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Abstract

We introduce a globally-convergent algorithm for optimizing the tree-reweighted
(TRW) variational objective over the marginal polytope. The algorithm is based
on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals
within the marginal polytope through repeated maximum a posteriori (MAP) calls.
This modular structure enables us to leverage black-box MAP solvers (both exact
and approximate) for variational inference, and obtains more accurate results than
tree-reweighted algorithms that optimize over the local consistency relaxation.
Theoretically, we bound the sub-optimality for the proposed algorithm despite
the TRW objective having unbounded gradients at the boundary of the marginal
polytope. Empirically, we demonstrate the increased quality of results found by
tightening the relaxation over the marginal polytope as well as the spanning tree
polytope on synthetic and real-world instances.

1 Introduction
Markov random fields (MRFs) are used in many areas of computer science such as vision and
speech. Inference in these undirected graphical models is generally intractable. Our work focuses on
performing approximate marginal inference by optimizing the Tree Re-Weighted (TRW) objective
(Wainwright et al., 2005). The TRW objective is concave, is exact for tree-structured MRFs, and
provides an upper bound on the log-partition function.

Fast combinatorial solvers for the TRW objective exist, including Tree-Reweighted Belief Propaga-
tion (TRBP) (Wainwright et al., 2005), convergent message-passing based on geometric program-
ming (Globerson and Jaakkola, 2007), and dual decomposition (Jancsary and Matz, 2011). These
methods optimize over the set of pairwise consistency constraints, also called the local polytope.
Sontag and Jaakkola (2007) showed that significantly better results could be obtained by optimizing
over tighter relaxations of the marginal polytope. However, deriving a message-passing algorithm
for the TRW objective over tighter relaxations of the marginal polytope is challenging. Instead,
Sontag and Jaakkola (2007) use the conditional gradient method (also called Frank-Wolfe) and off-
the-shelf linear programming solvers to optimize TRW over the cycle consistency relaxation. Rather
than optimizing over the cycle relaxation, Belanger et al. (2013) optimize the TRW objective over
the exact marginal polytope. Then, using Frank-Wolfe, the linear minimization performed in the
inner loop can be shown to correspond to MAP inference.

The Frank-Wolfe optimization algorithm has seen increasing use in machine learning, thanks in
part to its efficient handling of complex constraint sets appearing with structured data (Jaggi, 2013;
Lacoste-Julien and Jaggi, 2015). However, applying Frank-Wolfe to variational inference presents
challenges that were never resolved in previous work. First, the linear minimization performed
in the inner loop is computationally expensive, either requiring repeatedly solving a large linear
program, as in Sontag and Jaakkola (2007), or performing MAP inference, as in Belanger et al.
(2013). Second, the TRW objective involves entropy terms whose gradients go to infinity near the
boundary of the feasible set, therefore existing convergence guarantees for Frank-Wolfe do not apply.
Third, variational inference using TRW involves both an outer and inner loop of Frank-Wolfe, where
the outer loop optimizes the edge appearance probabilities in the TRW entropy bound to tighten it.
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Neither Sontag and Jaakkola (2007) nor Belanger et al. (2013) explore the effect of optimizing over
the edge appearance probabilities.

Although MAP inference is in general NP hard (Shimony, 1994), it is often possible to find exact so-
lutions to large real-world instances within reasonable running times (Sontag et al., 2008; Allouche
et al., 2010; Kappes et al., 2013). Moreover, as we show in our experiments, even approximate
MAP solvers can be successfully used within our variational inference algorithm. As MAP solvers
improve in their runtime and performance, their iterative use could become feasible and as a byprod-
uct enable more efficient and accurate marginal inference. Our work provides a fast deterministic
alternative to recently proposed Perturb-and-MAP algorithms (Papandreou and Yuille, 2011; Hazan
and Jaakkola, 2012; Ermon et al., 2013).

Contributions. This paper makes several theoretical and practical innovations. We propose a mod-
ification to the Frank-Wolfe algorithm that optimizes over adaptively chosen contractions of the
domain and prove its rate of convergence for functions whose gradients can be unbounded at the
boundary. Our algorithm does not require a different oracle than standard Frank-Wolfe and could be
useful for other convex optimization problems where the gradient is ill-behaved at the boundary.

We instantiate the algorithm for approximate marginal inference over the marginal polytope with
the TRW objective. With an exact MAP oracle, we obtain the first provably convergent algorithm
for the optimization of the TRW objective over the marginal polytope, which had remained an open
problem to the best of our knowledge. Traditional proof techniques of convergence for first order
methods fail as the gradient of the TRW objective is not Lipschitz continuous.

We develop several heuristics to make the algorithm practical: a fully-corrective variant of Frank-
Wolfe that reuses previously found integer assignments thereby reducing the need for new (approxi-
mate) MAP calls, the use of local search between MAP calls, and significant re-use of computations
between subsequent steps of optimizing over the spanning tree polytope. We perform an extensive
experimental evaluation on both synthetic and real-world inference tasks.

2 Background
Markov Random Fields: MRFs are undirected probabilistic graphical models where the probability
distribution factorizes over cliques in the graph. We consider marginal inference on pairwise MRFs
with N random variables X1, X2, . . . , XN where each variable takes discrete states xi ∈ VALi. Let
G = (V,E) be the Markov network with an undirected edge {i, j} ∈ E for every two variables
Xi and Xj that are connected together. Let N (i) refer to the set of neighbors of variable Xi. We
organize the edge log-potentials θij(xi, xj) for all possible values of xi ∈ VALi, xj ∈ VALj in
the vector θij , and similarly for the node log-potential vector θi. We regroup these in the overall
vector ~θ. We introduce a similar grouping for the marginal vector ~µ: for example, µi(xi) gives the
coordinate of the marginal vector corresponding to the assignment xi to variable Xi.

Tree Re-weighted Objective (Wainwright et al., 2005): Let Z(~θ) be the partition function for the
MRF andM be the set of all valid marginal vectors (the marginal polytope). The maximization of
the TRW objective gives the following upper bound on the log partition function:

logZ(~θ) ≤ min
ρ∈T

max
~µ∈M

〈~θ, ~µ〉+H(~µ;ρ)︸ ︷︷ ︸
TRW(~µ;~θ,ρ)

,
(1)

where the TRW entropy is:

H(~µ;ρ) :=
∑
i∈V

(1−
∑

j∈N (i)

ρij)H(µi) +
∑

(ij)∈E
ρijH(µij), H(µi) := −

∑
xi

µi(xi) logµi(xi). (2)

T is the spanning tree polytope, the convex hull of edge indicator vectors of all possible spanning
trees of the graph. Elements of ρ ∈ T specify the probability of an edge being present under a
specific distribution over spanning trees.M is difficult to optimize over, and most TRW algorithms
optimize over a relaxation called the local consistency polytope L ⊇M:
L :=

{
~µ ≥ 0,

∑
xi
µi(xi) = 1 ∀i ∈ V, ∑xi

µij(xi, xj) = µj(xj),
∑
xj
µij(xi, xj) = µi(xi) ∀{i, j} ∈ E

}
.

The TRW objective TRW(~µ; ~θ,ρ) is a globally concave function of ~µ over L, assuming that ρ is
obtained from a valid distribution over spanning trees of the graph (i.e. ρ ∈ T).

Frank-Wolfe (FW) Algorithm: In recent years, the Frank-Wolfe (aka conditional gradient) al-
gorithm has gained popularity in machine learning (Jaggi, 2013) for the optimization of convex

2



functions over compact domains (denoted D). The algorithm is used to solve minx∈D f(x) by
iteratively finding a good descent vertex by solving the linear subproblem:

s(k) = argmin
s∈D

〈∇f(x(k)), s〉 (FW oracle), (3)

and then taking a convex step towards this vertex: x(k+1) = (1 − γ)x(k) + γs(k) for a suitably
chosen step-size γ ∈ [0, 1]. The algorithm remains within the feasible set (is projection free), is
invariant to affine transformations of the domain, and can be implemented in a memory efficient
manner. Moreover, the FW gap g(x(k)) := 〈−∇f(x(k)), s(k) − x(k)〉 provides an upper bound on
the suboptimality of the iterate x(k). The primal convergence of the Frank-Wolfe algorithm is given
by Thm. 1 in Jaggi (2013), restated here for convenience: for k ≥ 1, the iterates x(k) satisfy:

(4)f(x(k))− f(x∗) ≤ 2Cf
k + 2

,

where Cf is called the “curvature constant”. Under the assumption that ∇f is L-Lipschitz continu-
ous1 on D, we can bound it as Cf ≤ Ldiam||.||(D)2.

Marginal Inference with Frank-Wolfe: To optimize max~µ∈M TRW(~µ; ~θ,ρ) with Frank-Wolfe,
the linear subproblem (3) becomes argmax~µ∈M〈θ̃, ~µ〉, where the perturbed potentials θ̃ correspond
to the gradient of TRW(~µ; ~θ,ρ) with respect to ~µ. Elements of θ̃ are of the form θc(xc) +Kc(1 +
logµc(xc)), evaluated at the pseudomarginals’ current location inM, where Kc is the coefficient
of the entropy for the node/edge term in (2). The FW linear subproblem here is thus equivalent
to performing MAP inference in a graphical model with potentials θ̃ (Belanger et al., 2013), as
the vertices of the marginal polytope are in 1-1 correspondence with valid joint assignments to the
random variables of the MRF, and the solution of a linear program is always achieved at a vertex
of the polytope. The TRW objective does not have a Lipschitz continuous gradient overM, and so
standard convergence proofs for Frank-Wolfe do not hold.

3 Optimizing over Contractions of the Marginal Polytope
Motivation: We wish to (1) use the fewest possible MAP calls, and (2) avoid regions near the
boundary where the unbounded curvature of the function slows down convergence. A viable option
to address (1) is through the use of correction steps, where after a Frank-Wolfe step, one opti-
mizes over the polytope defined by previously visited vertices of M (called the fully-corrective
Frank-Wolfe (FCFW) algorithm and proven to be linearly convergence for strongly convex objec-
tives (Lacoste-Julien and Jaggi, 2015)). This does not require additional MAP calls. However, we
found (see Sec. 5) that when optimizing the TRW objective overM, performing correction steps can
surprisingly hurt performance. This leaves us in a dilemma: correction steps enable decreasing the
objective without additional MAP calls, but they can also slow global progress since iterates after
correction sometimes lie close to the boundary of the polytope (where the FW directions become
less informative). In a manner akin to barrier methods and to Garber and Hazan (2013)’s local linear
oracle, our proposed solution maintains the iterates within a contraction of the polytope. This gives
us most of the mileage obtained from performing the correction steps without suffering the conse-
quences of venturing too close to the boundary of the polytope. We prove a global convergence rate
for the iterates with respect to the true solution over the full polytope.

We describe convergent algorithms to optimize TRW(~µ; ~θ,ρ) for ~µ ∈ M. The approach we adopt
to deal with the issue of unbounded gradients at the boundary is to perform Frank-Wolfe within
a contraction of the marginal polytope given by Mδ for δ ∈ [0, 1], with either a fixed δ or an
adaptive δ.
Definition 3.1 (Contraction polytope). Mδ := (1 − δ)M + δ u0, where u0 ∈ M is the vector
representing the uniform distribution.

