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Abstract

We propose a new way to answer probabilis-
tic queries that span multiple datapoints. We
formalize reasoning about the similarity of dif-
ferent datapoints as the evaluation of the Bayes
Factor within a hierarchical deep generative
model that enforces a separation between the
latent variables used for representation learning
and those used for reasoning. Under this model,
we derive an intuitive estimator for the Bayes
Factor that represents similarity as the amount
of overlap in representation space shared by dif-
ferent points. The estimator we derive relies on
a query-conditional latent reasoning network,
that parameterizes a distribution over the latent
space of the deep generative model. The latent
reasoning network is trained to amortize the
posterior-predictive distribution under a hierar-
chical model using supervised data and a max-
margin learning algorithm. We explore how the
model may be used to focus the data variations
captured in the latent space of the deep genera-
tive model and how this may be used to build
new algorithms for few-shot learning.

1 INTRODUCTION

How do we frame the problem of selecting, from a tar-
get set, an object most similar to a given query set? For
example—given a red chair, a blue chair and a black chair,
we would rank chairs in the target set highly. At the same
time, given a red chair, a red car and a red shirt, we would
rank red objects highly. Between the two tasks, our under-
standing of the data has not changed; what has changed is
our understanding of the fask based on the context given
by the query. The query highlights the relevant property
of the data that is needed for solving a specific task. Such
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Figure 1: Comparing objects in representational space: On
the left is a target set that will be ranked based on similarity to
the query @ (right). The colour of each object is matched to a
distribution in representation space. In orange is the output of the
latent reasoning network — it represents the common factor of
variation shared by Q. The black chair should rank higher than
the black table; here its distribution (in representation space)
overlaps more with the output of the latent reasoning network.

tasks appear in few-shot learning, where the goal is rank-
ing objects according to their similarity to a given query
set and in healthcare where a task may be finding similar
patients to a given cohort.

To answer such queries, we could train discriminative
models attuned to answering set-conditional queries at
test time (e.g. |Vinyals et al. |(2016)). Or we could en-
code class separability in the structure of a generative
model (Edwards & Storkey} |2017) and use inference for
prediction. We take a different approach to the problem.

We learn a generic representation space (using unsuper-
vised data) that is warped (using supervised data) for po-
tentially different test-time problems. The task of scoring
objects given a query is decomposed into two subtasks.
The first determines the common property shared by items
in the query set and represents the property as a region
in representation space. In Figure |1} we visualize such



a hypothetical space. On the right is a query comprising
chairs of different colors and (in orange) a region of space
that characterizes the property (in this case, a likeness to
a chair) common to items in the query. The second task
is to score a target item based on how much it expresses
the region of representation space shared by items in the
query. For the two candidate target points in Figure [I]
(left), the black chair would rank rank highly since its
representation has more in common with the property
encapsulated by the query.

Here, we will use the latent space of deep generative mod-
els (Rezende er al. | |2014; Kingma & Welling, 2014) as
our representation space. In such models, one can do
posterior inference to map from raw data to a distribution
in latent space. Then, to find commonalities among query
items, we introduce a latent reasoning network (LRN).
The LRN takes a query as input and constructs a proba-
bility distribution over the latent space that summarizes
the representations of the query points into a single dis-
tribution. Figure [T] (orange) depicts what the output of
the LRN might look like. We design a neural architecture
for the LRN based on [Zaheer et al. | (2017) so that it does
not dependent on the size of the query set. To score the
latent space of a target item, we propose using the log-
arithm of the Bayes Factor (Jeffreys| [1998). The Bayes
Factor measures how conditioning on the query alters the
likelihood of a target point. Our approach is inspired by
Bayesian Sets |(Ghahramani & Heller| (2005) where data
was assumed to be modeled by a hierarchical exponential
family distribution and the likelihood ratio of the joint
distribution and product of marginals was shown to be a
useful measure of similarity.

The latent (representation) space of a deep generative
models learned with unsupervised data is typically non-
identifiable. i.e. there will exist multiple good (from the
perspective of log-likelihood) representation spaces. Each
corresponds to a different notion of similarity and a dif-
ferent way of grouping points. However, queries provide
extra information: they reveal which points should be
close together in latent space. We take advantage of this
and propose a supervised max-margin learning algorithm
for the LRN such that scores given to items in the query
are larger than scores unrelated to the query.

