
Mixture-of-experts VAEs can disregard variation in
surjective multimodal data

Jannik Wolff∗†
TU Berlin

Tassilo Klein, Moin Nabi
SAP AI Research

Rahul G. Krishnan‡
University of Toronto

Shinichi Nakajima
TU Berlin

Abstract

Machine learning systems are often deployed in domains that entail data from
multiple modalities, for example, phenotypic and genotypic characteristics describe
patients in healthcare. Previous works have developed multimodal variational
autoencoders (VAEs) that generate several modalities. We consider surjective
data, where single datapoints from one modality (such as class labels) describe
multiple datapoints from another modality (such as images). We theoretically and
empirically demonstrate that multimodal VAEs with a mixture of experts posterior
can struggle to capture variability in such surjective data.

1 Introduction
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Figure 1: Surjective data.
X1 and X2 depict exemplary
modalities. The mapping from
the second to the first modal-
ity is surjective.

Many datasets entail a surjective mapping between modalities (Fig. 1,
“one-to-many data”). That is, an instance from one modality may cor-
respond to several instances from another modality. For example,
many computer vision datasets contain labels, attributes, or text data
that describe sets of images [LeCun, 1998, Nilsback and Zisserman,
2008, Krizhevsky et al., 2009, Deng et al., 2009, Wah et al., 2011,
Liu et al., 2015, Xiao et al., 2017]. Note that “one-to-one data” such
as image/caption pairs can become surjective when using data aug-
mentation, e.g., random horizontal flipping of images. Incorporating
further modalities can also invoke surjectivity.

Multimodal VAEs maximize a bound on the joint density of several
modalities and can thereby learn to generate any modality from any
conditioning modality [Suzuki et al., 2016]. For some multimodal
VAEs, this bound contains a factor that represents the likelihood of one modality given another
modality. We will show that such a factor in the objective function can lead to solutions that disregard
heterogeneity within a modality. For example, we demonstrate that samples from models with a
mixture of experts posterior such as the MMVAE [Shi et al., 2019] can have a bias towards the class
mean of the observed datapoints for a given modality.

2 Method

LetX = {{x(n)
m }Mm=1}Nn=1 be a training set with several modalities, where m and n represent the

modality and the sample index, respectively. We consider a multimodal VAE with a generative model
g ∼ pθ(g),

xm ∼ pθ(xm|g) for m = 1, . . . ,M, (1)
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and an inference model

g ∼ qφ(g|{xm}Mm=1). (2)

Assume that the generative model (1) is a parametric model, e.g., Gaussian,

pθ(xm|g) = fm(xm|τm(g;θ)), (3)

with the parameters {τm}, e.g., means and covariances, defined as a function of g and (typically)
neural networks weights θ. Assume that the inference model (2) is defined as a finite mixture with
parameters κm indicating mean and covariance for mixture component rm (as in the MMVAE [Shi
et al., 2019], for example):

qφ(g|{xm}Mm=1) =
1

M

M∑
m=1

qφ(g|xm) =
1

M

M∑
m=1

rm(g|κm(xm;φ)).

Without loss of generality, we assume that xM is the label modality, and let Sc = {n | x(n)
M = c} be

the set of indices of the samples belonging to the label c ∈ {1, . . . , C}. We consider a maximization
problem given the following objective function:

Lm(θ,φ;X) ≡
N∑
n=1

∫
rM (g|κM (x

(n)
M ;φ)) log fm(x(n)

m |τm(g;θ))dg, (4)

which is an ELBO for

log p(xm|xM ) = log

∫
qφ(g|xM )pθ(xm|g)dg ≥

∫
qφ(g|xM ) log pθ(xm|g)dg = Lm(θ,φ;X).

Importantly, the MMVAE [Shi et al., 2019] relies on term (4) for learning data translation ability
from xM to xm. Specifically, the authors used stratified sampling for training4, which implies that
Eq. 4 and term 1 from Eq. 5 are related:

log pθ({xm}Mm=1) ≥
1

M

M∑
m=1

Eqφ(g|xm)

[
log

pθ(g, {xm}Mm=1)

qφ(g|{xm}Mm=1)

]
=

1

M

(
M−1∑
m=1

(
Eqφ(g|xm)

[
log

pθ(g, {xm}Mm=1)

qφ(g|{xm}Mm=1))

])
+ Eqφ(g|xM )

[
log

pθ(g)

qφ(g|{xm}Mm=1)

]
+

M∑
i=1

Eqφ(g|xM )

[
log pθ(xi|g)

]︸ ︷︷ ︸
1

) (5)

The following theorem holds:

Theorem 1. Assume a training set X = {x(n)
m }n∈Sc which belong to the same label, i.e., x(n)

M =

c,∀n ∈ Sc, and there exists θ̂ such that τm(g; θ̂) is a constant with respect to g and the maximum
likelihood estimator of the parametric model fm(xm|τm(g;θ)) for the training data. Then, for any
θ, φ, it holds that

