
CSC 311: Introduction to Machine Learning
Lecture 11 - K-Means and EM Algorithm

Rahul G. Krishnan & Amanjit Singh Kainth

University of Toronto, Fall 2024

1

· Last lecture !
· Everything upto 2including this lecture will be on the final

· Project due this week.

· Practice finals posted.

Outline

1 K-Means for Clustering

2 Gaussian Mixture Models

3 Expectation-Maximization (EM)

4 Why EM Works (Optional)

2

Overview

• In the previous lecture, we covered PCA, Autoencoders and Matrix
Factorization—all unsupervised learning algorithms.

! Each algorithm can be used to approximate high dimensional data
using some lower dimensional form.

• Those methods made an interesting assumption that data
depends on some latent variables that are never observed. Such
models are called latent variable models.

! For PCA, these correspond to the code vectors (representation).
• Today:

! K-means, a simple algorithm for clustering, i.e. grouping data
points into clusters

! Reformulate clustering as a latent variable model and apply the
EM algorithm

3

K-Means for Clustering

1 K-Means for Clustering

2 Gaussian Mixture Models

3 Expectation-Maximization (EM)

4 Why EM Works (Optional)

4

Clustering

• Sometimes the data form clusters, where samples within a cluster
are similar to each other, and samples in different clusters are
dissimilar:

• Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

• Clustering: grouping data points into clusters, with no observed
labels. It is an unsupervised learning technique.

• E.g. clustering machine learning papers based on topic (deep
learning, Bayesian models, etc.) But topics are never observed
(unsupervised).

5

F
F

What algorithm would you use for

clustering ?
O

⑧

O

xe[-]
-

K-means Intuition

There are k clusters, and each point is close to its cluster center, or
mean (the mean of points in the cluster).

How do we compute the cluster assignments?

• Given the cluster assignments, we could easily compute the
cluster centers.

• Given the cluster centers, we could easily compute the cluster
assignments.

• Chicken and egg problem!
• Simple heuristic - start randomly and alternate between the two!

6

K-Means

• Randomly initialize cluster centers
• Alternate between two steps:

! Assignment step: Assign each data point to the closest cluster
! Refitting step: Move each cluster center to the mean of its

members.

Assignments Refitted
means

7

K-Means Example

Figure from Bishop Simple demo: http://syskall.com/kmeans.js/
8

What parameters do we need to cluster?

- -

>
N datapoints ,

2 clusters -

Endichan

XEIMNXDstances
② mean point of a

&(X , x2) = /Xivll2 cluster -

③ assignment vector.

·

What loss function should we use?

· In english Minimizethe distance ofCryptto
its assigned cluster !

· Building

upmotormi ImxaC O /

1 if x"assigned to cluster I

What is K-means Optimizing?

K-means Objective:
Find cluster centersm and assignments r tominimize the sumof squared
distances of data points {x(n)} to their assigned cluster centers

min
{m},{r}

J({m}, {r}) = min
{m},{r}

N∑

n=1

K∑

k=1

r(n)k ||mk → x(n)||2

s.t.
∑

k

r(n)k = 1, ∀n, where r(n)k ∈ {0, 1}, ∀k, n

where r(n)k = 1 means that x(n) is assigned to cluster k (with center mk)

• Finding the exact optimum can be shown to be NP-hard.
• K-means can be seen as block coordinate descent on this objective
(analogous to ALS for matrix completion)

! Assignment step = minimize w.r.t. {r(n)k }
! Refitting step = minimize w.r.t. {mk}

9

Alternating Minimization

Optimization problem:

min
{mk},{r(n)}

N∑

n=1

K∑

k=1

r(n)k ||mk → x(n)||2

If we fix the centers {mk} then we can easily find the optimal assignments
{r(n)} for each sample n

min
r(n)