We obtain a coupled set of models: in which one model
is a deep generative model of the data whilst the other
reshapes the latent space of the first and serves to answer
queries about similarity judgements between datapoints.
We study how the proposed approach can tune the latent
space of deep generative models and be used to build
new types of models for few-shot learning. We begin in
Section 2| by motivating the Bayes Factor as a viable tool
for computing similarity.
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Figure 2: Hypothesis testing with Deep Generative Models:
(a) The Reasoning Model, here, depicting the hypothesis that
the set {z:, @ = {x1, z2}} was generated jointly; (b) the two
figures represent the hypothesis that z; and Q were generated
independently under different realizations of w (the random
variable that captures the property shared across datapoints).

2 FROM REPRESENTATION
LEARNING TO REASONING

Here, we consider the problem of scoring elements in
a set based on how similar they are to a given query.
Suppose we are given a dataset D = {x1,...,2n}, T; €
R™, x; € D. Thenforaquery Q = {z1,...,20}; |Q| =
@, we wish to assign to each x; € D a score(x;, Q) that
denotes how similar x; is to elements of the query Q.

2.1 The Data Model

A simple way to quantify how similar objects are (here,
between Q and z;) might be to take the pairwise Euclidian
distance between them. For complex, high dimensional
data that do not lie on a Euclidian manifold, such a metric
may fail to capture interesting regularity between data.

Alternatively, we can use a latent variable model to con-
struct a representation of data. The latent variable then
becomes a low-dimensional sufficient statistic the raw
data when quantifying similarity. The simplest latent
variable model we will consider has the following gener-
ative process: z ~ Pam(2); © ~ pam(z; f(z;0)) where
Pam(7) is a simple distribution such as (0, I). The use
of MLPs in the conditional distributions allow the model
to fit highly complex data despite the use of a simple
prior. When f is parameterized by a Multi-Layer Per-
ceptron (MLP), the resulting model is a deep generative
model. We will refer to this model (Kingma & Welling],
2014; Rezende et al. |, [2014) as the Data Model (with
probabilities denoted with subscript gm ).

The generative process assumes datapoints are drawn
independently. Using variational inference with an infer-
ence network (Hinton ez al. |, [1995)) to approximate the
posterior distribution, pym(2]2), the model can be learned
by maximizing a lower bound on the log-likelihood of the



data obtained using Jensen’s inequality:

log pam(z;60) > E
dam (2]2;0)

— KL( gam(2|; ¢)||pam(2) ) = L(x; 6, ),

(log pam(|2;0))] 1)

With a Gaussian distribution as the variational ap-
proximation: gam(z|z;¢) ~ N (pg(x),Xg(x)) where
te(x), Ly () are (diferentiable, parameteric, with param-
eters ¢) functions of the observation x. Eq. [I]is differen-
tiable in 6, ¢ (Kingma & Welling, [2014} |Rezende et al. |
2014) and the model parameters (8, ¢) can be learned via
gradient ascent on L(x; 0, ¢).

With the variational approximation, gam(z|2; ¢), to map
from data to latent space, would computing overlap in
the posterior distributions of points in Q and x; suffice to
identify similar points? The answer is sometimes. While
unsupervised learning will tend to put similar points to-
gether, the notion of similarity encoded in the latent space
need not correspond to the notion of similarity required
for a task at test time. We require a way to guide the
structure of the latent space to be better suited for a task.

2.2 The Reasoning Model

Introducing hierarchy into the generative process is one
way to guide the structure of latent variables. In Fig-
ure [Z] (b) is a simple hierarchical model that makes
explicit the insight that similar datapoints should have
similar latent spaces. It defines the following genera-
tive process for a set of similar objects Q: pim(Q) =
fw fz Prm (W) Hqul Prm (24| W)Prm (24|24). The random
variable w defines the context of Q. It may denote the
label or class identity of points in Q@ but more broadly is
a representation of the properties that points in Q satisfy.
For notational convenience and because we can express
reasoning about similarity as a probabilistic query in this
model, we refer to it as the Reasoning Model.

