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Decision Trees Review

• A non-linear algorithm for classification and regression.
• Represents features of data in a tree-structure.
• Each node corresponds to one feature and thresholds that cover
its possible values.

• Each branch from a node divides the data into bins based on its
feature and thresholds.

• Leaves of the tree correspond to targets or outputs.
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Decision Trees Review
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Features

Features may be discrete or continuous.

• Discrete: Takes values in some discrete finite set. “Thresholds”
just assign each branch to a different value. For example, a
feature may be boolean and take values in

{True, False}

.
• Continuous: Takes a range of continuous values. “Thresholds”
divide the range based on some value. For example, a feature like
height may have thresholds 6, 9.5, dividing the data into the bins:

{Height ≤ 6, 6 ≤ Height ≤ 9.5,Height ≥ 9.5}
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Outputs

Outputs may be discrete or continuous.

• Discrete: Classification Tree
• Continuous: Regression Tree
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Splits

We need some heuristic to determine good splits that guide decision
making.

• Choose feature that will maximize information gain greedily.
• Repeat at every node.
• Stop when leaves are empty or contain examples of the same
class.
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Linear Algebra

We will use linear algebra tools to concisely depict data, parameters
and measure different quantities like norms, similarity, projections,
etc.
Some basic elements:

• Scalar: A number. Denoted by lowercase letters like a.
• Vector: A 1-D array of numbers. Denoted by bold lowercase a.
• Matrix: A 2-D array of numbers. Denoted by bold uppercase A.
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Norms

Norm is a measure of how “large” a vector is.

lp-norm ||x||p =

[∑
i

|xi|p
]1/p

• l2-norm is called the Euclidean norm:
√∑

i x
2
i .

• l1-norm is called the Manhattan norm:
∑

i |xi|.
• l∞-norm is called the max norm: maxi |xi|.
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Projections

When studying linear models, we will encounter vector projections1.

1Image from Wikipedia
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Projections

• Each vector is determined by its magnitude and direction.
• Projection of one vector on another can be thought of as
dropping a perpendicular from one to the other.

• The magnitude of the projection is determined by the magnitude
of the first vector and the angle between the two vectors.

• The direction of the projection is the same as that of the second
vector.

• Mathematically, the projection of a on b is given by aT b
||b||2 .
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Exercise: Linear Algebra Notation

Suppose we are trying to predict commute times based on the
distance traveled and day of the week. We have the following data:

dist day commute time
2.7 1 25
3.4 1 31
5.2 2 45
1.0 3 16
2.8 5 22

We estimate that commute times have the following relationship:

commute time = 10× dist− day

What are our predicted commute times? How can we use matrices to
compute this quickly?
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Exercise: Linear Algebra Notation

11



Exercise: Linear Algebra Notation

Suppose we want to calculate the average mean squared error
between the predictions and the ground truth. How do we do this?
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Bias-Variance Decomposition

For training, we choose datapoints by sampling i.i.d. from some data
distribution. This introduces randomness into the outputs of the
model.

• Consider the squared error loss between outputs and targets,
(y − t)2.

• Treat both y and t as random variables.
• We saw in lecture that the expected loss can be decomposed into
the bias and variance of y, the outputs.

• Recall that bias is the deviation of a random variable from its
expectation.
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Bias-Variance Decomposition

Let’s revisit the proof.
• Let y∗ = E [t].
• From lecture, we have

E
[
(y − t)2

]
= E

[
(y − y∗)

2
]
+Var(t)

• Here, Var(t) is called the Bayes error.
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Bias-Variance Decomposition

• We expand the first term and use linearity of expectation:

E
[
(y − y∗)2

]
= y2∗ − 2y∗E [y] + E

[
y2
]
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Bias-Variance Decomposition

• Next, recall the definition of

Var(y) = E
[
y2
]
− E [y]2

to get
E
[
(y − y∗)2

]
= y2∗ − 2y∗E [y] + E [y]2 +Var(y)
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Bias-Variance Decomposition

• Note that
(y∗ − E [y])2 = y2∗ − 2y∗E [y] + E [y]2

• Putting all this together, we have

E
[
(y − t)2

]
= (y∗ − E [y])2 +Var(y) + Var(t)

• In words, expected loss = bias + variance + Bayes error.
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Exercise: Bias, Variance and Bayes Error

Assume we have N scalar-valued observations {x(i)}Ni=1 sampled
independently from some distribution with known variance 2 and
unknown mean µ.
We’d like to estimate the mean parameter µ, or equivalently, choose a
µ̂ which minimizes the squared error risk E

[
(x− µ̂)2

]
.

We will estimate the unknown mean parameter µ by taking the
empirical mean, or average, of the observations:

µ̂ =
1

N

N∑
i=1

x(i)

Compute the different terms from the bias-variance decomposition.
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Exercise: Bias, Variance and Bayes Error

Bayes Error: E
[
(x− µ)2

]
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Exercise: Bias, Variance and Bayes Error

Bias: (E [µ̂]− µ)2
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Exercise: Bias, Variance and Bayes Error

Variance: Var(µ̂)
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