K∑

k=1

r(n)k ||mk → x(n)||2

Assign each point to the cluster with the nearest center

r(n)k =

{
1 if k = argminj ‖mj → x(n)‖2
0 otherwise

E.g. if x(n) is assigned to cluster k̂,
r(n) = [0, 0, ..., 1, ..., 0]!︸ ︷︷ ︸

Only k̂-th entry is 1 10

di
- de

↑ (3)
+ did ,

000

↓

01 0

be de was the

smallest

Alternating Minimization

Likewise, if we fix the assignments {r(n)} then can easily find optimal
centers {mk}

0 =
∂

∂ml

N∑

n=1

K∑

k=1

r(n)k ||mk → x(n)||2

=2
N∑

n=1

r(n)l (ml → x(n)) =⇒ ml =

∑
n r

(n)
l x(n)

∑
n r

(n)
l

K-Means simply alternates between minimizing w.r.t. assignments and
centers. This is an instance of alternating minimization, or block
coordinate descent.

11

·I
-sum of
data in cluster

L
-#pts to

cluster k

The K-means Algorithm

• Initialization: Set K cluster means m1, . . . ,mK to random values

• Repeat until convergence (until assignments do not change):
! Assignment (Optimize w.r.t {r})

Each data point x(n) assigned to nearest center.

r(n)k =

{
1 if k = argminj ‖mj → x(n)‖2
0 otherwise

! Refitting (Optimize w.r.t. {m})
Each center is set to mean of data assigned to it.

mk =

∑
n r

(n)
k x(n)

∑
n r

(n)
k

.

12

Why K-means Converges

• K-means algorithm reduces the cost at each iteration.

• If the assignments do not change in the assignment step, we have
converged (to at least a local minimum).

• Convergence will happen after a finite number of iterations,
since the number of possible cluster assignments is finite

13

Local Minima

• The objective J is non-convex.
• Coordinate descent on J is not guaranteed to converge to the
global minimum.

• Nothing prevents K-means getting stuck at local minima.
• We could try many random starting points

A bad local optimum

14

K-means for Vector Quantization

Figure from Bishop

• Given image, construct “dataset” of pixels represented by their RGB
pixel intensities

• Run K-means, replace each pixel by its cluster center
•

15

K-means for Image Segmentation

• Given image, construct “dataset” of pixels, represented by their RGB
pixel intensities and grid locations

• Run K-means (with some modifications) to get superpixels
16

Soft K-means

• Instead of making hard assignments of data points to clusters, we
can make soft assignments.

• For example, one cluster may have a responsibility of .7 for a
datapoint and another may have a responsibility of .3.

• This allows a cluster to use more information about the data in
the refitting step.

• How do we decide on the soft assignments?

• We already saw this in multi-class classification: 1-of-K encoding
vs softmax assignments.

17

Elo pet. 710. 1

Soft K-means Algorithm

• Initialization: Set K means {mk} to random values

• Repeat until convergence (measured by how much J changes):
! Assignment: Each data point n given soft “degree of assignment”

to each cluster mean k, based on responsibilities

r(n)k =
exp[→β‖mk → x(n)‖2]∑
j exp[→β‖mj → x(n)‖2]

=⇒ r(n) = softmax(→β{‖mk → x(n)‖2}Kk=1)

! Refitting: Cluster centers are adjusted to match sample means of
datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)

∑
n r

(n)
k

18

where have we

· een a similar
mathematical

equation

Lets look at n = !

2 k = 3
,
k: 2

- Turrent

-Mesenti
In english ,

how likely is the point X"to be assigned to

cluster k= 2 relative to the other clusters.

Mind
Due

Role of B

s
start with B = 1 as B - -

· this number will go
to

·dedue if dad ,
or dz

· this will go
to

- if dad , 2 ds
some numberbetwen [0 , 1]

Questions about Soft K-means

Some remaining issues

• How to set β?
• Clusters with unequal weight and width?

These aren’t straightforward to address with K-means.

