CSC 311: Introduction to Machine Learning

CSC311 Fall 2024

University of Toronto

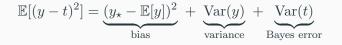
- The final examination covers *everything* you have learned thus far.
- You can take one A4 sized cheat sheet (double-sided) to the exam (*do not* staple two sheets to create a double sided sheet).

Cover example questions on several topics:

- Bias-Variance Decomposition
- Bagging / Boosting
- Probabilistic Models (Nave Bayes, Gaussian Discriminant)
- Principal Component Analysis (Matrix factorization, Autoencoder)
- K-Means / EM

- Working with logs / exponents
- MLE, MAP, Generative modeling
- Independence, conditional independence
- Bayes rule, law of total probability, marginalization.
- Properties of Covariance matrices (i.e., positive semidefinite) / spectral decomposition for PCA.
- Definition of expectation. Expectation/variance of a sum of variables

Bias-Variance Decomposition¹



• We just split the expected loss into three terms:

- bias: how wrong the expected prediction is (corresponds to underfitting)
- variance: the amount of variability in the predictions (corresponds to overfitting)
- ▶ Bayes error: the inherent unpredictability of the targets
- Even though this analysis only applies to squared error, we often loosely use "bias" and "variance" as synonyms for "underfitting" and "overfitting".

¹From Lecture 5, Slide 49

- **Bagging**: Train independent models on random subsets of the full training data
- **Boosting**: Train models sequentially, each time focusing on examples the previous model got wrong

	Bias	Variance	Training	Ensemble Elements
Bagging	\approx	\downarrow	Parallel	Minimize correlation
Boosting	\downarrow	\uparrow	Sequential	High dependency

Question: Suppose your classifier achieves poor accuracy on both the training and test sets. Which would be a better choice to try to improve the performance: bagging or boosting? Justify your answer.

Question: Suppose your classifier achieves poor accuracy on both the training and test sets. Which would be a better choice to try to improve the performance: bagging or boosting? Justify your answer.

Answer:

- The model is underfitting, has high bias
- Bagging reduces variance, whereas boosting reduces the bias
- Therefore, use **boosting**

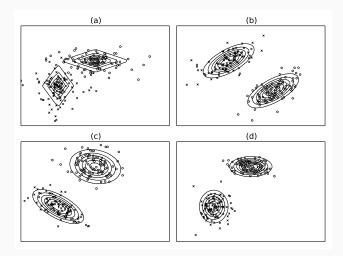
Question: True or False: Naive Bayes assumes that all features are independent.

Question: True or False: Naive Bayes assumes that all features are independent. **Answer: False**. Naive Bayes assumes that the input features x_i are **conditionally independent** give the class c:

$$p(c, x_1, \dots, x_D) = p(c)p(x_1|c) \cdots p(x_D|c)$$

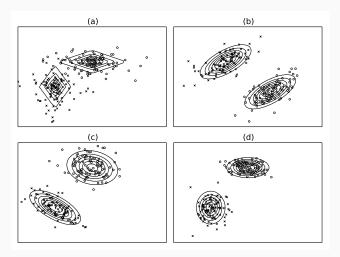
Probabilistic Models: Naive Bayes

Question: Which of the following diagrams could be a visualization of a Naive Bayes classifier? Select all that applies.



Probabilistic Models: Naive Bayes

Question: Which of the following diagrams could be a visualization of a Naive Bayes classifier? Select all that applies.



Answer: A, D

Question:

- Consider the following problem, in which we have two classes: $\{Tainted, Clean\}$, and each data **x** has 3 attributes: (a_1, a_2, a_3) .
- These attributes are also binary variables: $a_1 \in \{on, off\}, a_2 \in \{blue, red\}, a_3 \in \{light, heavy\}.$
- We are given a training set as follows:
 - 1. Tainted: (on, blue, light) (off, red, light) (on, red, heavy)
 - $2. \ Clean: \ (off, red, heavy) \quad (off, blue, light) \quad (on, blue, heavy)$

(A) Manually construct Nave Bayes Classifier based on the above training data. Compute the following probability tables: a) the class prior probability, b) the class conditional probabilities of each attribute.

