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Outline

• Gradients of multivariate functions

• Matrix decomposition
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Gradients of vector-valued functions
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Vector-valued functions

For a function f : Rn → Rm and a vector x = [x1, · · · , xn]T ∈ Rn, the
corresponding vector of function values is given as:

f(x) = [f1(x) · · · fm(x)] ∈ Rm

where fi : Rn → R.
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Partial derivatives

The partial derivative of a vector-valued function f : Rn → Rm with
respect to xi ∈ R is given as:

∂f

∂xi
=

[
∂f1
∂xi

· · · ∂fm
∂xi

]
∈ Rm

5



Jacobian

The collection of all first-order partial derivatives of a vector-valued
function f : Rn → Rm is called the Jacobian. The Jacobian ∂f(x)

∂x is an
m× n matrix, which is defined as:

∂f(x)

∂x
=

[
∂f(x)

∂x1
· · · ∂f(x)

∂xn

]

=


∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
...

...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn
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Example

Given x ∈ Rn and A ∈ Rm×n, we define the linear vector-valued
function f as:

f(x) = Ax

• Q1: What is the dimension of ∂f(x)
∂x ?

• Q2: Compute ∂f(x)
∂x .
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Answer

• Since f : Rn → Rm, its follows that ∂f(x)
∂x ∈ Rm×n.

• The first step is to compute each entry of the Jacobian matrix,
∂fi
∂xj

. From the definition of the matrix decomposition, we know:

fi(x) =

N∑
j=1

Aijxj

Then each entry ∂fi
∂xj

= Aij . It follows that:

∂f(x)

∂x
=


∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
...

...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn

 =

A11 . . . A1N
...

...
...

AM1 . . . AMN

 = A
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Gradients with respect to the matrix

• Often in machine learning, we need to take gradients of matrices
with respect to other matrices. The Jacobian in this case will be a
multi-dimension tensor.

• For example, if we compute the gradient of an m× n matrix A
with respect to a p× q matrix B, the resulting Jacobian J is a
four-dimensional tensor m× n× p× q. Each entry Jijkl =

∂Aij

∂Bkl
.
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Exercise

Given a matrix R ∈ Rm×n. We define:

f(R) = RTR

• Q1: What is the diminsion of ∂f(x)
∂x ?

• Q2: Compute ∂f(x)
∂x .
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Recommended resources

Petersen, Kaare Brandt, and Michael Syskind Pedersen. ”The matrix
cookbook.” Technical University of Denmark 7, no. 15 (2008): 510.
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf


Matrix decomposition
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Introduction

• We can decompose an integer into its prime factors, e.g.,
12 = 2× 2× 3.

• Similarly, matrices can be decomposed into product of other
matrices.

• Examples are Eigendecomposition, SVD, Schur decomposition, LU
decomposition, . . . .
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Eigenvector

• An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v:

Av = λv

• The scalar λ is known as the eigenvalue.

• If v is an eigenvector of A, so is any rescaled vector sv. Moreover,
sv still has the same eigenvalue. Thus, we constrain the
eigenvector to be of unit length.
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Compute eigenvalues - characteristic polynomial

• Eigenvalue equation of matrix A:

Av = λv

λv −Av = 0

(λI −A)v = 0

• If nonzero solution for v exists, then it must be the case that:

det(λI −A) = 0

• Unpacking the determinant as a function of λ , we get a
polynomial, called the characteristic polynomial:

PA(λ) = det(λI −A) = λn + cn−1λ
n−1 + λ+ c0

• Compute eigenvalues of A → solve PA(λ) = 0
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Exercise

Consider the matrix:

A =

[
2 1
1 2

]

• What is the characteristic polynomial of A?

• What are the eigenvalues of A?

• What are the associated eigenvectors?
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Eigendecomposition

• Every symmetric (hermitian) matrix of dimension n has a set of
(not necessarily unique) n orthogonal eigenvectors. Furthermore,
all eigenvalues are real.

• Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A = PDP−1

• P is an orthogonal matrix of the eigenvectors of A, and D is a
diagonal matrix of eigenvalues.
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Intuitions of Eigendecomposition

• Diagonal matrix allows fast computations of their determinants,
powers and inverses.

• Eigendecomposition transforms a matrix into a diagonal form by
changing the basis.
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Geometric intuitions of eigendecomposition

• Top-left to bottom-left: P−1 performs a basis change.

• Bottom-left to bottom-right: D performs a scaling.

• Bottom-right to top-right: P undoes the basis change.
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Singular Value Decomposition (SVD)

• If A is not square, eigendecomposition is undefined.

• SVD is a decomposition of the form A = UDV T .

• SVD is more general than eigendecomposition.

• Every real matrix has a SVD.
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SVD

• If A is m× n, then U is m×m, D is m× n, and V is n× n.

• U and V are orthogonal matrices, and D is a diagonal matrix (not
necessarily square).

• Diagonal entries of D are called singular values of A.

• Columns of U are the left singular vectors, and columns of V are
the right singular vectors.
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SVD and eigendecomposition

• SVD can be interpreted in terms of eigendecompostion.

• Left singular vectors of A are the eigenvectors of AAT .

• Right singular vectors of A are the eigenvectors of ATA

• Nonzero singular values of A are square roots of eigenvalues of
ATA and AAT . (ATA and AAT are semipositive definite, thus
their eigenvalues are positive)
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Exercise

Compute SVD of the matrix:

A =

[
3 2 2
2 3 −2

]
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Exercise

Compute SVD of the matrix:

A =

[
3 2 2
2 3 −2

]

• What is AAT and ATA?

• Apply eigendecomposition on AAT and ATA
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Rank-r approximation

• Given a matrix A, SVD allows us to find its “best” (to be defined)
rank-r approximation Ar.

• We can write A = UDV T as A =
∑n

i=1 diuiv
T
i , where di are sorted

from the largest to the smallest.

• The rank-r approximation Ar is defined as:

A =

r∑
i=1

diuiv
T
i

• Ar is the best approximation of rank r by many norms, such as,
L2 norm. It means that ||A−Ar||2 ≤ ||A−B||2 for any rank r
matrix B.
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Exercise

Fine the rank-1 approximation and rank-2 approximation of the matrix:

A =

[
3 2 2
2 3 −2

]
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