Instead, we’ll reformulate clustering using a generative model.
As β → ∞, soft K-Means becomes K-Means! (Exercise)

19

Gaussian Mixture Models

Bh. R

Davis wo+ N(wTX , 1)

[

1 K-Means for Clustering

2 Gaussian Mixture Models

3 Expectation-Maximization (EM)

4 Why EM Works (Optional)

20

A Generative View of Clustering

• What if the data don’t look like spherical blobs?
! elongated clusters
! discrete data

• Remainder of this lecture: formulating clustering as a probabilistic
model

! specify assumptions about how the observations relate to latent
variables

! use an algorithm called E-M to (approximtely) maximize the
likelihood of the observations

• This lets us generalize clustering to non-spherical centers or to
non-Gaussian observation models (as in this week’s tutorial).

• This lecture is when probabilistic modeling starts to shine!

21

↳

k ~TT(at (k)

↓ NM
2 Gausians

M,
Z,

M2Z
.

Generative Models Recap

• Recall generative (Bayes) classifiers:

p(x, t) = p(x | t) p(t)

! We fit p(t) and p(x | t) using labeled data.
• If t is never observed, we call it a latent variable, or hidden
variable, and generally denote it with z instead.

! The things we can observe (i.e. x) are called observables.
• By marginalizing out z, we get a density over the observables:

p(x) =
∑

z

p(x, z) =
∑

z

p(x | z) p(z)

• This is called a latent variable model.
• If p(z) is a categorial distribution, this is a mixture model, and
different values of z correspond to different components.

22

tis obs

Z is latent

Gaussian Mixture Model (GMM)

Most common mixture model: Gaussian mixture model (GMM)

• A GMM represents a distribution as

p(x) =
K∑

k=1

πk N (x |µk,Σk)

with πk the mixing coefficients, where:

K∑

k=1

πk = 1 and πk → 0 ∀k

• This defines a density over x, so we can fit the parameters using
maximum likelihood. We’re try to match the data density of x as closely
as possible.

! This is a hard optimization problem (and the focus of this lecture).
• GMMs are universal approximators of densities (analogously to our
universality result for MLPs). Even diagonal GMMs are universal
approximators. 23

I can use

T
,

--T

~ - Mr
-

Gaussian Mixture Model (GMM)

• We can also write the model as a generative process:

For i = 1, . . . , N :

z(i) ∼ Categorical(π)
x(i) | z(i) ∼ N (x(i) |µz(i) ,Σz(i))

24

Story for how the model
thinks data was generated

E
-

--

The Generative Model

• 500 points drawn from a mixture of 3 Gaussians.

Samples from p(x | z) (left), p(x) (middle) and Responsibilities p(z |x) (right)

25

we use z" weDoNot we z"
we inter it.

Maximum Likelihood with Latent Variables

• How should we choose the parameters {πk,µk,Σk}Kk=1?
• Maximum likelihood principle: choose parameters to maximize
likelihood of observed data

• We don’t observe cluster assignments z, only see data x

• Given data D = {x(n)}Nn=1, choose parameters to maximize:

log p(D) =
N∑

n=1

log p(x(n))

• We can find p(x) by marginalizing out z:

p(x) =
K∑

k=1

p(z = k,x) =
K∑

k=1

p(z = k)p(x|z = k)

26

Visualizing a Mixture of Gaussians – 1D Gaussians

• If you fit a Gaussian to data:

• Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos] 27

Visualizing a Mixture of Gaussians – 2D Gaussians

28

Expectation-Maximization (EM)

1 K-Means for Clustering

2 Gaussian Mixture Models

3 Expectation-Maximization (EM)

4 Why EM Works (Optional)

29

Fitting GMMs: Maximum Likelihood

• Some shorthand notation: let θ = {πk,µk,Σk} denote the full set of
model parameters. Let X = {x(i)} and Z = {z(i)}.

• Maximum likelihood objective:

log p(X;θ) =
N∑

i=1

log

(
K∑

k=1

πk N (x(i) |µk,Σk)

)

• In general, no closed-form solution
• Not identifiable: solution is invariant to permutations
• Challenges in optimizing this using gradient descent?

! Non-convex (due to permutation symmetry)
! Need to enforce non-negativity constraint on πk and PSD

constraint on Σk
! Derivatives w.r.t. Σk are expensive/complicated.

• We need a different approach!