The Neural Statistician (Edwards & Storkeyl 2017) uses
KL(p(w|z¢)||p(w]Q)) to quantify the similarity between
x; and @ in a model similar to the one in Figure E] (b). In
this work, we pose the estimation of similarity between
objects as hypothesis testing in a hierarchical deep gener-
ative model. The conditional independences in Figure 2]
(b) enforce that z; is independent of w given 2z, i.e. the
per-data-point latent variables serve as a sufficient statis-
tic to quantify comparisons between multiple datapoints.
The conditional density p(z|z;) is a map from the rep-
resentation space to the data while p(z:|w) dictates how
the latent space of a datapoint behaves as a function of
property encoded in w.

2.3 Bayes Factor

To score the similarity between two objects (in this case
x; and set Q) under the Reasoning Model, we turn to
the likelihood ratio between the joint distribution of x
and Q and the product of their marginals. If z; and Q
are drawn from the same joint distribution, then there
exists a random variable w that governs the distribution
of the latent spaces z, z1,...,2¢. With slight abuse
of notation El, Figure |2 (a) depicts this scenario when
Q = {x1,22}. If 2; and Q are not similar, then their
latent spaces will have different distributions, and they
are children of different realizations of w (see Figure
(b)). With that in mind, the score function we use to
measure similarity is given by (Bayes Factor):

Pz, Q) _ p(z|Q)
p(z)p(Q) p(x)

= score(x¢, Q) 2)

The log-score is the pointwise mutual information (Fano,
1949), a measure of association that is frequently used in
applications such as natural language processing (Church
& Hanks|, |1990). The Bayes Factor normalizes the pos-
terior predictive density of the target point conditioned
on the query by the target’s marginal likelihood under the
model. It also has an information theoretic interpretation.
Letting h(z) = —logp(z) denote the self-information
(or surprisal), then log score(xy, Q) = h(x;) — h(x|Q)
intuitively denotes the surprise (quantified in nats or bits)
from observing x; when having already observed Q.

Similarity in Latent Space: Equation [2| captures an
intuitive notion of similarity but evaluating p(x), the
marginal density of the target, is typically intractable
(except in hierarchical models that lie in the exponential
family (Ghahramani & Heller, 2005))). Furthermore, an
importance sampling based Monte-Carlo estimator for
p(z) will involve a high-dimensional integral in the data
x;. We therefore propose the following decomposition of
the score function that evaluates the Bayes Factor in the
target datapoint’s (lower dimensional) latent space:
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'We re-use Figure [2[to denote both the instantiation of a
hypothesis and the generative process



The estimator above formalizes the intuition for compar-
ing points laid out in Section [I] The query-conditional
posterior-predictive density over the latent space of the
target datapoint, pym(z:|Q), reasons about points in the
query and represents them as a density in latent space, The
Relative Posterior Likelihood, p'}'g"r(mzi(tzlg’f) scores how
likely the target point is to have come from the relevant
part of latent space.

3 HIERARCHICAL MODELS WITH
COMPOUND PRIORS

To compute the ratio p’};"(zi(*zltx)"), we need to marginalize w;.

However, under certain assumptions about the conditional
distributions in the Reasoning Model, we will see that
approximating this ratio becomes simpler.

Assumption 1. Priors with Compound Distributions

/ Prm (W) Prm (2|w)dw = pam(z)
Assumption 2. Matching conditional likelihoods

Prm(7|2) = pam(|2)

Lemma 1. Matching posterior marginals
Pam (2|2) = prm (2|2)
Proof. Follows from Bayes rule and Assumption [T} 2]
O
Lemma 2. Matching marginal likelihoods
Under Assumption [l and 2}
Ddm (33) = Prm (l’)

Proof.

Prm(7) = /w/Zprm(w)prm(Z\w)prm(z|z)]dzdw

/ Pam(2)pam(]2)d= = pam(2)

z

O

The conditions above state when we can take an instance
of the Data Model discussed in Section[2.1]and transform
it into an instance of the Reasoning Model in Section[2.2]
while preserving the marginal likelihood of the data.