Probabilistic Models: Nave Bayes

(a) Class prior probability:

- p(c = Tainted) = 3/6 = 1/2,
- p(c = Clean) = 1/2

Probabilistic Models: Nave Bayes

(a) Class prior probability:

- p(c = Tainted) = 3/6 = 1/2,
- p(c = Clean) = 1/2

(b) The class conditional distributions:

•
$$p(a_1 = on|c = Tainted) = 2/3, \ p(a_1 = off|c = Tainted) = 1/3$$

(a) Class prior probability:

- p(c = Tainted) = 3/6 = 1/2,
- p(c = Clean) = 1/2

(b) The class conditional distributions:

•
$$p(a_1 = on|c = Tainted) = 2/3, \ p(a_1 = off|c = Tainted) = 1/3$$

•
$$p(a_2 = blue | c = Tainted) = 1/3, \ p(a_2 = red | c = Tainted) = 2/3$$

•
$$p(a_3 = light|c = Tainted) = 2/3,$$

 $p(a_3 = heavy|c = Tainted) = 1/3$

- $p(a_1 = on|c = Clean) = 1/3, \ p(a_1 = off|c = Clean) = 2/3$
- $p(a_2 = blue|c = Clean) = 2/3, \ p(a_2 = red|c = Clean) = 1/3$
- $p(a_3 = light|c = Clean) = 1/3, \ p(a_3 = heavy|c = Clean) = 2/3$

Probabilistic Models: Nave Bayes

(B) Classify a new example (on, red, light) using the classifier you built above. You need to compute the posterior probability (up to a constant) of class given this example.

Probabilistic Models: Nave Bayes

(B) Classify a new example (on, red, light) using the classifier you built above. You need to compute the posterior probability (up to a constant) of class given this example.

Answer: To classify $\mathbf{x} = (on, red, light)$, we have:

 $p(c|\mathbf{x}) = \frac{p(c)p(x|c)}{p(c = Tainted)p(x|c = Tainted) + p(c = Clean)p(x|c = Clean)}$ Computing each term:

$$p(c = T)p(x|c = T) = \left(p(c = T)p(a_1 = on|c = T)p(a_2 = red|c = T)\right)$$
$$p(a_3 = light|c = T)\right)$$
$$= \frac{1}{2} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$$
$$= \frac{8}{54}$$

(B) Classify a new example (*on*, *red*, *light*) using the classi er you built above. You need to compute the posterior probability (up to a constant) of class given this example.

Answer: Similarly,

$$p(c = Clean)p(x|c = Clean) = \frac{1}{2} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{54}$$

Therefore, $p(c = Tainted | \mathbf{x}) = 8/9$ and $p(c = Clean | \mathbf{x}) = 1/9$, according to Nave Bayes classifier this example should be classified as **Tainted**.

1. The principal components of a dataset can be found by either minimizing an objective or, equivalently, maximizing a different objective. In words, describe the objective in each case using a single sentence. 1. The principal components of a dataset can be found by either minimizing an objective or, equivalently, maximizing a different objective. In words, describe the objective in each case using a single sentence.

Answer:

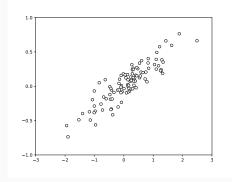
• **Minimizing**: Reconstruction error i.e. the distance between the original point and its projection onto the principal component subspace

1. The principal components of a dataset can be found by either minimizing an objective or, equivalently, maximizing a different objective. In words, describe the objective in each case using a single sentence.

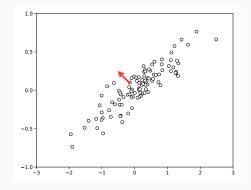
Answer:

- **Minimizing**: Reconstruction error i.e. the distance between the original point and its projection onto the principal component subspace
- **Maximizing**: Variance between the code vectors i.e. the variance between the coordinate representations of the data in the principal component subspace

2. The figure below shows a two-dimensional dataset. Draw the vector corresponding to the **second** principal component.



2. The figure below shows a two-dimensional dataset. Draw the vector corresponding to the **second** principal component.



1. What is the difference between K-Means and Soft K-Means algorithm?

1. What is the difference between K-Means and Soft K-Means algorithm?

Answer:

• Hard K-Means assigns a point to 1 particular cluster, whereas Soft K-Means assigns responsibilities (summing to 1) across clusters

Answer:

• Assignment step in K-Means is similar to the E-step in EM, computing responsibilities assessment

Answer:

- Assignment step in K-Means is similar to the **E-step** in EM, computing responsibilities assessment
- **Refitting** step in K-Means minimizes the cluster distance while **M-step** in EM maximizes generative likelihood

Answer:

- Assignment step in K-Means is similar to the **E-step** in EM, computing responsibilities assessment
- **Refitting** step in K-Means minimizes the cluster distance while **M-step** in EM maximizes generative likelihood
- Soft K-Means is equivalent to having spherical covariance (shared diagonal) while EM can have arbitrary covariance.