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Information Theory

How do we choose between splits when constructing decision trees?

• Measure how much information we can gain from a given split.
• This quantity is call Information Gain!
• It is an information theoretic concept that quantifies for a r.v. how

much uncertainty is removed if we know its value.

Let’s review some information theory basics and definitions.
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Uncertainty and Entropy

Uncertainty is the main building block of many information theory
concepts.

• We don’t always have all the information about all the variables we
care about.

• We use probabilities about events to make informed guesses.
• As we learn more information, we can increase confidence, or decrease

uncertainty, in our guess.
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Uncertainty and Entropy

• Uncertainty is the main building block of many information theory
concepts.

• This uncertainty is quantified as Entropy of the random variable,
H(X). Mathematically,

For a discrete r.v.:

H(X) = −
∑
x∈X

p(x) log2 p(x)

For a continuous r.v.:

H(X) = −
∫
X
p(x) log2 p(x)dx
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Joint Entropy

• We might be interested in the uncertainty in two or more r.v.s that
have some joint distribution.

• This is quantified as the Joint Entropy of the r.v.s in question.
• Its mathematical definition follows analogously to that of entropy but

with joint probabilities.

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

Exercise: Can you write down the continuous version of this definition?
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Conditional Entropy

• We are often interested in the uncertainty in one r.v. once we know
the value of another.

• This is quantified as the Conditional Entropy of the first given the
second.

• Its mathematical definition follows analogously to that of entropy
with conditional probabilities.

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x)
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Conditional Entropy

We can expand the terms further:

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x)p(y|x) log2 p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)

Exercise: Continuous version?
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Aside: Logarithm Properties

Some useful properties of logs

• log(ab) = log a+ log b

• log(a/b) = log a− log b

For instance, in the previous slide we encountered log2 p(y|x) which can
be written as

log2
p(x, y)

p(x)
= log2 p(x, y)− log2 p(x)
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Information Gain

Finally, we can now quantify a notion of Information Gain, aka Mutual
Information between r.v.s X and Y .

• This quantifies how much more certain (or less uncertain) we are
about Y if we know the value of X.

• In other words, how much uncertainty (or entropy) is reduced in Y
once we are given X?

• Definition: take the entropy of Y and subtract the conditional
entropy of Y given X.

IG(Y |X) = H(Y )−H(Y |X)
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Exercises: Information Theory

We now practice computing some of these quantities and prove some
standard equalities and inequalities of information theory, which appear in
many contexts in machine learning and elsewhere.
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Exercise 1

Let p(x, y) be given by

0 1
0 1

3
1
3

1 0 1
3

Compute

• H(X),H(Y )

• H(X|Y ),H(Y |X)

• H(X,Y )

• IG(Y |X)
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Exercise 2

Prove that entropy H(X) is non-negative, i.e., H(X) ≥ 0.
For reference, we can use the discrete definition:

H(X) = −
∑
x∈X

p(x) log2 p(x)
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Exercise 3

Prove the Chain Rule for entropy, i.e.

H(X,Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X)
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Exercise 4

Prove that H(X,Y ) ≥ H(X).
Hint: you can use results of the first two exercises.
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Linear Regression



Linear Regression Review

Linear Regression is the problem of predicting a target variable y as a
linear combination of input features x.
Fixed inputs given to us:

• Features: x = (x1, x2, . . . , xD) ∈ RD

• Targets: t ∈ R

Parameters that we initialize and learn:

• Weights: w = (w1, w2, . . . , wD) ∈ RD

• Bias: b ∈ R
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Data, Parameters and the Model

• Data is provided to us as (x, t) tuples.
• Weights and biases, w and b, are parameters we need to learn.
• We model the predictions y as:

y = f(x) =

D∑
i=1

wixi + b

= wTx+ b

We need to find w and b such that y is close to the ground truth t.
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Objective Function

To learn and evaluate the linear regression model, we need a measure of
“closeness”, formally called a Loss or Objective Function, which we need
to minimize.

• Squared Error Loss: L(y, t) = 1
2(y − t)2.

• For N data samples, we average the individual losses over all samples:

J (w) =
1

2N

N∑
i=1

(y(i) − t(i))2

=
1

2N

N∑
i=1

(wTx(i) + b− t(i))2
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Exercise: Linear Regression Bias-Variance

Assume the optimal weights are given by w∗ and for all data samples

t(i) = w∗Tx(i) + ϵ(i)

where ϵ(i) are independent random noise variables.
Further, recall that the loss function is given by

J (w) =
1

2N
||y − t||2
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Exercise: Linear Regression Bias-Variance

Using the above, derive the bias-variance decomposition for the linear
regression problem.

18


	Information Theory
	Linear Regression