Marginal vectors that lie withinMδ are bounded away from zero as all the components of u0 are
strictly positive. Denoting V(δ) as the set of vertices of Mδ , V as the set of vertices of M and
f(~µ) := −TRW(~µ; ~θ,ρ), the key insight that enables our novel approach is that:

arg min
v(δ)∈V(δ)

〈
∇f,v(δ)

〉
︸ ︷︷ ︸

(Linear Minimization overMδ)

≡ arg min
v∈V

〈∇f, (1− δ)v + δu0〉︸ ︷︷ ︸
(Definition of v(δ))

≡ (1− δ) arg min
v∈V

〈∇f,v〉+ δu0.︸ ︷︷ ︸
(Run MAP solver and shift vertex)

1I.e. ‖∇f(x)−∇f(x′)‖∗≤ L‖x− x′‖ for x,x′ ∈ D. Notice that the dual norm ‖·‖∗ is needed here.
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Algorithm 1: Updates to δ after a MAP call (Adaptive δ variant)

1: At iteration k. Assuming x(k),u0, δ
(k−1), f are defined and s(k) has been computed

2: Compute g(x(k)) = 〈−∇f(x(k)), s(k) − x(k)〉 (Compute FW gap)
3: Compute gu(x(k)) = 〈−∇f(x(k)),u0 − x(k)〉 (Compute “uniform gap”)
4: if gu(x(k)) < 0 then
5: Let δ̃ = g(x(k))

−4gu(x(k))
(Compute new proposal for δ)

6: if δ̃ < δ(k−1) then
7: δ(k) = min

(
δ̃, δ

(k−1)

2

)
(Shrink by at least a factor of two if proposal is smaller)

8: end if
9: end if (and set δ(k) = δ(k−1) if it was not updated)

Therefore, to solve the FW subproblem (3) overMδ , we can run as usual a MAP solver and simply
shift the resulting vertex ofM towards u0 to obtain a vertex ofMδ . Our solution to optimize over
restrictions of the polytope is more broadly applicable to the optimization problem defined below,
with f satisfying Prop. 3.3 (satisfied by the TRW objective) in order to get convergence rates.
Problem 3.2. Solve minx∈D f(x) where D is a compact convex set and f is convex and continu-
ously differentiable on the relative interior of D.
Property 3.3. (Controlled growth of Lipschitz constant over Dδ). We define Dδ := (1− δ)D+ δu0

for a fixed u0 in the relative interior of D. We suppose that there exists a fixed p ≥ 0 and L such
that for any δ > 0, ∇f(x) has a bounded Lipschitz constant Lδ ≤ Lδ−p ∀x ∈ Dδ .

Fixed δ: The first algorithm fixes a value for δ a-priori and performs the optimization over Dδ . The
following theorem bounds the sub-optimality of the iterates with respect to the optimum over D.
Theorem 3.4 (Suboptimality bound for fixed-δ algorithm). Let f satisfy the properties in Prob. 3.2
and Prop. 3.3, and suppose further that f is finite on the boundary ofD. Then the use of Frank-Wolfe
for minx∈Dδ f(x) realizes a sub-optimality over D bounded as:

f(x(k))− f(x∗) ≤ 2Cδ
(k + 2)

+ ω (δ diam(D)) ,

where x∗ is the optimal solution in D, Cδ ≤ Lδ diam||.||(Dδ)2, and ω is the modulus of continuity
function of the (uniformly) continuous f (in particular, ω(δ) ↓ 0 as δ ↓ 0).

The full proof is given in App. C. The first term of the bound comes from the standard Frank-Wolfe
convergence analysis of the sub-optimality of x(k) relative to x∗(δ), the optimum over Dδ , as in (4)
and using Prop. 3.3. The second term arises by bounding f(x∗(δ))− f(x∗) ≤ f(x̃)− f(x∗) with a
cleverly chosen x̃ ∈ Dδ (as x∗(δ) is optimal in Dδ). We pick x̃ := (1 − δ)x∗ + δu0 and note that
‖x̃ − x∗‖≤ δ diam(D). As f is continuous on a compact set, it is uniformly continuous and we
thus have f(x̃)− f(x∗) ≤ ω(δ diam(D)) with ω its modulus of continuity function.

Adaptive δ: The second variant to solve minx∈D f(x) iteratively perform FW steps over Dδ , but
also decreases δ adaptively. The update schedule for δ is given in Alg. 1 and is motivated by the
convergence proof. The idea is to ensure that the FW gap over Dδ is always at least half the FW
gap over D, relating the progress over Dδ with the one over D. It turns out that FW-gap-Dδ =
(1 − δ)FW-gap-D + δ · gu(x(k)), where the “uniform gap” gu(x(k)) quantifies the decrease of the
function when contracting towards u0. When gu(x(k)) is negative and large compared to the FW
gap, we need to shrink δ (see step 5 in Alg. 1) to ensure that the δ-modified direction is a sufficient
descent direction. We can show that the algorithm converges to the global solution as follows:
Theorem 3.5 (Global convergence for adaptive-δ variant over D). For a function f satisfying the
properties in Prob. 3.2 and Prop. 3.3, the sub-optimality of the iterates obtained by running the FW
updates over Dδ with δ updated according to Alg. 1 is bounded as:

f(x(k))− f(x∗) ≤ O
(
k−

1
p+1

)
.

A full proof with a precise rate and constants is given in App. D. The sub-optimality hk := f(x(k))−
f(x∗) traverses three stages with an overall rate as above. The updates to δ(k) as in Alg. 1 enable us
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Algorithm 2: Approximate marginal inference overM (solving (1)). Here f is the negative TRW objective.

1: Function TRW-Barrier-FW(ρ(0), ε, δ(init),u0):
2: Inputs: Edge-appearance probabilities ρ(0), δ(init) ≤ 1

4
initial contraction of polytope, inner loop

stopping criterion ε, fixed reference point u0 in the interior ofM. Let δ(−1) = δ(init).
3: Let V := {u0} (visited vertices), x(0) = u0 (Initialize the algorithm at the uniform distribution)
4: for i = 0 . . .MAX RHO ITS do {FW outer loop to optimize ρ over T}
5: for k = 0 . . .MAXITS do {FCFW inner loop to optimize x overM}
6: Let θ̃ = ∇f(x(k); ~θ,ρ(i)) (Compute gradient)
7: Let s(k) ∈ arg min

v∈M
〈θ̃,v〉 (Run MAP solver to compute FW vertex)

8: Compute g(x(k)) = 〈−θ̃, s(k) − x(k)〉 (Inner loop FW duality gap)
9: if g(x(k)) ≤ ε then

10: break FCFW inner loop (x(k) is ε-optimal)
11: end if
12: δ(k) = δ(k−1) (For Adaptive-δ: Run Alg. 1 to modify δ)
13: Let s(k)(δ) = (1− δ(k))s(k) + δ(k)u0 and d(k)

(δ) = s
(k)

(δ) − x
(k) (δ-contracted quantities)

14: x(k+1) = arg min{f(x(k) + γ d
(k)

(δ)) : γ ∈ [0, 1]} (FW step with line search)

15: Update correction polytope: V := V ∪ {s(k)}
16: x(k+1) := CORRECTION(x(k+1), V, δ(k),ρ(i)) (optional: correction step)
17: x(k+1), Vsearch := LOCALSEARCH(x(k+1), s(k), δ(k),ρ(i)) (optional: fast MAP solver)
18: Update correction polytope (with vertices from LOCALSEARCH): V := V ∪ {Vsearch}
19: end for
20: ρv ← minSpanTree(edgesMI(x(k))) (FW vertex of the spanning tree polytope)
21: ρ(i+1) ← ρ(i) + ( i

i+2
)(ρv − ρ(i)) (Fixed step-size schedule FW update for ρ kept in relint(T))

22: x(0) ← x(k), δ(−1) ← δ(k−1) (Re-initialize for FCFW inner loop)
23: If i < MAX RHO ITS then x(0) = CORRECTION(x(0), V, δ(−1),ρ(i+1))
24: end for
25: return x(0) and ρ(i)

to (1) upper bound the duality gap overD as a function of the duality gap inDδ and (2) lower bound
the value of δ(k) as a function of hk. Applying the standard Descent Lemma with the Lipschitz
constant on the gradient of the form Lδ−p (Prop. 3.3), and replacing δ(k) by its bound in hk, we get
the recurrence: hk+1 ≤ hk − Chp+2

k . Solving this gives us the desired bound.

Application to the TRW Objective: min~µ∈M−TRW(~µ; ~θ,ρ) is akin to minx∈D f(x) and the
(strong) convexity of −TRW(~µ; ~θ,ρ) has been previously shown (Wainwright et al., 2005; London
et al., 2015). The gradient of the TRW objective is Lipschitz continuous overMδ since all marginals
are strictly positive. Its growth for Prop. 3.3 can be bounded with p = 1 as we show in App. E.1. This
gives a rate of convergence of O(k−1/2) for the adaptive-δ variant, which interestingly is a typical
rate for non-smooth convex optimization. The hidden constant is of the order O(‖θ‖·|V |). The
modulus of continuity ω for the TRW objective is close to linear (it is almost a Lipschitz function),
and its constant is instead of the order O(‖θ‖+|V |).

4 Algorithm
Alg. 2 describes the pseudocode for our proposed algorithm to do marginal inference with
TRW(~µ; ~θ,ρ). minSpanTree finds the minimum spanning tree of a weighted graph, and
edgesMI(~µ) computes the mutual information of edges of G from the pseudomarginals in ~µ2 (to
perform FW updates over ρ as in Alg. 2 in Wainwright et al. (2005)). It is worthwhile to note that
our approach uses three levels of Frank-Wolfe: (1) for the (tightening) optimization of ρ over T, (2)
to perform approximate marginal inference, i.e for the optimization of ~µ overM, and (3) to perform
the correction steps (lines 16 and 23). We detail a few heuristics that aid practicality.

Fast Local Search: Fast methods for MAP inference such as Iterated Conditional Modes (Be-
sag, 1986) offer a cheap, low cost alternative to a more expensive combinatorial MAP solver. We

2The component ij has value H(µi) +H(µj)−H(µij).
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warm start the ICM solver with the last found vertex s(k) of the marginal polytope. The subroutine
LOCALSEARCH (Alg. 6 in Appendix) performs a fixed number of FW updates to the pseudo-
marginals using ICM as the (approximate) MAP solver.

Re-optimizing over the Vertices of M (FCFW algorithm): As the iterations of FW progress,
we keep track of the vertices of the marginal polytope found by Alg. 2 in the set V . We make use
of these vertices in the CORRECTION subroutine (Alg. 5 in Appendix) which re-optimizes the
objective function over (a contraction of) the convex hull of the elements of V (called the correction
polytope). x(0) in Alg. 2 is initialized to the uniform distribution which is guaranteed to be inM
(andMδ). After updating ρ, we set x(0) to the approximate minimizer in the correction polytope.
The intuition is that changing ρ by a small amount may not substantially modify the optimal x∗
(for the new ρ) and that the new optimum might be in the convex hull of the vertices found thus far.
If so, CORRECTION will be able to find it without resorting to any additional MAP calls. This
encourages the MAP solver to search for new, unique vertices instead of rediscovering old ones.