This transformation has a few implications. The first is
when evaluating the Bayes Factor; if we work in a class
of Reasoning Models that satisfy Assumption (1| then
we can evaluate the Relative Posterior Likelihood using

the prior and posterior distribution of the associated Data
Model. With Lemma|[I]and Assumption [T}

)= [

where pam(z:¢) is typically fixed ahead of time (e.g.
N(0;1)) and we can do inference for pam(2¢|z:¢) (or ap-
proximate it using the inference network qam(z|z; ¢)).

Dam (2¢|+)

pdm(Zt) prm(zt | Q)

Latent Reasoning Network

Relative Posterior Likelihood

The second implication is that part of the Reasoning
Model, pym(z|z), can be learned ahead of time. This
gives us the flexibility to warm-start the Reasoning
Model using a pre-trained Data Model whose pam(z)
can be expressed according to Assumption[I} In this way,
even if we do not know which property will be used to or-
ganize datapoints into sets at test time, we can still learn a
generic low-dimensional representation of the dataset. We
will make use of this when we discuss the learning frame-
work in Section[5] For now, what remains is how we can
Specify prm(w), prm(z|w) in order to evaluate pym(2¢|Q).

4 LATENT REASONING NETWORKS

Although pem (2¢|Q) = [, Prm(2¢|w), Pem (w] Q) dw, find-
ing prm(w), prm(z|w) that satisfy Assumption [I| may
prove challenging and so we will make use of another
computational trick. To evaluate the Bayes Factor we only
need a way to sample from pym(2:|Q) i.e. the posterior
predictive distribution given the query, of the target’s la-
tent representation. Our strategy therefore, will instead be
to parameterize and learn pyy (2¢| Q) directly from data.

Without pym (w), prm (z|w), we lose the ability to sample
from the Reasoning Model but by amortizing pym(2:|Q)
we obtain a fast way to evaluate the Bayes Factor at test
time. prm(2¢| Q) must reason about how the latent spaces
of points in Q are related and parameterize a distribu-
tion over the latent space of the target datapoint x;; this
distribution must characterize the property represented
by points in Q. Therefore, we refer to this amortizated,
parameteric posterior-predictive distribution as a Latent
Reasoning Network. Since we do not know the functional
form of this distribution we will parameterize it as a non-
linear function of the query Q.

To construct the LRN, we require neural architectures
capable of operating over sets. We make use of two prim-
itives for such neural architectures proposed by [Zaheer
et al. | (2017). These functions operate over sets of vectors
Q= {z1,...,20}, 4 € R". We will use the notation
R™*1€9l to denote a set of size | Q| where each element is
an n-dimensional vector. We design the LRN, with the
following three properties:



L1~ q(z1]z1)
L2~ q(22|r2)

3+ q(23|w3)
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Figure 3: Latent Reasoning Networks (LRN) and Loss function: On the left is a diagrammatic representation of pm(2¢|Q).
On the right is a depiction of Monte-Carlo sampling (with samples from the LRN) to evaluate Bayes factor. z; is a point similar to
those in the query Q = {x1, 2, 3}, while x, is not. We suppress subscripts in the figure.

A] Parameter Sharing: We share parameters between
the inference network of the Data Model and the LRN.
A direct consequence of this choice is that the LRN now
has the ability to change the way inference is done in the
Data model. The first stage of the LRN uses the inference
network of the Data Model to map from the set Q to a set
of each point’s variational parameters

B] Exchangeability: The output of the LRN must not
depend on the order of elements in Q. We achieve this
by using the functions proposed by (Zaheer et al. |,[2017):
g : RmxIQl 5 R™xI9l is a permutation equivariant
function that maps from sets of n dimensional vectors
to sets of m dimensional vectors while ensuring that if
the input elements were permuted, then the output ele-
ments would also be permuted identically. The form of g

is given by ¢(Q) = [p (Wleqacq + W (2, xq/))} lQll
q=
where Wi € R™*" W31 € R™*" and p is an element-
wise nonlinearity. We use compositions of the function
g in the second stage of the LRN to learn about how the
variational parameters between points in Q relate to one-
another and map to a set of intermediate representations.

