have a quadratic function in x, so the decision boundary is a
conic section!

42



GDA Decision Boundary

ity
Vil
)

LX)
I
,/'"':':‘:‘

discriminant:
P(t;|x)=0.5

posterior for t, O
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GDA Decision Boundary

- Our equation for the decision boundary:
(x = ) T2t (x = ) = (% — ) "2 (x — ) + Const
- Expand the product and factor out constants (w.rt. x):
TE X—2u 3, X—XTE x—2u 3, 'x + Const

- What if all classes share the same covariance X7?
» We get a linear decision boundary!

—2ul =% = —2u] 7 x + Const
(g, — py) "X 'x = Const T
oer wﬂi: P\b'“bg
w X = camt

44



GDA Decision Boundary: Shared Covariances

variances may be
O different

45



GDA Decision Boundary: Linear vs Quadratic

-25 25

-2 -1 0 1 2 -2 -1 0 1 2

Classes that share the same covariance have linear decision boundaries.
With classes that don’t share the same covariance, the decision boundary is
necessarily non-linear (quadratic discriminant).

Source: PRML Bishop, 2006
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GDA vs Logistic Regression

- Binary classification: If you examine p(t = 1|x) under GDA and assume
Yo =X =X, you will find that it looks like this:

1
~ 1+exp(—wTx —b)

P(t | X, ¢7u’03 M1 2)

where (w, b) are chosen based on (¢, pg, p1, X).

- Same model as logistic regression!

47



GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?
- GDA makes a stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

» If this is true, GDA is asymptotically efficient (best model in limit of
large N)
» If it's not true, the quality of the predictions might suffer.

- Many class-conditional distributions lead to logistic classifier.

» When these distributions are non-Gaussian (i.e,, almost always), LR
usually beats GDA

- GDA can handle easily missing features (how do you do that with LR?)

48



Gaussian Naive Bayes

- What if x is high-dimensional?
» The X, have O(D?K) parameters, which can be a problem if D is
large.
» We already saw we can save some a factor of K by using a shared
covariance for the classes.
» Any other idea you can think of?

- Naive Bayes: Assumes features independent given the class
p(x|t=k) Hp 1[G =

- Assuming likelihoods are Gaussian, how many parameters required for
Naive Bayes classifier?
» This is equivalent to assuming the z; are uncorrelated, i.e. ¥ is
diagonal.
» Hence, only D parameters for X!

49



Gaussian Naive Bayes

- Gaussian Naive Bayes classifier assumes that the likelihoods are

Gaussian:
1 — (x5 — pir)?
zi|t=k)= ex 4 J
p( / | ) \/ﬂojk 12 [ 20j2-k,

(this is just a 1-dim Gaussian, one for each input dimension)

- Model the same as GDA with diagonal covariance matrix
- Maximum likelihood estimate of parameters

N (8 (%)
Dim1 Tk »le

Mok

N (i)
2ic1 Tk
N (G i
o2 = D1 T/(g) (IS) — jk)”
jk N i
dic1 7“1(@)
r = 1 =

50



Decision Boundary: Isotropic

- We can go even further and assume the covariances are spherical, or
isotropic.

- In this case: ¥ = oI (just need one parameter!)
- Going back to the class posterior for GDA:

logp(tp|x) = logp(x|tx) + logp(tr) — logp(x)
D 1 1 N
) log(2m) — 5 log |3, 1| - §(X - Nk)TEk 1(X — i) +

+log p(tx) — log p(x)
- Suppose for simplicity that p(t) is uniform. Plugging in ¥ = ¢TI and
simplifying a bit,

log p(t | %) 108 p(te | ) = — g (6 — )T (x = ) — (x = pa) T (x = o)

1
— o [l = el = = )
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Decision Boundary: Isotropic

- The decision boundary bisects the class means!

52



Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)
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Generative models - Recap

- GDA has quadratic (conic) decision boundary.
- With shared covariance, GDA is similar to logistic regression.

- Generative models:
» Flexible models, easy to add/remove class.

» Handle missing data naturally.

» More “natural” way to think about things, but usually doesn’t work
as well.

- Tries to solve a hard problem (model p(x)) in order to solve a
easy problem (model p(t | x)).

Next up: Unsupervised learning with PCA!
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