Approximate MAP Solvers: We can swap out the exact MAP solver with an approximate MAP
solver. The primal objective plus the (approximate) duality gap may no longer be an upper bound
on the log-partition function (black-box MAP solvers could be considered to optimize over an inner
bound to the marginal polytope). Furthermore, the gap over D may be negative if the approximate
MAP solver fails to find a direction of descent. Since adaptive-δ requires that the gap be positive
in Alg. 1, we take the max over the last gap obtained over the correction polytope (which is always
non-negative) and the computed gap over D as a heuristic.

Theoretically, one could get similar convergence rates as in Thm. 3.4 and 3.5 using an approximate
MAP solver that has a multiplicative guarantee on the gap (line 8 of Alg. 2), as was done previously
for FW-like algorithms (see, e.g., Thm. C.1 in Lacoste-Julien et al. (2013)). With an ε-additive
error guarantee on the MAP solution, one can prove similar rates up to a suboptimality error of ε.
Even if the approximate MAP solver does not provide an approximation guarantee, if it returns an
upper bound on the value of the MAP assignment (as do branch-and-cut solvers for integer linear
programs, or Sontag et al. (2008)), one can use this to obtain an upper bound on logZ (see App. J).

5 Experimental Results
Setup: The L1 error in marginals is computed as: ζµ := 1

N

∑N
i=1|µi(1) − µ∗i (1)|. When using

exact MAP inference, the error in logZ (denoted ζlogZ) is computed by adding the duality gap to
the primal (since this guarantees us an upper bound). For approximate MAP inference, we plot the
primal objective. We use a non-uniform initialization of ρ computed with the Matrix Tree Theorem
(Sontag and Jaakkola, 2007; Koo et al., 2007). We perform 10 updates to ρ, optimize ~µ to a duality
gap of 0.5 onM, and always perform correction steps. We use LOCALSEARCH only for the real-
world instances. We use the implementation of TRBP and the Junction Tree Algorithm (to compute
exact marginals) in libDAI (Mooij, 2010). Unless specified, we compute marginals by optimizing
the TRW objective using the adaptive-δ variant of the algorithm (denoted in the figures as Mδ).

MAP Solvers: For approximate MAP, we run three solvers in parallel: QPBO (Kolmogorov and
Rother, 2007; Boykov and Kolmogorov, 2004), TRW-S (Kolmogorov, 2006) and ICM (Besag, 1986)
using OpenGM (Andres et al., 2012) and use the result that realizes the highest energy. For exact
inference, we use Gurobi Optimization (2015) or toulbar2 (Allouche et al., 2010).

Test Cases: All of our test cases are on binary pairwise MRFs. (1) Synthetic 10 nodes cliques:
Same setup as Sontag and Jaakkola (2007, Fig. 2), with 9 sets of 100 instances each with cou-
pling strength drawn from U [−θ, θ] for θ ∈ {0.5, 1, 2, . . . , 8}. (2) Synthetic Grids: 15 trials with
5 × 5 grids. We sample θi ∼ U [−1, 1] and θij ∈ [−4, 4] for nodes and edges. The potentials
were (−θi, θi) for nodes and (θij ,−θij ;−θij , θij) for edges. (3) Restricted Boltzmann Machines
(RBMs): From the Probabilistic Inference Challenge 2011.3 (4) Horses: Large (N ≈ 12000) MRFs
representing images from the Weizmann Horse Data (Borenstein and Ullman, 2002) with potentials
learned by Domke (2013). (5) Chinese Characters: An image completion task from the KAIST
Hanja2 database, compiled in OpenGM by Andres et al. (2012). The potentials were learned using
Decision Tree Fields (Nowozin et al., 2011). The MRF is not a grid due to skip edges that tie nodes
at various offsets. The potentials are a combination of submodular and supermodular and therefore
a harder task for inference algorithms.

3http://www.cs.huji.ac.il/project/PASCAL/index.php

6

http://www.cs.huji.ac.il/project/PASCAL/index.php


0 10 20 30 40 50 60 70 80
MAP calls

0

10

20

30

40

50

E
rr

or
in

L
og

Z
(ζ

lo
g

Z
)

Mδ

M0.0001

M
Lδ
M(no correction)

(a) ζlogZ : 5× 5 grids
M vsMδ

0 5 10 15 20 25
MAP calls

0

10

20

30

40

50

60

E
rr

or
in

L
og

Z
(ζ

lo
g

Z
)

Mδ

M0.0001

M
Lδ
M(no correction)

(b) ζlogZ : 10 node cliques
M vsMδ

0 20 40 60 80 100 120
MAP calls

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or
in

M
ar

gi
n

al
s

(ζ
µ
)

Exact MAPMδ

Lδ
Approx MAPMδ

(c) ζµ: 5× 5 grids
Approx. vs. Exact MAP

0 20 40 60 80 100
MAP calls

10−1

100

101

102

103

E
rr

or
in

L
og

Z
(ζ

lo
g

Z
)

Exact MAPMδ

Lδ
Approx MAPMδ

(d) ζlogZ : 40 node RBM
Approx. vs. Exact MAP

0.51 2 3 4 5 6 7 8
θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
in

M
ar

gi
n

al
s

(ζ
µ
)

perturbMAP

Lδ
Lδ(ρopt)

Mδ(ρopt)

Mδ

(e) ζµ: 10 node cliques
Optimization over T

0.51 2 3 4 5 6 7 8
θ

10−1

100

101

102

E
rr

or
in

L
og

Z
(ζ

lo
g

Z
) perturbMAP

Lδ
Lδ(ρopt)

Mδ(ρopt)

Mδ

(f) ζlogZ : 10 node cliques
Optimization over T

Figure 1: Synthetic Experiments: In Fig. 1(c) & 1(d), we unravel MAP calls across updates to ρ. Fig. 1(d)
corresponds to a single RBM (not an aggregate over trials) where for “Approx MAP” we plot the absolute error
between the primal objective and logZ (not guaranteed to be an upper bound).

On the Optimization ofM versusMδ

We compare the performance of Alg. 2 on optimizing over M (with and without correction), op-
timizing over Mδ with fixed-δ = 0.0001 (denoted M0.0001) and optimizing over Mδ using the
adaptive-δ variant. These plots are averaged across all the trials for the first iteration of optimizing
over T. We show error as a function of the number of MAP calls since this is the bottleneck for
large MRFs. Fig. 1(a), 1(b) depict the results of this optimization aggregated across trials. We find
that all variants settle on the same average error. The adaptive δ variant converges faster on average
followed by the fixed δ variant. Despite relatively quick convergence forM with no correction on
the grids, we found that correction was crucial to reducing the number of MAP calls in subsequent
steps of inference after updates to ρ. As highlighted earlier, correction steps onM (in blue) worsen
convergence, an effect brought about by iterates wandering too close to the boundary ofM.

On the Applicability of Approximate MAP Solvers

Synthetic Grids: Fig. 1(c) depicts the accuracy of approximate MAP solvers versus exact MAP
solvers aggregated across trials for 5 × 5 grids. The results using approximate MAP inference are
competitive with those of exact inference, even as the optimization is tightened over T. This is an
encouraging and non-intuitive result since it indicates that one can achieve high quality marginals
through the use of relatively cheaper approximate MAP oracles.

RBMs: As in Salakhutdinov (2008), we observe for RBMs that the bound provided by
TRW(~µ; ~θ,ρ) over Lδ is loose and does not get better when optimizing over T. As Fig. 1(d) depicts
for a single RBM, optimizing overMδ realizes significant gains in the upper bound on logZ which
improves with updates to ρ. The gains are preserved with the use of the approximate MAP solvers.
Note that there are also fast approximate MAP solvers specifically for RBMs (Wang et al., 2014).

Horses: See Fig. 2 (right). The models are close to submodular and the local relaxation is a good
approximation to the marginal polytope. Our marginals are visually similar to those obtained by
TRBP and our algorithm is able to scale to large instances by using approximate MAP solvers.
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Figure 2: Results on real world test cases. FW(i) corresponds to the final marginals at the ith iteration of
optimizing ρ. The area highlighted on the Chinese Characters depicts the region of uncertainty.

On the Importance of Optimizing over T

Synthetic Cliques: In Fig. 1(e), 1(f), we study the effect of tightening over T against coupling
strength θ. We consider the ζµ and ζlogZ obtained for the final marginals before updating ρ (step 19)
and compare to the values obtained after optimizing over T (marked with ρopt). The optimization
over T has little effect on TRW optimized over Lδ . For optimization overMδ , updating ρ realizes
better marginals and bound on logZ (over and above those obtained in Sontag and Jaakkola (2007)).

Chinese Characters: Fig. 2 (left) displays marginals across iterations of optimizing over T. The
submodular and supermodular potentials lead to frustrated models for which Lδ is very loose, which
results in TRBP obtaining poor results.4 Our method produces reasonable marginals even before the
first update to ρ, and these improve with tightening over T.

Related Work for Marginal Inference with MAP Calls

Hazan and Jaakkola (2012) estimate logZ by averaging MAP estimates obtained on randomly per-
turbed inflated graphs. Our implementation of the method performed well in approximating logZ
but the marginals (estimated by fixing the value of each random variable and estimating logZ for
the resulting graph) were less accurate than our method (Fig. 1(e), 1(f)).

6 Discussion
We introduce the first provably convergent algorithm for the TRW objective over the marginal
polytope, under the assumption of exact MAP oracles. We quantify the gains obtained both from
marginal inference overM and from tightening over the spanning tree polytope. We give heuristics
that improve the scalability of Frank-Wolfe when used for marginal inference. The runtime cost of
iterative MAP calls (a reasonable rule of thumb is to assume an approximate MAP call takes roughly
the same time as a run of TRBP) is worthwhile particularly in cases such as the Chinese Characters
where L is loose. Specifically, our algorithm is appropriate for domains where marginal inference is
hard but there exist efficient MAP solvers capable of handling non-submodular potentials. Code is
available at https://github.com/clinicalml/fw-inference.

Our work creates a flexible, modular framework for optimizing a broad class of variational objec-
tives, not simply TRW, with guarantees of convergence. We hope that this will encourage more
research on building better entropy approximations. The framework we adopt is more generally
applicable to optimizing functions whose gradients tend to infinity at the boundary of the domain.

Our method to deal with gradients that diverge at the boundary bears resemblance to barrier func-
tions used in interior point methods insofar as they bound the solution away from the constraints.
Iteratively decreasing δ in our framework can be compared to decreasing the strength of the barrier,
enabling the iterates to get closer to the facets of the polytope, although its worthwhile to note that
we have an adaptive method of doing so.
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A Preliminaries

A.1 Summary of Supplementary Material

The supplementary material is divided into two parts:

(1) The first part is dedicated to the exposition of the theoretical results presented in the main paper. Section B
details the variants of the Frank-Wolfe algorithm that we used and analyzed. Section C gives the proof to
Theorem 3.4 (fixed δ) while Section D gives the proof to Theorem 3.5 (adaptive δ). Finally, Section E applies
the convergence theorem to the TRW objective and investigates the relevant constants.