30

Fitting GMMs: Maximum Likelihood

• Warning: you don’t want the global maximum. You can achieve
arbitrarily high training likelihood by placing a small-variance
Gaussian component on a training example.

• This is known as a singularity.

31

Latent Variable Models: Inference

• If we knew the parameters θ = {πk,µk,Σk}, we could infer which
component a data point x(i) probably belongs to by inferring its
latent variable z(i).

• This is just posterior inference, which we do using Bayes’ Rule:

Pr(z(i) = k |x(i)) =
Pr(z = k) p(x | z = k)∑
! Pr(z = ") p(x | z = ")

• Just like Naïve Bayes, GDA, etc. at test time.

32

Tell us which I""'generated" XI"

Latent Variable Models: Learning

• If we somehow knew the latent variables for every data point, we
could simply maximize the joint log-likelihood.

log p(X,Z;θ) =
N)

i=1

log p(x(i), z(i);θ)

=
N)

i=1

log p(z(i)) + log p(x(i) | z(i)).

• This is just like GDA at training time. Our formulas from Week 8,
written in a suggestive notation:

πk =
1
N

N)

i=1

r(i)k

µk =

∑N
i=1 r

(i)
k · x(i)

∑N
i=1 r

(i)
k

Σk =
1

∑N
i=1 r

(i)
k

N)

i=1

r(i)k (x(i) − µk)(x
(i) − µk)

!

r(i)k = [z(i) = k] 33

·Det

Latent Variable Models

• But we don’t know the z(i), so we need to marginalize them out. Now
the log-likelihood is more awkward.

log p(X;θ) =
N∑

i=1

log p(x(i) |θ)

=
N∑

i=1

log
K∑

z(i)=1

p(x(i) | z(i); {µk}, {Σk}) p(z(i) |π)

• Problem: the log is outside the sum, so things don’t simplify.

• We have a chicken-and-egg problem, just like with K-Means!
! Given θ, inferring the z(i) is easy.
! Given the z(i), learning θ (with maximum likelihood) is easy.
! Doing both simultaneously is hard.

• Can you guess the algorithm?

34

Intuitively, How Can We Fit a Mixture of Gaussians?

• We use the Expectation-Maximization algorithm, which alternates
between two steps:

1. Expectation step (E-step): Compute the posterior probability over
z given our current model - i.e. how much do we think each
Gaussian generates each datapoint.

2. Maximization step (M-step): Assuming that the data really was
generated this way, change the parameters of each Gaussian to
maximize the probability that it would generate the data it is
currently responsible for.

.95

.5

.5

.05

.5
.5

.95
.05

35

Expectation Maximization for GMM Overview

1. E-step: Assign the responsibility r(i)k of component k for data point i
using the posterior probability:

r(i)k = Pr(z(i) = k |x(i);θ)

2. M-step: Apply the maximum likelihood updates, where each component
is fit with a weighted dataset. The weights are proportional to the
responsibilities.

πk =
1
N

N)

i=1

r(i)k

µk =

∑N
i=1 r

(i)
k · x(i)

∑N
i=1 r

(i)
k

Σk =
1

∑N
i=1 r

(i)
k

N)

i=1

r(i)k (x(i) − µk)(x
(i) − µk)

!

36

Example

• Suppose we recorded a bunch of temperatures in March for
Toronto and Miami, but forgot to record which was which, and
they’re all jumbled together.

• Let’s try to separate them out using a GMM fit with EM.

37

Example

Random initialization

38

Example

Step 1:

E-step M-step

39

Example

Step 2:

E-step M-step

40

Example

Step 3:

E-step M-step

41

Example

Step 10:

E-step M-step

42

Expectation-Maximization

• EM for Multivariate Gaussians:

• In tutorial, you will fit a mixture of Bernoullis model.

43

Relation to k-Means

• The K-Means Algorithm:
1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the average of the data

assigned to it
• The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it
is currently responsible for.

• Can you find the similarities between the soft k-Means algorithm
and EM algorithm with shared covariance 1

β I?
• Both rely on alternating optimization methods and can suffer
from bad local optima.