C] Distributions in latent space: The network must
parameterize a valid density in latent space; this is sat-
isfied by construction. To go from the set of interme-
diate representations to the parameters of p(z;|Q), we
leverage the following permutation invariant function:

1Q) = p(Z,Wmay+1)), f : RIS R™

where W™ € R™*" € R™ are linear operators and p
is an elementwise non-linearity.

With  u(Q;7,¢),2(Q;v,¢) as parameteric func-
tions of set Q, we can write pym(2t|Q;7y,0) =
N (u(Q;v,¢),2(Q;, ¢)). v denotes the parameters of
the permutation equivariant and invariant layers while
¢ represent the parameters shared with gam(z|z; ¢). We
visualize the LRN in Figure

S LEARNING

The learning procedure we use is based on a combination
of doing unsupervised learning to learn a good represen-
tation alongside a supervised max-margin loss to ground
the representation for a specific task. We discuss each
separately and then highlight how they are combined.

Unsupervised Learning: Since we use Reasoning
Models that satisfy Assumption [I] 2] we make use of
the transformation between the Data Model and Reason-
ing Model in Section[3] We maximize the likelihood of
a given dataset using the lower-bound in Equation[I} A
consequence of doing variational learning of the Data
Model is that we can use gam(z|x; ¢) to approximate the
Bayes Factor.

Max-Margin Learning: We expect that the Bayes Fac-
tor in Equation [3]takes a high value when the target point
x4 1 similar to Q and a low value when x; is dissimilar to
Q. But how do we know what points form Q? This will
depend on the test-time task. We assume we are given
labels that define the property encompassed in sets of
datapoints.

Assumption 3. For L datapoints in D, we have ) =
{Yzys- s Yzp b Y1 € {1,..., K} where y,, is the label
for z; that takes one of K unique labels. We define N % =
{z, s.t. Yz, € YV & Yzy, = yan}, Ng% = {xy s.t. Yz, €
Y & yu, # ya, } to be sets of datapoints that have the
same label as x; and those that do not.

We will assume that a point can only have a single label.
Here, the labels characterize the property we want to base
our similarity judgements on. Therefore, learn the param-
eters of p(2¢|Q;~, ¢) using the following (supervised)
loss function:

Emm(x§ e ¢) = ]EQ~N§]EQ"SNN%

1
o Z max (log score(x s, Q)
ne Tns€Qns

— log score(x, Q) + A, 0). 4



The loss function maximizes the difference between the
log-Bayes Factor for points that lie within the set Q and
those that do not (they lie in Q,,5). The log score(x, Q),
in Equation [3] is evaluated via Monte-Carlo sampling
and the log-sum-exp trick. The expectation is differen-
tiable with respect to -y, ¢ via the reparameterization trick
(Kingma & Welling, [2014; Rezende et al. ,2014)). For the
margin A we use the mean-squared-error between the the
posterior means of z, z,,;. We provide a visual depiction
of how the loss is evaluated using the LRN in Figure[3]

Combined Loss: With the unsupervised learning objec-
tive for the Data Model and the supervised max-margin
loss function (Equation |4)) for the LRN, we obtain the
following loss to jointly learn 6, ¢, y:

N
g o [L@ib,9)]+ Q)
C
C+1

[[z; € Y] Lmm(Ti;v, })

where C' is a regularization constant that trades off be-
tween the supervised and the unsupervised loss. The un-
supervised loss learns a representation space constrained
to lie close to the prior while explaining the data under the
generative model. The max-margin loss modifies this rep-
resentation space so that dissimilar points are kept apart.
Note that Equation [5]is no longer a valid bound on the
marginal likelihood of the training set (for C' > 0).

6 EVALUATION

The goal of this section is threefold: (1) to study whether
prm (2| Q)is learnable from data using the max-margin
learning objective—we expect this to be challenging since
we learn the parameters of a model that is itself used to
evaluate the the score function in the loss; (2) studying
the role of parameter sharing between the inference net-
work and the LRN — i.e. whether the latter can change
the former in adversarial scenarios; and (3) studying the
utility of the framework for few-shot learning.