(2) The remainder of the supplementary material provides more information about the experimental setup as
well as additional experimental results.

A.2 Descent Lemma

The following descent lemma is proved in Bertsekas (1999) (Prop. A24) and is standard for any convergence
proof of first order methods. We provide a proof here for completeness. It also highlights the origin of the
requirement that we use dual norm pairings between x and the gradient of f(x) (because of the generalized
Cauchy-Schwartz inequality).

Lemma A.1. Descent Lemma

Let xγ := x + γd and suppose that f is continuously differentiable on the line segment from x to xγmax for
some γmax > 0. Suppose that L = supα∈]0,γmax]

||∇f(x+αd)−∇f(x)||∗
||αd|| is finite, then we have:

f(xγ) ≤ f(x) + γ〈∇f(x),d〉+
γ2

2
L||d||2, ∀γ ∈ [0, γmax]. (5)

Proof. Let 0 < γ ≤ γmax. Denoting l(α) = f(x+ αd), we have that:

f(xγ)− f(x) = l(γ)− l(0)

=

∫ γ

0

∇αl(α)dα

=

∫ γ

0

〈d,∇f(x+ αd)〉dα

=

∫ γ

0

〈d,∇f(x)〉dα+

∫ γ

0

dT (∇f(x+ αd)−∇f(x))dα

≤
∫ γ

0

〈d,∇f(x)〉dα+

∣∣∣∣∫ γ

0

dT (∇f(x+ αd)−∇f(x))

∣∣∣∣ dα
≤
∫ γ

0

〈d,∇f(x)〉dα+

∫ γ

0

||d|| ||∇f(x+ αd)−∇f(x)||∗ dα

= γ〈d,∇f(x)〉+

∫ γ

0

||d|| ||∇f(x+ αd)−∇f(x)||∗
α||d|| α||d|| dα

≤ γ〈d,∇f(x)〉+

∫ γ

0

||d|| L||d||αdα

= γ〈d,∇f(x)〉+
L

2
γ2||d||2

Rearranging terms, we get the desired bound.

B Frank-Wolfe Algorithms

In this section, we present the various algorithms that we use to do fully corrective Frank-Wolfe (FCFW) with
adaptive contractions over the domain D, as was done in our experiments.
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B.1 Overview of the Modified Frank-Wolfe Algorithm (FW with Away Steps)

To implement the approximate correction steps in the fully corrective Frank-Wolfe (FCFW) algorithm, we use
the Frank-Wolfe algorithm with away steps (Wolfe, 1970), also known as the modified Frank-Wolfe (MFW)
algorithm (Guélat and Marcotte, 1986). We give pseudo-code for MFW in Algorithm 3 (taken from (Lacoste-
Julien and Jaggi, 2015)). This variant of Frank-Wolfe adds the possibility to do an “away step” (see step 5 in
Algorithm 3) in order to avoid the zig zagging phenomenon that slows down Frank-Wolfe when the solution
is close to the boundary of the polytope. For a strongly convex objective (with Lipschitz continuous gradient),
the MFW was known to have asymptotic linear convergence (Guélat and Marcotte, 1986) and its global linear
convergence rate was shown recently (Lacoste-Julien and Jaggi, 2015), accelerating the slow general sublinear
rate of Frank-Wolfe. When performing a correction over the convex hull over a (somewhat small) set of vertices
ofDδ , this convergence difference was quite significant in our experiments (MFW converging in a small number
of iterations to do an approximate correction vs. FW taking hundreds of iterations to reach a similar level
of accuracy). We note that the TRW objective is strongly convex when all the edge probabilities are non-
zero (Wainwright et al., 2005); and that it has Lipschitz gradient over Dδ (but not D).

The gap computed in step 6 of Algorithm 3 is non-standard; it is a sufficient condition to ensure the global
linear convergence of the outer FCFW algorithm when using Algorithm 3 as a subroutine to implement the
approximate correction step. See Lacoste-Julien and Jaggi (2015) for more details.

The MFW algorithm requires more bookkeeping than standard FW: in addition to the current iterate x(k), it
also maintains both the active set S(k) (to search for the “away vertex”) as well as the barycentric coordinates
α(k) (to know what are the away step-sizes that ensure feasibility – see step 13) i.e. x(k) =

∑
v∈S(k) α

(k)
v v.

Algorithm 3: Modified Frank-Wolfe algorithm (FW with Away Steps) – used for approximate correction

1: Function MFW(x(0),α(0),V, ε) to optimize over conv(V):
2: Inputs: Set of atoms V , starting point x(0) =

∑
v∈S(0) α

(0)
v v where S(0) is active set and α(0) the active

coordinates, stopping criterion ε.
3: for k = 0 . . .K do
4: Let sk ∈ arg min

v∈V
〈∇f(x(k)),v〉 and dFW

k := sk − x(k) (the FW direction)

5: Let vk ∈ arg max
v∈S(k)

〈
∇f(x(k)),v

〉
and dA

k := x(k) − vk (the away direction)

6: gpFW
k :=

〈
−∇f(x(k)),dFW

k + dA
k

〉
(stringent gap is FW + away gap to work better for FCFW)

7: if gpFW
k ≤ ε then

8: return x(k), α(k), S(k).
9: else

10: if
〈
−∇f(x(k)),dFW

k

〉
≥
〈
−∇f(x(k)),dA

k

〉
then

11: dk := dFW
k , and γmax := 1 (choose the FW direction)

12: else
13: dk := dA

k , and γmax :=
αvk

(1−αvk
)

(choose away direction; maximum feasible step-size)
14: end if
15: Line-search: γk ∈ arg min

γ∈[0,γmax]

f
(
x(k) + γdk

)
16: Update x(k+1) := x(k) + γkdk
17: Update coordinates α(k+1) accordingly (see Lacoste-Julien and Jaggi (2015)).
18: Update S(k+1) := {v s.t. α(k+1)

v > 0}
19: end if
20: end for

B.2 Fully Corrective Frank-Wolfe (FCFW) with Adaptive-δ

We give in Algorithm 4 the pseudo-code to perform fully corrective Frank-Wolfe optimization over D by
iteratively optimizing over Dδ with adaptive-δ updates. If δ is kept constant (skipping step 10), then Algo-
rithm 4 implements the fixed δ variant over Dδ . We describe the algorithm as maintaining the correction set
of atoms V (k+1) over D (rather than Dδ), as δ is constantly changing. One can easily move back and forth
between V (k+1) and its contraction Vδ = (1− δ(k))V (k+1) + δ(k)u0, and so we note that an efficient imple-
mentation might work with either representation cheaply (for example, by storing only V (k+1) and δ, not the
perturbed version of the correction polytope). The approximate correction over Vδ is implemented using the
MFW algorithm described in Algorithm 3, which requires a barycentric representation α(k) of the current iter-
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ate x(k) over the correction polytope Vδ . Our notation in Algorithm 4 uses the elements of V as indices, rather
than their contracted version; that is, we maintain the property that x(k) =

∑
v∈V α

(k)
v [(1− δ(k))v+ δ(k)u0].

As Vδ changes when δ changes, we need to update the barycentric representation of x(k) accordingly – this is
done in step 11 with the following equation. Suppose that we decrease δ to δ′. Then the old coordinates α can
be updated to new coordinates α′ for the new contraction polytope as follows:

α′v = αv
1− δ
1− δ′ for v ∈ V \ {u0},

α′u0
= 1−

∑
v 6=u0

α′v.
(6)

This ensures that
∑
v αvv(δ) =

∑
v α
′
vv(δ′), where v(δ) := (1− δ)v + δu0, and that the coordinates form a

valid convex combination (assuming that δ′ ≤ δ), as can be readily verified.

Algorithm 4: Optimizing f over D using Fully Corrective Frank-Wolfe (FCFW) with Adaptive-δ Algorithm.

1: FCFW(x(0),V, ε, δ(init))
2: Inputs: Set of atoms V so that D = conv(V), active set S(0), starting point
x(0) =

∑
v∈S(0) α

(0)
v [(1− δ(init))v + δ(init)u0] where α(0) are the active coordinates, δ(init) ≤ 1

4
describes the initial contraction of the polytope, stopping criterion ε, u0 is a fixed reference point in the
relative interior of D.

3: Let V (0) := S(0) (optionally, a bigger V (0) could be passed as argument for a warm start),
δ(−1) := δ(init)

4: for k = 0 . . .K do
5: Let s(k) ∈ arg min

v∈V

〈
∇f(x(k)),v

〉
(the FW vertex)

6: Compute g(x(k)) = 〈−∇f(x(k)), s(k) − x(k)〉 (FW gap)
7: if g(x(k)) ≤ ε then
8: return x(k)

9: end if
10: Let δ(k) be δ(k−1) updated according to Algorithm 1.
11: Update α(k) accordingly (using (6))
12: Let s(k)(δ) := (1− δ(k))s(k) + δ(k)u0

13: Let dFW
k := s

(k)

(δ) − x
(k)

14: Line-search: γk ∈ arg min
γ∈[0,1]

f
(
x(k) + γdFW

k

)
15: Set x(temp) := x(k) + γkd

FW
k (initialize correction to the update after a FW step with line search)

16: α(temp) = (1− γk)α(k)

17: α
(temp)

s(k)
← α

(temp)

s(k)
+ γk (update coordinates according to the FW step)

18: Update (non-contracted) correction polytope: V (k+1) := V (k) ∪ {s(k)}
19: Let Vδ = (1− δ(k))V (k+1) + δ(k)u0 (contracted correction polytope)
20: x(k+1), α(k+1) := MFW(x(temp),α(temp), Vδ, ε) (approximate correction step on Vδ using MFW)
21: end for

C Bounding the Sub-optimality for Fixed δ Variant

The pseudocode for optimizing over Dδ for a fixed δ is given in Algorithm 4 (by ignoring the step 10 which
updates δ). It is stated with a stopping criterion ε, but it can alternatively be run for a fixed number of K
iterations. The following theorem bounds the suboptimality of the iterates with respect to the true optimum
x∗ over D. If one can compute the constants in the theorem, one can choose a target contraction amount δ
to guarantee a specific suboptimality of ε′; otherwise, one can choose δ using heuristics. Note that unlike the
adaptive-δ variant, this algorithm does not converge to the true solution as K → ∞ unless x∗ happens to
belong to Dδ . But the error can be controlled by choosing δ small enough.

Theorem C.1 (Suboptimality bound for fixed-δ algorithm). Let f satisfy the properties in Problem 3.2 and
suppose its gradient is Lipschitz continuous on the contractions Dδ as in Property 3.3. Suppose further that f
is finite on the boundary of D.

Then f is uniformly continuous on D and has a modulus of continuity function ω quantifying its level of
continuity, i.e. |f(x)− f(x′)|≤ ω(‖x− x′‖) ∀x,x′ ∈ D, with ω(σ) ↓ 0 as σ ↓ 0.