44

Why EM Works (Optional)

1 K-Means for Clustering

2 Gaussian Mixture Models

3 Expectation-Maximization (EM)

4 Why EM Works (Optional)

45

Jensen’s Inequality (optional)

• Recall: if a function f is convex, then

f

(
∑

i

λixi

)
≤
∑

i

λif(xi),

where {λi} are such that each λi → 0 and∑
i λi = 1.

• If we treat the λi as the parameters of a
categorical distribution, λi = Pr(X = xi),
this can be rewritten as:

f(E[X]) ≤ E[f(X)].

• This is known as Jensen’s Inequality. It
holds for continuous distributions as
well.

46

Jensen’s Inequality (optional)

• A function f(x) is concave if −f(x) is convex. In this case, we flip
Jensen’s Inequality:

f(E[X]) → E[f(X)].

• When would you expect the inequality to be tight? 47

Where does EM come from? (optional)

• Recall: the log-likelihood function is awkward because it has a
summation inside the log:

log p(X;θ) =
∑

i

log(p(x(i);θ)) =
∑

i

log

(
∑

z(i)

p(x(i), z(i);θ)

)

• Introduce a new distribution q(z(i)) (we’ll see what this is shortly):

log p(X;θ) =
∑

i

log

(
∑

z(i)

q(z(i))
p(x(i), z(i);θ)

q(z(i))

)

=
∑

i

logEq(z(i))

[
p(x(i), z(i);θ)

q(z(i))

]

• Notice that log is a concave function. So we can use Jensen’s Inequality
to push the log inwards, obtaining the variational lower bound:

log p(X;θ) →
∑

i

Eq(z(i))

[
log

p(x(i), z(i);θ)

q(z(i))

]
! L(q,θ)

48

Where does EM come from? (optional)

• Just derived a lower bound on the log-likelihood:

log p(X;θ) →
∑

i

Eq(z(i))

[
log

p(x(i), z(i);θ)

q(z(i))

]
! L(q, θ)

• Simplifying the right-hand-side:

L(q, θ) =
∑

i

Eq(z(i))[log p(x
(i), z(i);θ)]− Eq(z(i))[log q(z

(i))]
︸ ︷︷ ︸

constant w.r.t. θ

• The expected log-probability will turn out to be nice.

49

Where does EM come from? (optional)

• Everything so far holds for any choice of q. But what should we
actually pick?

• Jensen’s inequality gives a lower bound on the log-likelihood, so
the best we can achieve is to make the bound tight (i.e. equality).

• Denote the current parameters as θold.
• It turns out the posterior probability p(z(i) |x(i);θold) is a very
good choice for q. Plugging it in to the lower bound:

)

i

Eq(z(i))

[
log

p(x(i), z(i);θold)

q(z(i))

]
=
)

i

Eq(z(i))

[
log

p(x(i), z(i);θold)

p(z(i) |x(i);θold)

]

=
)

i

Eq(z(i))

[
log p(x(i);θold)

]

=
)

i

log p(x(i);θold)

= log p(X;θold)

• Equality achieved!

50

Where does EM come from? (optional)

An aside:

• How could you pick
q(z(i)) = p(z(i) |x(i);θold) if you didn’t
already know the answer?

• Observe: if f is strictly concave, then
Jensen’s inequality becomes an
equality exactly when the random
variable X is determinisic.

• Hence, to solve

logEq(z(i))

[
p(x(i), z(i);θ)

q(z(i))

]
= Eq(z(i))

[
log

p(x(i), z(i);θ)

q(z(i))

]
,

we should set q(z(i)) ∝ p(x(i), z(i);θ).
51

Where does EM come from? (optional)

• E-step: compute the responsibilities using Bayes’ Rule:

r(i)k ! q(z(i) = k) = Pr(z(i) = k |x(i);θold)

• Rewriting the variational lower bound in terms of the
responsibilities:

L(q,θ) =
)

i

)

k

r(i)k log Pr(z(i) = k;π)

+
)

i

)

k

r(i)k log p(x(i) | z(i) = k; {µk}, {Σk})

+ const

• M-step: maximize L(q, θ) with respect to θ, giving θnew. This can
be done analytically, and gives the parameter updates we saw
previously.