Lm(θ̂,φ;X) ≥ Lm(θ,φ;X). (6)

(Proof) Since we assume that x(n)
M = c for all n ∈ Sc, the inferred distribution for g is the same

for all n, i.e., r̃M (g) = rM (g|κM (x
(n)
M ;φ)). For any such inference model r̃M (g), the objective is

4Moving Σm into the log in Eq. 5 would imply a tighter bound. However, the model may then weigh
the experts differently w.r.t. to their gradients, which can disproportionally favor the representation of single
modalities at the expense of learning structure across all modalities.
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Figure 2: Generated samples for the first modality. Left: using samples from p(g). Right: using
samples from q(g|x2), where x2 are class labels (yellow or green).

upper-bounded by

Lm(θ,φ;X) =

∫
r̃M (g;φ)

(
N∑
n=1

log fm(x(n)
m |τm(g;θ))

)
dg (7)

≤
∫

r̃M (g;φ)

(
N∑
n=1

log fm(x(n)
m |τ̂m)

)
dg

with the maximum likelihood estimator τ̂m for the parametric model fm given the training set
{x(n)

m }n=Sc . The assumed existence of θ̂ such that τm(g; θ̂) = τ̂m leads to Eq. (6). �

Intuitively, consider a single class: c ∈ {1}. Let pθ(xm|g) be Gaussian with diagonal covariance,
where g ∼ qφ(g|xM ). Theorem 1 implies the existence of an upper bound where the mean parameter
from pθ(xm|g) always coincides with the mean from {xnm}n∈Sc for any g. This solution is invariant
to g because xM does not carry information about across-datapoint variability in xm. In other
words, the solution maximizes the likelihood of the training data {x(n)

m }n=Sc with a single Gaussian
distribution. That is, the mean parameter minimizes the distance to all datapoints from modality m
simultaneously: the model captures the mean of the target distribution – not its variability.

3 Experiments

We create a synthetic dataset (inspired by Johnson et al. [2016]) with modality x1 ∈ R2 and label
modality x2 ∈ {0, 1}. We implement the MVAE [Wu and Goodman, 2018] and MMVAE [Shi et al.,
2019]. The latent distributions are isotropic Gaussian. The generative distributions are isotropic
Gaussian for the first modality and categorical for the second modality.

For the MMVAE, Fig. 2 supports our argument that samples for the first modality tend towards the
mean of the observed datapoints (for the same class). The MVAE does not suffer from this problem,
possibly because the MVAE’s objective function does not contain the factor p(x1|x2) (App. A).
App. B visualizes the latent spaces, which are two-dimensional to avoid possible obfuscation from
dimensionality-reduction techniques.

4 Conclusion

We show that multimodal VAEs with a mixture posterior can struggle to capture heterogeneity in
surjective data. This finding implies that practitioners should closely consider the type of data when
training such models: for example, data augmentation may not be beneficial since this procedure
often promotes surjectivity. Future work may investigate possible solutions, e.g., by considering
models that do not maximize p(xm|xM 6=m) explicitly. It would be interesting to analyze how such a
solution affects robustness.
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A Theorem 1 does not apply to the MVAE

The MVAE [Wu and Goodman, 2018] employs a product posterior inspired by the true posterior:

qφ(g|{xm}Mm=1) ∝ pθ(g)

M∏
m=1

qφ(g|xm). (8)

In our experiments from § 3, we follow Wu and Goodman [2018] and maximize the following three
ELBOs:

L(θ,φ;X) := ELBO(x1,x2) + ELBO(x1) + ELBO(x2) (9)

The ELBO for M modalities is defined as:

ELBO({xm}Mm=1) := Eqφ(g|{xm}Mm=1)

[
log

pθ(g)

qφ(g|{xm}Mm=1)

]
+

M∑
m=1

Eqφ(g|{xm}Mm=1)
[log pθ(xm|g)]

≤ log pθ({xm}Mm=1),
(10)

Therefore, pθ(xm|g) is always conditioned on xm via the importance distribution, i.e., the model
learns p(xm|{xi}Mi=1) or p(xm|xm). This implies that the MVAE does not explicitly optimize
p(xm 6=M |xM ) for any m 6= M , i.e., Theorem 1 does not apply to the MVAE.

B Additional experimental results

Figure 3: Marginal posteriors over the
latent variable g.

The solution q(g|x1) = q(g|x2) can be helpful because
it implies that samples from either posterior produce the
same generative distribution for any modality. Figure 3
indicates that the MVAE aligns these marginal posteri-
ors better than the MMVAE, which possibly explains the
MVAE’s better generative capability in Fig. 2. Figure 2
further exposes that even the MVAE struggles to represent
the data perfectly. Its latent representations from Fig. 3
reveal that the model produces some overlap between the
class manifolds of the marginal posteriors for the second
modality – possibly in an attempt to fit the isotropic Gaus-
sian prior p(g). We assume that this struggle is caused by
the fact that there are just two unique label datapoints.
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