12



D�

D

u0

x(k)

x⇤
(�)

x̃(�)

x⇤

Figure 3: Illustration of the four points considered for the error analysis of the fixed-δ variant

Let x∗ be an optimal point of f over D. The iterates x(k) ∈ Dδ of the FCFW algorithm as described in
Algorithm 4 for a fixed δ > 0 has sub-optimality over D bounded as:

f(x(k))− f(x∗) ≤ 2Cδ
(k + 2)

+ ω (δ diam(D)) , (7)

where Cδ ≤ diam(Dδ)2Lδ . Note that different norms can be used in the definition of ω(·) and Cδ .

Proof. Let x∗(δ) be an optimal point of f over Dδ . As f has a Lipschitz continuous gradient over Dδ , we can
use any standard convergence result of the Frank-Wolfe algorithm to bound the suboptimality of the iterate
x(k) over Dδ . Algorithm 4 (with a fixed δ) describes the FCFW algorithm which guarantees at least as much
progress as the standard FW algorithm (by step 15 and 20a), and thus we can use the convergence result
from Jaggi (2013) as already stated in (4): f(x(k)) − f(x∗(δ)) ≤

2Cδ
(k+2)

with Cδ ≤ diam(Dδ)2Lδ , where Lδ
comes from Property 3.3. This gives the first term in (7). Note that if the function f is strongly convex, then the
FCFW algorithm has also a linear convergence rate (Lacoste-Julien and Jaggi, 2015), though we do not cover
this here.

We now need to bound the difference f(x∗(δ)) − f(x∗) coming from the fact that we are not optimizing over
the full domain, and giving the second term in (7). We let x̃(δ) be the contraction of x∗ on Dδ towards u0,
i.e. x̃(δ) := (1 − δ)x∗ + δu0.5 Note that ‖x̃(δ) − x∗‖= δ‖x∗ − u0‖≤ δ diam(D), and thus can be made
arbitrarily small by letting δ ↓ 0. Because x̃(δ) ∈ Dδ , we have that f(x̃(δ)) ≥ f(x∗(δ)) as x∗(δ) is optimal
over Dδ . Thus f(x∗(δ))− f(x∗) ≤ f(x̃(δ))− f(x∗) ≤ ω(‖x̃(δ) − x∗‖) by the uniform continuity of f (that
we explain below). Since ω is an increasing function, we have ω(‖x̃(δ) − x∗‖) ≤ ω(δ diam(D)), giving us
the control on the second term of (7). See Figure 3 for an illustration of the four points considered in this proof.

Finally, we explain why f is uniformly continuous. As f is a (lower semi-continuous) convex function, it is
continuous at every point where it is finite. As f is said to be finite at its boundary (and it is obviously finite in
the relative interior of D as it is continuously differentiable there), then f is continuous over the whole of D.
As D is compact, this means that f is also uniformly continuous over D.

We note that the modulus of continuity function ω quantifies the level of continuity of f . For a Lipschitz
continuous function, we have ω(σ) ≤ Lσ. If instead we have ω(σ) ≤ Cσα for some α ∈ [0, 1], then f is
actually α-Hölder continuous. We will see in Section E.2 that the TRW objective is not Lipschitz continuous,
but it is α-Hölder continuous for any α < 1, and so is “almost” Lipschitz continuous. From the theorem,
we see that to get an accuracy of the order ε, we would need (δ diam(D))α < ε, and thus a contraction of
δ < ε(1/α)

diam(D)
.

5Note that without a strong convexity assumption on f , the optimum over Dδ , x∗(δ), could be quite far from
the optimum over D, x∗, which is why we need to construct this alternative close point to x∗.
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D Convergence with Adaptive-δ

In this section, we show the convergence of the adaptive-δ FW algorithm to optimize a function f satisfying
the properties in Problem 3.2 and Property 3.3 (Lipschitz gradient over Dδ with bounded growth).

The adaptive update for δ (given in Algorithm 1) can be used with the standard Frank-Wolfe optimization
algorithm or also the fully corrective Frank-Wolfe (FCFW) variant. In FCFW, we ensure that every update
makes more progress than a standard FW step with line-search, and thus we will show the convergence result in
this section for standard FW (which also applies to FCFW). We describe the FCFW variant with approximate
correction steps in Algorithm 4, as this is what we used in our experiments.

We first list a few definitions and lemmas that will be used for the main convergence convergence result given
in Theorem D.6. We begin with the definitions of duality gaps that we use throughout this section. The Frank-
Wolfe gap is our primary criterion for halting and measuring the progress of the optimization over D. The
uniform gap is a measure of the decrease obtainable from moving towards the uniform distribution.

Definition D.1. We define the following gaps:

1. The Frank-Wolfe (FW) gap is defined as: g(x(k)) := 〈−∇f(x(k)), s(k) − x(k)〉.

2. The uniform gap is defined as: gu(x(k)) := 〈−∇f(x(k)),u0 − x(k)〉.

3. The FW gap over Dδ is: g(δ(k))(x
(k)) := 〈−∇f(x(k)), s

(k)

(δ) − x
(k)〉.

The name for the uniform gap comes from the fact that the FW gap over Dδ can be expressed as a convex
combination of the FW gap over D and the uniform gap:

g(δ(k))(x
(k)) = 〈−∇f(x(k)), (1− δ(k))s(k) + δ(k)u0 − x(k)〉

= (1− δ(k))g(x(k)) + δ(k)gu(x(k)). (8)

The uniform gap represents the negative directional derivative of f at x(k) in the direction u0 − x(k). When
the uniform gap is negative (thus f is increasing when moving towards u0 from x(k)), then the contraction is
hurting progress, which explains the type of adaptive update for δ given by Algorithm 1 where we consider
shrinking δ in this case. This enables us to crucially relate the FW gap over Dδ with the one over D, as given
in the following lemma, using the assumption that δ(init) ≤ 1

4
.

Lemma D.2 (Gaps relationship). For iterates progressing as in Algorithm 4 with adaptive update on δ as given

in Algorithm 1, the gap over Dδ and D are related as : g(δ(k))(x
(k)) ≥ g(x(k))

2
.

Proof. The duality gaps g(x(k)) and g(δ(k))(x
(k)) computed as defined in (D.1) during Algorithm 4 are related

by equation (8).

We analyze two cases separately:

(1) When gu(x(k)) ≥ 0, for δ(init) ≤ 1
4

, we have g(δ(k))(x
(k)) ≥ 3

4
g(x(k)) as δ(k) ≤ δ(init).

(2) When gu(x(k)) < 0, from the update rule in lines 5 to 7 in Algorithm 1, we have δ(k) ≤ g(x(k))

−4gu(x(k))
=⇒

δ(k)gu(x(k)) ≥ − g(x
(k))
4

. Therefore, g(δ(k))(x
(k)) ≥ 3

4
g(x(k))− g(x(k))

4
= g(x(k))

2
.

Therefore, the gap over Dδ and D are related as : g(δ(k))(x
(k)) ≥ g(x(k))

2
.

Another property that we will use in the convergence proof is that −gu is upper bounded for any convex
function f :6

Lemma D.3 (Bounded negative uniform gap). Let f be a continuously differentiable convex function on the
relative interior of D. Then for any fixed u0 in the relative interior of D, ∃B s.t.

∀x ∈ D, −gu(x) = 〈∇f(x),u0 − x〉 ≤ B. (9)

In particular, we can take the finite value:

B := ‖∇f(u0)‖∗diam‖·‖(D) (10)

6Note that on the other hand, gu(x) might go to infinity as x gets close to the boundary ofD as the gradient
of f is allowed to be unbounded. Fortunately, we only need an upper bound on −gu, not a lower bound.
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Proof. As f is convex, its directional derivative is a monotone increasing function in any direction. Let u0 and
x be points in the relative interior of D; then their gradient exists and we have by the monotonicity property:

〈∇f(u0)−∇f(x),u0 − x〉 ≥ 0

=⇒ 〈∇f(u0),u0 − x〉 ≥ 〈∇f(x),u0 − x〉 .

This inequality is valid for all x in the relative interior of D, and can be extended to the boundary by taking
limits (with potentially the RHS become minus infinity, but this is not a problem). Finally, by the definition
of the dual norm (generalized Cauchy-Schwartz), we have 〈∇f(u0),u0 − x〉 ≤ ‖∇f(u0)‖∗‖u0 − x‖≤
‖∇f(u0)‖∗diam‖·‖(D).

Finally, we need a last property of Algorithm 4 that allows us to bound the amount of perturbation δ(k) of the
polytope at every iteration as a function of the sub-optimality over D.

Lemma D.4 (Lower bound on perturbation). Let B be a bound such that −8gu(x) ≤ B for all x ∈ D (given
by Lemma D.3). Then at every stage of Algorithm 4, we have that:

δ(init) ≥ δ(k) ≥ min

{
hk
B
, δ(init)

}
,

where δ(init) is the initial value of δ and hk := f(x(k))− f(x∗) is the sub-optimality of the iterate.

Proof. When defining δ(k) in step 10 of Algorithm 4, we either preserve the value of δ(k−1) or if we update it,
then by the lines 6 and 7 of Algorithm 1, we have δ(k) ≥ δ̃

2
= 1

2
g(x(k))

−4gu(x(k))
≥ g(x(k))

B
(by using gu(x(k)) < 0

in this case). Since g(x(k)) ≥ hk (the FW gap always upper bounds the suboptimality), we conclude δ(k) ≥
min{hk

B
, δ(k−1)}. Unrolling this recurrence, we thus get:

δ(k) ≥ min

{
min

0≤l≤k

hl
B
, δ(init)

}
= min

{
hk
B
, δ(init)

}
.

For the last equality, we used the fact that hk is non-increasing since Algorithm 4 decreases the objective at
every iteration (using the line-search in step 14).

We now bound the generalization of a standard recurrence that will arise in the proof of convergence. This is a
generalization of the technique used in Teo et al. (2007) (also used in the context of Frank-Wolfe in the proof
of Theorem C.4 in Lacoste-Julien et al. (2013)). The basic idea is that one can bound a recurrence inequality
by the solution to a differential equation. We provide a detailed proof of the bound for completeness here.

Lemma D.5 (Recurrence inequality solution). Let 1 < a ≤ b. Suppose that hk is any non-negative sequence
that satisfies the recurrence inequality:

hk+1 ≤ hk −
1

bC0
(hk)a with initial condition ha−1

0 ≤ C0.

Then hk is strictly decreasing (unless it equals zero) and can be bounded for k ≥ 0 as:

hk ≤
(

C0

(a−1
b

)k + 1

) 1
a−1

Proof. Taking the continuous time analog of the recurrence inequality, we consider the differential equation:

dh

dt
=
−ha

bC0
with initial condition h(0) = C

1
a−1
0 .
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Solving it:

dh

dt
=
−ha

bC0

=⇒
∫

dh

ha
=

∫
−dt

bC0

=⇒
[
−h1−a

a− 1

]h(t)
h(0)

= − t− 0

bC0

( Using the initial conditions:)

=⇒ −1

h(t)a−1
+

1

C0
=
−t(a− 1)

bC0

=⇒ 1

h(t)a−1
=

(
(
a− 1

b
)t+ 1

)
1

C0

=⇒ h(t) =

(
C0

(a−1
b

)t+ 1

) 1
a−1

.