• The two steps are guaranteed to improve the log-likelihood:

log p(X;θnew) → L(q, θnew) → L(q, θold) = log p(X;θold).

52

EM: Recap (optional)

Recap of EM derivation:

• We’re trying to maximize the log-likelihood log p(X;θ).
• The exact log-likelihood is awkward, but we can use Jensen’s
Inequality to lower bound it with a nicer function L(q, θ), the
variatonal lower bound, which depends on a choice of q.

• The E-step chooses q to make the bound tight at the current
parameters θold. Mechanistically, this means computing the
responsibilities r(i)k = Pr(z(i) = k |x(i);θold).

• The M-step maximizes L(q, θ) with respect to θ, giving θnew. For
GMMs, this can be done analytically.

• The combination of the E-step and M-step is guaranteed to
improve the true log-likelihood.

53

Visualization of the EM Algorithm (optional)

• The EM algorithm involves alternately computing a lower bound on the
log likelihood for the current parameter values and then maximizing
this bound to obtain the new parameter values.

54

GMM E-Step: Responsibilities (optional)

Lets see how it works on GMM:

• Conditional probability (using Bayes’ rule) of z given x

rk = Pr(z = k |x) =
Pr(z = k) p(x | z = k)

p(x)

=
p(z = k) p(x | z = k)

∑K
j=1 p(z = j) p(x | z = j)

=
πk N (x |µk,Σk)∑K
j=1 πj N (x |µj ,Σj)

55

GMM E-Step (optional)

• Once we computed r(i)k = Pr(z(i) = k |x(i)) we can compute the
expected likelihood

Ep(z(i) |x(i))

[
∑

i

log(p(x(i), z(i) |θ))
]

=
∑

i

∑

k

r(i)k

(
log(Pr(z(i) = k |θ)) + log(p(x(i) | z(i) = k, θ))

)

=
∑

i

∑

k

r(i)k

(
log(πk) + log(N (x(i);µk,Σk))

)

=
∑

k

∑

i

r(i)k log(πk) +
∑

k

∑

i

r(i)k log(N (x(i);µk,Σk))

• We need to fit k Gaussians, just need to weight examples by rk

56

GMM M-Step (optional)

• Need to optimize
∑

k

∑

i

r(i)k log(πk) +
∑

k

∑

i

r(i)k log(N (x(i);µk,Σk))

• Solving for µk and Σk is like fitting k separate Gaussians but with
weights r(i)k .

• Solution is similar to what we have already seen:

µk =
1

Nk

N∑

i=1

r(i)k x(i)

Σk =
1

Nk

N∑

i=1

r(i)k (x(i) − µk)(x
(i) − µk)

T

πk =
Nk

N
with Nk =

N∑

i=1

r(N)
k

57

EM Algorithm for GMM (optional)

• Initialize the means µk , covariances Σk and mixing coefficients πk

• Iterate until convergence:
! E-step: Evaluate the responsibilities given current parameters

r(i)k = p(z(i) |x(i)) =
πkN (x(i) |µk,Σk)∑K
j=1 πjN (x(i) |µj ,Σj)

! M-step: Re-estimate the parameters given current responsibilities

µk =
1
Nk

N)

i=1

r(i)k x(i)

Σk =
1
Nk

N)

i=1

r(i)k (x(i) − µk)(x
(i) − µk)

!

πk =
Nk

N
with Nk =

N)

i=1

r(i)k

! Evaluate log likelihood and check for convergence

log p(X |π,µ,Σ) =
N)

i=1

log

(
K)

k=1

πkN (x(i) |µk,Σk)

)

58

GMM Recap

• A probabilistic view of clustering - Each cluster corresponds to a
different Gaussian.

• Model using latent variables.

• General approach, can replace Gaussian with other distributions
(continuous or discrete)

• More generally, mixture models are very powerful models, i.e.
universal distribution approximators

• Optimization is done using the EM algorithm.

59