We will release code in Keras (Chollet ef al. | 2015).
The supplementary material contains detailed informa-
tion on the neural architectures of the deep generative
models used in the evaluation. We learn parameters with
a learning rate of 0.00005 and adaptive momentum up-
dates given by ADAM (Kingma & Bal, 2015)). We set the
value C separately for each experiment. When there is a
task to be solved, C' can be set using the validation data.
When using a pre-trained Data Model, we found it useful
to anneal C' from a higher to a lower value so that the
task-specific supervised term can overcome (potentially)

suboptimal latent spaces learned from unsupervised data.
We use the following datasets for our study:

Synthetic Pinwheel: A synthetic dataset of two-
dimensional points arranged on a pinwheel taken from
the work of Johnson et al. | (2016). We depict the raw data
in Figure da] The dataset is created with five labels.

MNIST digits: 50000 black and white images of hand-
written digits (LeCun et al. |, [1998).

Minilmagenet: A subsampled set of images taken from
the Imagenet repository setup for the task of k-shot learn-
ing by Vinyals ef al. |(2016). We use the train-validate-test
split kindly provided by |Ravi & Larochelle|(2016).

6.1 Learning p(z|Q)

As a sanity check, we begin by first training a deep gener-
ative model (without labels and using a one-dimensional
latent space) on the Pinwheel dataset. We visualize the
raw-data and learned aggregate posterior ) gam(2|z; ¢)
in Figure fa| (top row). We see that the unsupervised
learning alone induces class separation in the aggregate
posterior distribution. Using the learned model, we hold
fixed parameters: 6, ¢ and learn the parameters -y of the
LRN using the loss function in [d] with C' = 2000. We
form a kernel density estimate of samples from pym (2|Q)
using randomly constructed sets of points derived from
the red and green clusters. In Figure fa] (bottom row), we
see that samples from the LRN correspond to regions of
the latent space associated with Q. On synthetic exam-
ples, the LRN finds regions of latent space corresponding
to points from a query Q.

6.2 Changing inductive biases at test-time

Previously, we worked with a model where the structure
of the latent space (as seen in the aggregate posterior dis-
tribution) formed during unsupervised learning co-incided
with how points were grouped into sets. Here, we study
what happens where the notion of which points are similar
changes at test time. We relabel the pinwheel dataset so
that the yellow and orange points form one class while
the green, red and blue form the other (see Figure Ab] top
left). This corresponds to an adversarial labelling of the
data since we use a deep generative model in which points
in the same class are far apart in the learned latent space.
If we keep 6, ¢ fixed then pym(2|Q) (Whose output is pa-
rameterized as a unimodal Gaussian distribution) cannot
capture the relevant subspace.

We have two choices here; we can either consider richer
parameterizations for pym (2| Q) that are capable of captur-
ing multi-modal structure in the latent space using tech-
niques proposed by (Rezende & Mohamed, [2015)), or we
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(a) Data and Aggregate Posterior: (Top Left)

Raw Pinwheel Data; (Top Right) Aggregate posterior
density of a learned (unconditional) deep generative
model coloured by class membership. (Bottom Row)
Sampling from prm (2| Q) where the colour denotes
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(b) Learning dynamics: (Top left) Visualization of
adversarially labelled data (relative to the learned
aggregate posterior in Figure [da] (top right)). The re-
maining plots are class coloured visualizations of the
aggregate posterior (during training) while allowing
the LRN to fine-tune the latent space of the DGM.

Figure 4: Qualitative Evaluation on Pinwheel Data

can instead allow the pym(z]Q) to change the underlying
latent space of the generative model by back-propagating
through the parameters of the inference network. Here,
we opt for the latter though the former is an avenue for
future work.

We minimize Equation [5] while annealing the constant C
from 1000 — 1 linearly through the course of training.
To gain insight into the learning dynamics of the LRN dur-
ing training, we visualize the aggregate posterior of the
generative model (via the fine-tuned inference network)
in Figure [4b] through the course of training. The role
of this adversarial scenario is to highlight two important
points (1) unsupervised learning is typically unidentifi-
able and may not learn a representation appropriate to all
tasks and (2) learning with the latent reasoning network
can overcome a suboptimal (relative to the task at hand)
representation and transform it to a more suitable one.