We now denote the solution to the differential equation as h̃(t). Note that it is a strictly decreasing convex

function (which could also be directly implied from the differential equation as: d2h
dt2

= −a h
a−1

bC0︸ ︷︷ ︸
>0

h′(t)︸︷︷︸
<0

> 0 ).

Our strategy will be to show by induction that if hk ≤ h̃(k), then hk+1 ≤ h̃(k + 1). This allows us to bound
the recurrence by the solution to the differential equation.

Assume that hk ≤ h̃(k). The base case is h0 ≤ h̃(0) = C
1
a−1
0 , which is true by the initial condition on h0.

Consider the utility function l(h) := h − ha

bC0
which is maximized at h̄ :=

(
bC0
a

) 1
a−1 . This function can

be verified to be strictly concave for a > 1 and therefore is increasing for h ≤ h̄. Note that the recurrence

inequality can be written as hk+1 ≤ l(hk). Since h̃ is decreasing and that h̃(0)) = C
1
a−1
0 ≤

(
bC0
a

) 1
a−1 = h̄

(the last inequality holds since b ≥ a), we have h̃(t) ≤ h̄ for all t ≥ 0, and so h̃(t) is always in the monotone
increasing region of l.

From the induction hypothesis and the monotonicity of l, we thus get that l(hk) ≤ l(h̃(k)).

Now the convexity of h̃(t) gives us h̃(k+1) ≥ h̃(k)+h̃′(k) = h̃(k)− h̃(k)a

bC0
= l(h̃(k)). Combining these two

facts with the recurrence inequality hk+1 ≤ l(hk), we get: hk+1 ≤ l(hk) ≤ l(h̃(k)) ≤ h̃(k + 1), completing
the induction step and the main part of the proof.

Finally, whenever hk > 0, we have that hk+1 < hk from the recurrence inequality, and so hk is strictly
decreasing as claimed.

Given these elements, we are now ready to state the main convergence result for Algorithm 4. The convergence
rate goes through three stages with increasingly slower rate. The level of suboptimality hk determines the
stage. We first give the high level intuition behind these stages. Recall that by Lemma D.4, hk lower bounds
the amount of perturbation δ(k), and thus when hk is big, the function f is well-behaved by Property 3.3. In
the first stage, the suboptimality is bigger than some target constant (which implies that the FW gap is big),
yielding a geometric rate of decrease of error (as is standard for FW with line-search in the first few steps). In
the second stage, the suboptimality is in an intermediate regime: it is smaller than the target constant, but big
enough compared to the initial δinit so that f is still well-behaved onDδ(k) . We get there the usualO(1/k) rate

as in standard FW. Finally, in the third stage, we get the slower O(k
− 1
p+1 ) rate where the growth in O(δ−p) of

the Lipschitz constant of f over Dδ comes into play.
Theorem D.6 (Global convergence for adaptive-δ variant over D). Consider the optimization of f satisfying
the properties in Problem 3.2 and Property 3.3. Let C̃ := Ldiam‖·‖(D)2, where L is from Property 3.3.
Let B be the upper bound on the negative uniform gap: −8gu(x) ≤ B for all x ∈ D, as used in Lemma D.4
(arising from Lemma D.3). Then the iterates x(k) obtained by running the Frank-Wolfe updates over Dδ with
line-search with δ updated according to Algorithm 1 (or as summarized in a FCFW variant in Algorithm 4),
have suboptimality hk upper bounded as:

1. hk ≤
(
1
2

)k
h0 + C̃

δ
p
0

for k such that hk ≥ max{Bδ0, 2C̃
δ
p
0
},
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2. hk ≤ 2C̃
δ
p
0

[
1

1
4
(k−k0)+1

]
for k such that Bδ0 ≤ hk ≤ 2C̃

δ
p
0

,

3. hk ≤
[

max(C̃,Bδ
p+1
0 )Bp

p+1
max(8,p+2)

(k−k1)+1

] 1
p+1

= O(k
− 1
p+1 ) for k such that hk ≤ Bδ0,

where δ0 = δ(init), h0 is the initial suboptimality, and k0 and k1 are the number of steps to reach stage 2 and 3

respectively which are bounded as: k0 ≤ max(0, dlog 1
2

C̃
h0δ

p
0
e), k0 ≤ k1 ≤ k0 + max

(
0, d 8C̃

Bδ
p+1
0

e − 4

)
.

Proof. Let xγ := x(k) + γdFW
k with dFW

k defined in step 12 in Algorithm 4. Note that xγ ∈ Dδ with δ = δ(k)

for all γ ∈ [0, 1]. We apply the Descent Lemma A.1 on this update to get:

f(xγ) ≤ f(x(k)) + γ〈∇f(x(k)),dFW
k 〉+ γ2L‖dFW

k ‖2

2 (δ(k))
p ∀γ ∈ [0, 1].

We have L‖dFW
k ‖2≤ C̃ by assumption and 〈∇f(x(k)),dFW

k 〉 = −g(δ)(x(k)) by definition. Moreover, x(k+1)

is defined to make at least as much progress than the line-search result minγ∈[0,1] f(xγ) (line 14 and 15), and
so we have:

f(x(k+1)) ≤ f(x(k))− γg(δ)(x(k)) + γ2 C̃

2 (δ(k))
p ∀γ ∈ [0, 1]

≤ f(x(k))− γ

2
g(x(k)) + γ2 C̃

2 (δ(k))
p ∀γ ∈ [0, 1].

For the final inequality, we used Lemma D.2 which relates the gap over Dδ to the gap over D.

Subtracting f(x∗) from both sides and using g(x(k)) ≥ hk by convexity, we get:

hk+1 ≤ hk −
γhk

2
+

γ2C̃

2 (δ(k))
p .

Now, using Lemma D.4, we have that δ(k) ≥ min(hk
B
, δ(init)):

hk+1 ≤ hk − γ
hk
2

+
γ2

2

C̃(
min(hk

B
, δ(init))

)p ∀γ ∈ [0, 1]. (11)

We refer to (11) as the master inequality. Since we no longer have a dependance on δ(k), we refer to δ(init) as
δ0. We now follow a similar form of analysis as in the proof of Theorem C.4 in Lacoste-Julien et al. (2013). To
solve this and bound the suboptimality, we consider three stages:

1. Stage 1: The min in the denominator is δ0 and hk is big: hk ≥ max{Bδ0, 2C̃
δ
p
0
}.

2. Stage 2: The min in the denominator is δ0 and hk is small: Bδ0 ≤ hk ≤ 2C̃
δ
p
0

.

3. Stage 3: The min in the denominator is hk
B

, i.e.: hk ≤ Bδ0.

Since hk is decreasing, once we leave a stage, we no longer re-enter it. The overall strategy for each stage is as
follows. For each recurrence that we get, we select a γ∗ that realizes the tightest upper bound on it.

Since we are restricted that γ∗ ∈ [0, 1], we have to consider when γ∗ > 1 and γ∗ ≤ 1. For the former, we
bound the recurrence obtained by substituting γ = 1 into (11). For the latter, we substitute the form of γ∗ into
the recurrence and bound the result.

Stage 1

We consider the case where hk ≥ Bδ0. This yields:

hk+1 ≤ hk −
γhk

2
+

γ2C̃

2 (δ0)p
(12)
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The bound is minimized by setting γ∗ =
hkδ

p
0

2C̃
. On the other hand, the bound is only valid for γ ∈ [0, 1],

and thus if γ∗ > 1, i.e. hk > 2C̃
δ
p
0

(stage 1), then γ = 1 will yield the minimum feasible value for the bound.

Unrolling the recursion (12) for γ = 1 during this stage (where hl > 2C̃
δ
p
0

for l < k as hk is decreasing), we
get:

hk+1 ≤
hk
2

+
C̃

2δp0

≤ 1

2

(
hk−1

2
+

C̃

2δp0

)
+

C̃

2δp0

≤
(

1

2

)k+1

h0 +
C̃

2δp0

k∑
l=0

(
1

2

)l
︸ ︷︷ ︸
≤
∑∞
l=0( 1

2 )l=2

thus hk ≤
(

1

2

)k
h0 +

C̃

δp0
, (13)

giving the bound for the iterates in the first stage.

We can compute an upper bound on the number of steps it takes to reach a suboptimality of 2C̃
δ
p
0

by look-

ing at the minimum k which ensures that the bound in (13) becomes smaller than 2C̃
δ
p
0

, yielding kmax =

max(0, dlog 1
2

C̃
h0δ

p
0
e). Therefore, let k0 ≤ kmax be the first k such that hk ≤ 2C̃

δ
p
0

.

Stage 2

For this case analysis, we refer to k as being the iterations after k0 steps have elapsed. I.e. if knew := k − k0,
then we refer to knew as k moving forward.

In stage 2, we suppose that Bδ0 ≤ hk ≤ 2C̃
δ
p
0

. This means that γ∗ =
hkδ

p
0

2C̃
≤ 1.

Substituting γ = γ∗ into (12) yields: hk+1 ≤ hk − h2
k
δ
p
0

8C̃
.

Using the result of Lemma D.5 with a = 2, b = 4 and C0 = 2C̃
δ
p
0

, we get the bound:

hk ≤
2C̃
δ
p
0

k−k0
4

+ 1
.

It is worthwhile to point out at this juncture that the bound obtained for stage 2 is the same as the one for regular
Frank-Wolfe, but with a factor of 4 worse due to the factor of 1

2
in front of the FW gap which appeared due to

Lemma D.2.

Stage 3

Here, we suppose hk ≤ Bδ0. We can compute a bound on the number of steps k1 needed get to stage 3 by
looking at the number of steps it takes for the bound in stage 2 to becomes less than Bδ0:

2C̃

δp0

[
4

k1 − k0 + 4

]
≤ Bδ0[

1

k1 − k0 + 4

]
≤ Bδp+1

0

8C̃

k1 ≥ k0 + d 8C̃

Bδp+1
0

e − 4.

As before, moving forward, our notation on k represents the number of steps taken after k1 steps.
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Then, the master inequality (11) becomes:

hk+1 ≤ hk −
γ

2
hk +

γ2C̃Bp

2hpk
.

To simplify the rest of the analysis, we replace C̃Bp with F := max(Bδp+1
0 , C̃)Bp. We then get the bound:

hk+1 ≤ hk −
γ

2
hk +

γ2F

2hk
, (14)

which is minimized by setting γ∗ :=
h
p+1
k
2F

. Since F ≥ Bp+1δp+1
0 (by construction) and hp+1

k ≤ (Bδ0)p+1

(by the condition to be in stage 3), we necessarily have that γ∗ ≤ 1. We chose the value of F to avoid having
to consider the possibility γ∗ > 1 as we did in the distinction between stage 1 and stage 2.

Hence, substituting γ = γ∗ in (14), we get:

hk+1 ≤ hk −
hp+2
k

8F
.

Using the result of Lemma D.5 with a = p+ 2, b = max(8, p+ 2) and C0 = F , we get the bound:

hk ≤

[
max(C̃, Bδp+1

0 )Bp

p+1
max(8,p+2)

(k − k1) + 1

] 1
p+1

= O(k
− 1
p+1 ),

concluding the proof.

Interestingly, the obtained rate of O(1/
√
k) for p = 1 (for the TRW objective e.g.) is the standard rate that one

would get for the optimization of a general non-smooth convex function with the projected subgradient method
(and it is even a lower bound for some class of first-order methods; see e.g. Section 3.2 in Nesterov (2004)).
The fact that our function f does not have Lipschitz continuous gradient on the whole domain brings us back
to the realm of non-smooth optimization. It is an open question whether Algorithm 4 has an optimal rate for
the class of functions defined in the assumptions of Theorem D.6.

E Properties of the TRW Objective

In this section, we explicitly compute bounds for the constants appearing in the convergence statements for our
fixed-δ and adaptive-δ algorithms for the optimization problem given by:

min
~µ∈M

−TRW(~µ; ~θ,ρ).

In particular, we compute the Lipschitz constant for its gradient overMδ (Property 3.3), we give a form for
its modulus of continuity function ω(·) (used in Theorem 3.4), and we compute B, the upper bound on the
negative uniform gap (as used in Lemma D.3).

E.1 Property 3.3 : Controlled Growth of Lipschitz Constant overMδ

We first motivate our choice of norm overM. Recall that ~µ can be decomposed into |V |+|E| blocks, with
one pseudo-marginal vector µi ∈ ∆VALi for each node i ∈ V , and one vector µij ∈ ∆VALiVALj per edge
{i, j} ∈ E, where ∆d is the probability simplex over d values. We let c be the cliques in the graph (either
nodes or edges). From its definition in (2), f(~µ) := −TRW(~µ; ~θ,ρ) decomposes as a separable sum of
functions of each block only:

f(~µ) := −TRW(~µ; ~θ,ρ) = −
∑
c

(KcH(µc) + 〈θc,µc〉) =:
∑
c

gc(µc), (15)

where Kc is (1−
∑
j∈N (i) ρij) if c = i and ρij if c = {i, j}. The function gc also decomposes as a separable

sum:
gc(µc) :=

∑
xc

Kcµc(xc) log(µc(xc))− θc(xc)µc(xc) =:
∑
xc

gc,xc(µc(xc)). (16)

As M is included in a product of probability simplices, we will use the natural `∞/`1 block-norm, i.e.
‖~µ‖∞,1:= maxc‖µc‖1. The diameter ofM in this norm is particularly small: diam‖·‖∞,1(M) ≤ 2. The dual
norm of the `∞/`1 block-norm is the `1/`∞ block-norm, which is what we will need to measure the Lipschitz
constant of the gradient (because of the dual norm pairing requirement from the Descent Lemma A.1).
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Lemma E.1. Consider the `∞/`1 norm on M and its dual norm `1/`∞ to measure the gradient. Then
∇TRW(~µ; ~θ,ρ) is Lipschitz continuous overMδ with respect to these norms with Lipschitz constant Lδ ≤ L

δ
with:

L ≤ 4|V |max
ij∈E

(VALiVALj). (17)

Proof. We first consider one scalar component of the separable gc(µc) function given in (16) (i.e. for one
µc(xc) coordinate). Its derivative is Kc(1 + log(µc(xc))− θc(xc) with second derivative Kc

µc(xc)
. If ~µ ∈Mδ ,

then we have µc(xc) ≥ δu0(xc) = δ
nc

, where nc is the number of possible values that the assignment variable
xc can take. Thus for ~µ ∈ Mδ , we have that the xc-component of gc is Lipschitz continuous with constant
|Kc|nc/δ. We thus have:

‖∇gc(µc)−∇gc(µ′c)‖∞ = max
xc
|g′c,xc(µ(xc))− g′c,xc(µ

′(xc))|

≤ |Kc|nc
δ
‖µc − µ′c‖∞≤

|Kc|nc
δ
‖µc − µ′c‖1.

Considering now the `1-sum over blocks, we have:

‖∇f(~µ)−∇f(~µ′)‖1,∞ =
∑
c

‖∇gc(µc)−∇gc(µ′c)‖∞

≤
∑
c

Kcnc
δ
‖µc − µ′c‖1≤

1

δ

(∑
c

Kcnc

)
‖~µ− ~µ′‖∞,1.

The Lipschitz constant is thus indeed L
δ

with L :=
∑
c|Kc|nc. Let us first consider the sum for c ∈ V ; we

have Ki = 1−
∑
j∈N (i) ρij . Thus:∑

i

|Ki| ≤ |V |+
∑
i

∑
j∈N (i)

ρij

= |V |+2
∑
ij∈E

ρij = |V |+2(|V |−1) ≤ 3|V |.

Here we used the fact that ρij came from the marginal probability of edges of spanning trees (and so with
|V |−1 edges). Similarly, we have

∑
ij∈E |Kij |≤ |V |. Combining these we get:

L =
∑
c

|Kc|nc ≤ (max
c
nc)
∑
c

|Kc|≤ max
ij∈E

VALiVALj4|V |. (18)

Remark 1. The important quantity in the convergence of Frank-Wolfe type algorithms is C̃ = Ldiam(M)2.
We are free to take any dual norm pairs to compute this quantity, but some norms are better aligned with the
problem than others. Our choice of norm in Lemma E.1 gives C̃ ≤ 16|V |k2 where k is the maximum number
of possible values a random variable can take. It is interesting that |E| does not appear in the constant. If instead
we had used the `2/`1 block-norm onM, we get that diam`2/`1(M)2 = 4(|V |+|E|), while the constant L
with dual norm `2/`∞ would be instead maxc|Kc|nc which is bigger than maxc nc = k2, thus giving a worse
bound.

E.2 Modulus of Continuity Function

We begin by computing a modulus of continuity function for −x log x with an additive linear term.

Lemma E.2. Let g(x) := −Kx log x+ θx. Consider x, x′ ∈ [0, 1] such that |x− x′|≤ σ, then:

|g(x′)− g(x)|≤ σ|θ|+2σ|K|max{− log(2σ), 1} =: ωg(σ). (19)

Proof. Without loss of generality assume x′ > x, then we have two cases:

Case i. If x > σ, then we have that the Lipschitz constant of g(x) is Lσ = |θ|+|K||(1 + log σ)| (obtained
by taking the supremum of its derivative). Therefore, we have that |g(x′)− g(x)|≤ Lσσ. Note that Lσσ → 0
when σ → 0 even if Lσ →∞, since Lσ grows logarithmically.

Case ii. If x ≤ σ, then x′ ≤ x+ σ ≤ 2σ. Therefore:

|g(x′)− g(x)|≤ |K||x log x− x′ log x′|+|θ||x′ − x|. (20)
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Now, we have that −x log x is non-negative for x ∈ [0, 1]. Furthermore, we have that −x log x is increas-
ing when x < exp(−1) and decreasing afterwards. First suppose that 2σ ≤ exp(−1); then −x′ log x′ ≥
−x log x ≥ 0 which implies:

|x log x− x′ log x′|≤ −x′ log x′ ≤ −2σ log(2σ).

In the case 2σ > exp(−1), then we have:

|x log x− x′ log x′|≤ max
y∈[0,1]

{−y log y} = exp(−1) ≤ 2σ.

Combining these two possibilities, we get:

|x log x− x′ log x′|≤ 2σmax{− log(2σ), 1}.

The inequality (20) thus becomes:

|g(x′)− g(x)|≤ |K|2σmax{− log(2σ), 1}+ |θ|σ,

which is what we wanted to prove.

For small σ, the dominant term of the function ωg(σ) in Lemma E.2 is of the formC ·−σ log σ for a constantC.
If we require that this be smaller than some small ξ > 0, then we can choose an approximate σ by solving for
x in−Ax log x = ξ yielding x = exp(W−1

ξ
A

) where W−1 is the negative branch of the Lambert W-function.
This is almost linear and yields approximately x = O(ξ) for small ξ. In fact, we have that ωg(σ) ≤ C′σα for
any α < 1, and thus g is “almost” Lipschitz continuous.

Lemma E.3. The following function is a modulus of continuity function for the TRW(~µ; ~θ,ρ) objective over
M with respect to the `∞ norm:

ω(σ) := σ‖θ‖1+2σK̃ max{− log(2σ), 1}, (21)

where K̃ := 4|V |maxij∈E VALiVALj .

That is, for ~µ, ~µ′ ∈M with ‖~µ′ − ~µ‖∞≤ σ, we have:

|TRW(~µ; ~θ,ρ)− TRW(~µ′; ~θ,ρ)|≤ ω(σ).

Proof. TRW(~µ; ~θ,ρ) can be decomposed into functions of the form −Kx log x+ θx (see (15) and (16)) and
so we apply the Lemma E.2 element-wise. Let c index the clique component in the marginal vector.

|TRW(~µ; ~θ,ρ)− TRW(~µ′; ~θ,ρ)| =
∑
c

∑
xc

|gc,xc(µc(xc))− gc,xc(µ
′
c(xc))|

(Using Lemma E.2 and ‖~µ′ − ~µ‖∞≤ σ)

≤
∑
c

∑
xc

(|Kc|2σmax{− log(2σ), 1}+ |θ(xc)|σ)

= 2σmax{− log(2σ), 1}
∑
c

|Kc|nc + ‖θ‖1σ,

where we recall nc is the number of values that xc can take. By re-using the bound on
∑
c|Kc|nc from (18),

we get the result.

E.3 Bounded Negative Uniform Gap

Lemma E.4 (Bound for the negative uniform gap of TRW objective). For the negative TRW objective f(~µ) :=

−TRW(~µ; ~θ,ρ), the bound B on the negative uniform gap as given in Lemma D.3 for u0 being the uniform
distribution can be taken as:

B = 2
∑
c

max
xc
|θc(xc)|=: 2‖~θ‖1,∞ (22)

Proof. From Lemma D.3, we want to bound ‖∇f(u0)‖∗= ‖~θ +∇~µH(u0;ρ))‖∗. The clique entropy terms
H(µc) are maximized by the uniform distribution, and thus u0 is a stationary point of the TRW entropy
function with zero gradient. We can thus simply take B = ‖~θ‖∗diam‖·‖(M). By taking the `∞/`1 norm on
M, we get a diameter of 2, giving the given bound.
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E.4 Summary

We now give the details of suboptimality guarantees for our suggested algorithm to optimize f(~µ) :=

−TRW(~µ; ~θ,ρ) over M. The (strong) convexity of the negative TRW objective is shown in (Wainwright
et al., 2005; London et al., 2015). M is the convex hull of a finite number of vectors representing assignments
to random variables and therefore a compact convex set. The entropy function is continously differentiable on
the relative interior of the probability simplex, and thus the TRW objective has the same property on the relative
interior ofM. Thus −TRW(~µ; ~θ,ρ) satisfies the properties laid out in Problem 3.2.