6.3 Modeling High Dimensional Data

Inducing diversity in latent space: Moving beyond low-
dimensional data, we study learning LRNs on MNIST
digits. We use a Data Model with a two-dimensional la-
tent space for this experiment. We begin by training the
model in a fully unsupervised manner and visualize the
learned latent space in the form of the aggregate posterior
(Figure [5a] [left]). Although there is some class separa-
bility, we find that the unsupervised learning algorithm
concentrates much of the probability mass together.

We re-learn the same model with the loss in Equation 3]
where C is set to 3000 (and annealed to 1). We again
visualize the new aggregate posterior distribution of the
Data Model in Figure [5a] (middle and right). When learn-
ing with Equation 3] the inference network uses more of
the latent space in the model because the max-margin loss
pushes points in different classes further apart.

Qualitative Analysis of MNIST digits: To validate our
method, we provide visualizations on the MNIST dataset.
We select a handful of labelled examples Q (Figure [5b}
left) and visualize both their posterior means and samples
from p(z|Q) (Figure[5b| middle). Then, for each sample
from pym(2]Q), we evaluate the fine-tuned pgm (z|z) and
visualize the images in Figure [5b| (right). We see that the
generative model fine-tuned with the learning algorithm
retains its ability to generate meaningful samples.

6.4 Few-shot learning with the Bayes Factor

The task of k-shot learning is to identify the class an
object came from given a single example from 5 other
classes (1-shot, 5-way). In the 5-shot, 5-way task. there
are b examples provided from each of the 5 potential
classes. We use an LRN with a deep-discriminative model
to obtain near state of the art performance in few-shot
learning on the Minilmagenet dataset.

Following (Bauer et al. || 2017), who show that discrimi-
native models alone form powerful baselines for this task
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(b) Test-time evaluation of LRN on MNIST: On the left are a set of query points Q drawn from the same class, in the middle, we
visualize samples from gam(z|z; ¢) for each of the points and pem(z|Q). On the right is the output of the fine-tuned conditional

density pam(z|2z) for samples drawn from pm (2] Q).

Figure 5: Qualitative Evaluation on MNIST

on this dataset, we pretrain an 18 layer Resnet (He ef al. |
2016) convolutional neural network to predict class labels

at training time. We use early stopping on a validation set
based on the nearest neighbor performance of the learned
embeddings (obtained from the final layer of the ResNet)
to identify the best model. Building a good generative
model of the images in Minilmagenet is difficult and so in-
stead, we use the fixed embeddings as a 256 dimensional
proxy for each image. We initialize gam (2|2; ¢) with the
pretrained Resnet and set up a deep generative model to
maximize the likelihood of the fixed embeddings (after
discriminative pre-training).

For this task, when comparing to the many different ap-
proaches proposed, it is challenging to control for both
the depth of the encoder that parameterizes the represen-
tation and the various algorithmic approach used to tackle
the problem using the representation. Therefore, our two
take-aways from Tablemare: (1) on the 1 shot and 5 shot
task, we outperform a strong nearest neighbors baseline
created using fixed (but learned) embeddings suggesting
that our algorithmic approach bears promise for this task
and (2) the method is competitive with other state of the
art approaches.

Table 1: Accuracy on the 5-way Minilmagenet task

MODEL 1-SHOT 5-SHOT

NEAREST NEIGHBOR 51.44+0.08 67.540.08

OURS [RESNET18 ENCODER] 53.54+0.08 68.8 £+0.08

MATCHING NETWORKS 46.6 60.0

(VINYALS et al. |, [2016)

MAML 48.7 63.1

(FINN et al. |, 2017)

PROTOTYPICAL NETS 49 4 68.2

(SNELL et al. | 2017)

METANETS 49.2 *
MUNKHDALAI & YU, [2017)

TCML 56.7 68.9

(MISHRA ef al. | [2018))

7 RELATED WORK

Max Margin Learning: Max margin parameter estima-
tion has been widely used in machine learning (e.g. in
structural SVMs (Yu & Joachims|,[2009) and in discrimi-
native Markov networks (Zhu & Xing, [2009)). (Li et al. |
2015) give a doubly stochastic subgradient algorithm for
regularized maximum likelihood estimation when dealing
with max-margin posterior constraints.