Lemma E.5 (Suboptimality bound for optimizing −TRW(~µ; ~θ,ρ) with the fixed-δ algorithm). For the opti-
mization of −TRW(~µ; ~θ,ρ) overMδ with δ ∈ (0, 1], the suboptimality is bounded as:

TRW(~µ∗; ~θ,ρ)− TRW(~µ(k); ~θ,ρ) ≤ 2Cδ
(k + 2)

+ ω (2δ) , (23)

with ~µ∗ the optimizer of TRW(~µ; ~θ,ρ) in M, where Cδ ≤ 16
|V |max(ij)∈E VALiVALj

δ
, and ω(σ) =

σ‖~θ‖1+2σK̃ max{− log(2σ), 1}, where K̃ := 4|V |maxij∈E VALiVALj .

Proof. Using diam‖·‖∞,1(M) ≤ 2, and Lδ from Lemma E.1, we can compute Cδ ≤ diam(M)2Lδ . Lemma
E.3 computes the modulus of continuity ω(σ). The rate then follows directly from Theorem C.1.

Lemma E.6 (Global convergence rate for optimizing −TRW(~µ; ~θ,ρ) with the adaptive-δ algorithm). Con-
sider the optimization of −TRW(~µ; ~θ,ρ) overM with the optimum given by ~µ∗. The iterates ~µ(k) obtained
by running the Frank-Wolfe updates overMδ using line-search with δ updated according to Algorithm 1 (or as
summarized in a FCFW variant in Algorithm 4), have suboptimality hk = TRW(~µ∗; ~θ,ρ)− TRW(~µ(k); ~θ,ρ)
upper bounded as:

1. hk ≤
(
1
2

)k
h0 + C̃

δ0
for k such that hk ≥ max{Bδ0, 2C̃

δ0
},

2. hk ≤ 2C̃
δ0

[
1

1
4
(k−k0)+1

]
for k such that Bδ0 ≤ hk ≤ 2C̃

δ0
,

3. hk ≤
[
max(C̃,Bδ20)B

1
4
(k−k1)+1

] 1
2

= O(k−
1
2 ) for k such that hk ≤ Bδ0,

where

• δ0 = δ(init) ≤ 1
4

• C̃ := 16|V |max(ij)∈E(VALiVALj)

• B = 16‖~θ‖1,∞

• h0 is the initial suboptimality

• k0 and k1 are the number of steps to reach stage 2 and 3 respectively which are bounded as:
k0 ≤ max(0, dlog 1

2

C̃
h0δ0
e) k0 ≤ k1 ≤ k0 + max

(
0, d 8C̃

Bδ20
e − 4

)

Proof. Using diam‖·‖∞,1(M) ≤ 2, we bound C̃ ≤ Ldiam‖·‖∞,1(M)2 with L (from Property 3.3) derived
in Lemma E.1. We bound −8gu(~µ(k)) (the upper bound on the negative uniform gap) using the value derived
in Lemma E.4. The rate then follows directly from Theorem D.6 using p = 1 (see Lemma E.1 where Lδ ≤
L
δ

).

The dominant term in Lemma E.6 is C̃B k−
1
2 , with C̃B = O(‖~θ‖1,∞|V |). We thus find that both bounds

depend on norms of ~θ. This is unsurprising since large potentials drive the solution of the marginal inference
problem away from the centre ofM, corresponding to regions of high entropy, and towards the boundary of
the polytope (lower entropy). Regions of low entropy correspond to smaller components of the marginal vector,
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which in turn result in larger and poorly behaved gradients of−TRW(~µ; ~θ,ρ), which slows down the resulting
optimization.

F Correction and Local Search Steps in Algorithm 2

Algorithm 5 details the CORRECTION procedure used in line 16 of Algorithm 2 to implement the correction
step of the FCFW algorithm. It uses the modified Frank-Wolfe algorithm (FW with away steps), as detailed in
Algorithm 3. Algorithm 6 depicts the LOCALSEARCH procedure used in line 17 of Algorithm 2. The local
search is performing FW overMδ for a fixed δ using the iterated conditional mode algorithm as an approximate
FW oracle. This enables the finding in a cheap of way of more vertices to augment the correction polytope V .

Algorithm 5: Re-Optimizing over correction polytope V using MFW, f is the negative TRW objective

1: CORRECTION(x(0), V, δ,ρ)

2: Let f(·) := -TRW(·; ~θ,ρ); we use MFW to optimize over the contracted correction polytope conv(Vδ)
where Vδ := (1− δ)V + δu0.

3: Let ε be the desired accuracy of the approximate correction.
4: Let α(0) be such that x(0) =

∑
v∈Vδ

α
(0)
v v.

5: x(new) ← MFW(x(0),α(0), Vδ, ε) (see Algorithm 3)
6: return x(new)

Algorithm 6: Local Search using Iterated Conditional Modes, f is the negative TRW objective

1: LOCALSEARCH(x(0),vinit, δ,ρ)

2: s(0) ← vinit
3: V ← ∅
4: for k = 0 . . .MAXITS do
5: θ̃ = ∇f(x(k); ~θ,ρ)

6: s(k+1) ←ICM(−θ̃, s(k)) (Approximate FW search using ICM;
we initialize ICM at previously found vertex s(k))

7: s
(k+1)

(δ) ← (1− δ)s(k+1) + δu0

8: V ← V ∪ {s(k+1)}
9: d

(k)

(δ) ← s
(k+1)

(δ) − x(k)

10: Line-search: γk ∈ arg min
γ∈[0,1]

f
(
x(k) + γd

(k)

(δ)

)
11: Update x(k+1) := x(k) + γkd

(k)

(δ) (FW update)
12: end for
13: return x(k+1), V

G Comparison to perturbAndMAP

Perturb & MAP. We compared the performance between our method and perturb & MAP for inference on
10 node Synthetic cliques. We expand on the method we used to evaluate perturbAndMAP in Figure 1(e)
and 1(f). We re-implemented the algorithm to estimate the partition function in Python (as described in Hazan
and Jaakkola (2012), Section 4.1) and used toulbar2 (Allouche et al., 2010) to perform MAP inference over an
inflated graph where every variable maps to five new variables. The log partition function is estimated as the
mean energy of 10 exact MAP calls on the expanded graph where the single node potentials are perturbed by
draws from the Gumbel distribution. To extract marginals, we fix the value of a variable to every assignment,
estimate the log partition function of the conditioned graph and compute beliefs based on averaging the results
of adding the unary potentials to the conditioned values of the log partition function.

H Correction Steps for Frank-Wolfe overM
Recall that the correction step is done over the correction polytope, the set of all vertices ofM encountered thus
far in the algorithm. On experiments conducted overM, we found that using a better correction algorithm often
hurt performance. This potentially arises in other constrained optimization problems where the gradients are
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Figure 4: Chinese Characters : Additional Experiments. TRBP (opt) denotes our implementation of
tightening over T using a wrapper over libDAI (Mooij, 2010)

unbounded at the boundaries of the polytope. We found that better correction steps over the correction polytope
(the convex hull of the vertices explored by the MAP solver, denoted V in Algorithm 2), often resulted in a
solution at or near a boundary of the marginal polytope (shared with the correction polytope). This resulted
in the iterates becoming too small. We know that the Hessian of TRW(~µ; ~θ,ρ) is ill conditioned near the
boundaries of the marginal polytope. Therefore, we hypothesize that this is because the gradient directions
obtained when the iterates became too small are simply less informative. Consequently, the optimization over
M suffered. We found that the duality gap over M would often increase after a correction step when this
phenomenon occurred. The variant of our algorithm based on Mδ is less sensitive to this issue since the
restriction of the polytope bounds the smallest marginal and therefore also controls the quality of the gradients
obtained.

I Additional Experiments

For experiments on the 10 node synthetic cliques, we can also track the average number of ILP calls required
to converge to a fixed duality gap for any θ. This is depicted in Figure 5(c). Optimizing over T realized three
to four times as many MAP calls as the first iteration of inference.

Figure 4 depicts additional examples from the Chinese Characters test set. Here, we also visualize results from
a wrapper around TRBPs implementation in libDAI (Mooij, 2010) that performs tightening over T. Here too
we find few gains over optimizing over L.

Figure 5(a), 5(b) depicts the comparison of convergence of algorithm variants overM andMδ (same setup as
Figure 1(a), 1(b). Here, we plot ζµ.
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(c) Average ILP calls versus θ: 10 node
clique

Figure 5: Figure 5(a), 5(b) depict ζµ corresponding to the experimental setup in Figure 1(a), 1(b)
respectively. Figure 5(c) explores the average number of ILP calls taken to convergence with and
without optimizing over ρ

J Bounding logZ with Approximate MAP Solvers

Suppose that we use an approximate MAP solver for line 7 of Algorithm 2. We show in this section that if the
solver returns an upper bound on the value of the MAP assignment (as do branch-and-cut solvers for integer
linear programs), we can use this to get an upper bound on logZ. For notational consistency, we consider using
Algorithm 2 for minx∈D f(x), where f(x) = −TRW(~µ; ~θ,ρ) is convex, x = ~µ, and D =M.

The property that the duality gap may be used as a certificate of optimality (Jaggi, 2013) gives us:

f(x∗) ≥ f(x(k))− g(x(k)) =⇒ −f(x∗) ≤ −f(x(k)) + g(x(k)). (24)
Adding the gap onto the TRW objective yields an upper bound on the optimum (which from Equation 1 is
an upper bound on logZ), i.e. logZ ≤ −f(x∗). From our definition of the duality gap g(x(k)) (line 8 in
Algorithm 2) and (24), we have:

logZ ≤ −f(x∗) ≤ −f(x(k)) +
〈
−∇f(x(k)), s(k) − x(k)

〉
= −f(x(k)) +

〈
−∇f(x(k)), s(k)

〉
︸ ︷︷ ︸

MAP call

−
〈
−∇f(x(k)),x(k)

〉
︸ ︷︷ ︸

Can be computed efficiently

,

where s(k) = arg minv∈D

〈
∇f(x(k)),v

〉
= arg maxv∈D

〈
−∇f(x(k)),v

〉
(line 7 in Algorithm 2). Thus,

if the approximate MAP solver returns an upper bound κ such that maxv∈D
〈
−∇f(x(k)),v

〉
≤ κ, then we

get the following upper bound on the log-partition function:

logZ ≤ −f(x(k)) + κ−
〈
−∇f(x(k)),x(k)

〉
. (25)

For example, we could use a linear programming relaxation or a message-passing algorithm based on dual
decomposition such as Sontag et al. (2008) to obtain the upper bound κ. There is a subtle but important point to
note about this approach. Despite the fact that we may use a relaxation ofM such as L or the cycle relaxation to
compute the upper bound, we evaluate it at ~µ(k) that is guaranteed to be withinM. This should be contrasted
to instead optimizing over a relaxation such as L directly with Algorithm 2. In the latter setting, the moment
we move towards a fractional vertex (in line 14) we would immediately take ~µ(k+1) out ofM. Because of this
difference, we expect that this approach will typically result in significantly tighter upper bounds on logZ.
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