(Zaheer et al. | 2017) experiment with max-margin learn-
ing using a variant of the DeepSets model to predict a
scalar score conditioned on a set. While (Zaheer et al. |
2017)) cite the estimator in (Ghahramani & Heller, [2005)
as motivation for their model, they do not explicitly use,
parameterize, or differentiate through the Bayes Factor in
a generative model of data.

Inductive Transfer and Metric Learning: |Lake et al.
(2013) use probabilistic inference in a hierarchical model
to classify unseen examples by their probability of being
in a new class. Instead of the Bayes Factor, they use the
posterior predictive obtained via the use of a MCMC al-
gorithm to score target points relative to a query. (Ghahray
mani & Heller, 2005) evaluate the Bayes factor analyti-
cally in exponential family distributions. What we gain in
for sacrificing tractability is the ability to work within a
richer class of models. Though not motivated within the
context of a hierarchical model, (Engel ef al. | |2018)) use
an adversarial loss to recognize regions of latent space
that correspond to points with a specified class.

Vinyals et al. | (2016) learn a parametric K-nearest neigh-
bor classifiers to predict whether a target item is within
the same class as k-others. (Snell ez al. |, 2017) associate
a point with a prototype within a set and use it to answer
whether an object is in the same class as others. The Neu-
ral Statistician (Edwards & Storkey, [2017) learns a model
similar[|to the Reasoning Model in Figure 2] (b) by max-
imizing the likelihood of sets Q. Their method does not
use the Bayes Factor to score items; it also does not per-
mit easy initialization with pre-trained Data Models since
the full model is trained with queries.

We tune the latent space of a deep generative model to
enhance class separability for test time tasks. By contrast,
meta learning algorithms learn to tune the parameters of
an algorithm or a model. (Finn ef al. | |2017) prime the
parameters of a neural network to have high accuracy at
test time using second order gradient information.

Our work has close parallels with metric-learning; here
the metric learned lies in the latent space of a deep gener-
ative model. (Bar-Hillel et al. |, 2005) proposed Relevant
Component Analysis, an optimization problem that jointly
performs (linear) dimensionality reduction and learns a
Mahalanobis metric using queries.

8 DISCUSSION

We seek good, task-specific inductive biases to quantify
how similar a point is to a set. We give new theoretical
and practical constructs towards this goal. We break up

Their model does not enforce the conditional independence
statement z; || Oz

the problem into two parts: learn a good representation
and tune the learned representation for a specific notion
of similarity. Using the latent space in a deep generative
model as our representation, we use the Bayes Factor to
quantify similarity.

We derive conditions under which there exists an equiv-
alence between a generative model where data are gen-
erated independently to a hierarchical model that jointly
generates sets of (similar) points. Using this insight, we
derive an easy-to-evaluate estimator for the Bayes Factor;
the estimator poses the comparison between a point and a
set as overlap in latent space. With the Bayes Factor as a
differentiable scoring mechanism, we give a max-margin
learning algorithm capable of changing the inductive bias
of a (potentially pre-trained) deep generative model. To
evaluate the Bayes Factor, we propose a neural archi-
tecture for a latent reasoning network: a set conditional
density that amortizes the posterior predictive distribution
of a hierarchical model.

Our approach has limitations. By directly parameterizing
the posterior predictive density, and not the prior pym (w)
and conditional pym(z|w), we lose the ability to sample
points from the hierarchical generative model. Working
with a set of models in which Assumption |1/ holds may
implicitly only find posterior predictive densities under
relatively simple model families of pym(w) and pym (z|w).
Finally, enforcing that property identity in w is condition-
ally independent of the data z, given the representation z,
may make for a challenging learning problem — z has to
represent both the property and variability in the property
conditional distribution of the data.

An avenue of future work is leveraging vast amounts
of unlabeled data for representation learning informed
by a small amount of supervision to guide either during
learning, or after learning, the structured of the learned
space. Yet another interesting direction would be to learn
LRNs that parameterize distributions over multiple, per-
data-point latent variables.
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