CSC 148
Lecture 3

Dynamic Typing,
Scoping, and Namespaces

Recursion

Announcements

« Assignment 1 Deadline extended to Sunday
June 1, 13:00

- NO GRACE DAYS

Names vs. Values

A name (e.g. variable) is just a way of
identifying some object (value) that you want to
Keep track of

* For example, | may assign the value “Indiana
Jones” or “Star Trek” to the variable named
movie.

- movie IS the name of a variable

- “Indiana Jones” and “Star Trek” are the string
objects that can be assigned to the variable.

“Defining” Variables in Python

« Variables are never explicitly defined like in
other languages

« A variable is “created” when you first assign a
value to it

variable x does not yet exist

print /

print “nello world”
X=9

print x
X=7
variable x defined for the

first time

Dynamic Typing

» Python is a dynamically typed language
- “type checking” is done at runtime

* You don't have to declare the type of a variable
statically when you write your code.

- This is different from languages like Java, C, C++.

Python Variables and Dynamic
Typing

« Variables have no type information associated
with them

« But... if this is true, how does the following
“TypeError’ happen?

>>> X=5
>>> Yy = "hello"
>>> X +Y
Traceback (most recent call last):
File "<string>", line 1, in <string>
TypeError: unsupported operand type(s) for +: 'int' and 'str’

Python Variables and Dynamic
Typing

* Type information is associated with the object
stored in the variable.

variable (name) object (value)
references

LT

integer

references

2

string

Python Variables and Dynamic
Typing

 Whenever a variable appears in your code, it is

“replaced” by the object (value) that it is
referencing.

>>> X=5
>>> Yy = "hello"
>>> X + Y

\

When your program executes, Python sees
thisas 5 + “hello”

What's in a name?

« A variable is essentially a “name” (label,
identifier).

* You assign values to a variable (name) by
using assignment statements

- This is technically known as name binding. You
are binding an object value to a name

« Variables are not the only entities in Python that
have names. There's also:

- classes, methods, modules, functions

Functions

 The “def” statement is an executable statement.

« When it's executed, the name of the function is
bound to the function definition (i.e., the function
object)

def func():
do stuff here

Modules and Classes

“import” statements bind a module object to a
module name

“class” statements bind a class object to a class
name

erminology alert: do not to confuse “class
object” with an object that is an instance of
some class.

Hang on a second...

* If a class definition (or function definition, import
statement, etc) is an executable statement that
binds a name to an object, doesn't this mean
that | can put it anywhere in my code?

* Yes. Well... anywhere within reason. Your
program still has to be valid python.

« But this does mean you can put it in places you
might have not expected. (... especially if you're
used to a language like C or Java)

Hang on a second ...

 And can | treat class names (function names,
module names) just like variable names?

* Yes. These names (if bound) have objects that
they reference. You can access these objects
just like you can an object assigned to a

variable name.

Example

» Lets see an example in Wing!

Where else can names be bound?

« Function parameters in a function header
« for loop headers
« except clause headers

Namespaces

 How are names and their bindings kept track
of?

 Namespace: a mapping from names to objects

- think of it as a dictionary
- there can be different namespaces:

- e.g. “Jim is knowledgeable”, “Jim in Sales knows
nothing” -> local namespace vs. the namespace in
Sales

Scope

 How does Python distinguish between different
namespaces”?

» Scope: Technically, a “region” of the program
that has a distinct namespace.

« Sometimes we'll talk about the “scope of a
name”: A region of the program in which a
particular (name, object) binding “lives”.

« Every namespace belongs to a scope, and
every scope has a namespace.

- “Namespace” and “Scope” are sometimes used

Scopes in Python

» The scopes in python are as follows:

- the local scope (e.g. in a function call)

- enclosing scope (e.g., in an enclosing function)
- global scope (module scope)

- built-in scope

Name binding and Namespaces

 When a name is bound, what namespace will
the binding be stored in?

* If you're assigning a simple name, it is stored in
the namespace associated with the scope
where the assignment is made

- e.g. in a function call, it's associated with the
namespace for the local scope of the function

- If assigned at the module level, it's associated with
namespace for the global module scope

Modules and Namespaces

» The namespace of the current module resides
in the global scope.

« Terminology alert: “Global” doesn't mean that
it's global to everything. Global means global
to a module.

« The namespace of other modules can be
accessed by using the import statement. Any
name In the other module's namespace is an
attribute of the module object.

Modules and Namespaces

* You can bind the name from another module's
namespace to the current module's namespace
by using “from module import name”

Class namespaces

» Classes also define a namespace

« Names in a class's namespace are attributes of
the class or attributes of an instance of the
class, and can be accessed by using the "’
operator.

 (This isn't anything new - you guys have been
doing this in your programming all along.)

Name Resolution

« Name resolution: figuring out which namespace
to use to look up a reference to a name

 LEGB rule: When a name is referenced, python
looks it up in the following order:

- the Local (function) scope
- the Enclosing function scope
- the Global (module) scope

- the Built-in scope

Examples

» Lets see some examples in Wing!

Recursion

The problem is too big/too complicated! | don't
kKnow how to solve it!

If | could solve a slightly smaller problem, |
would be able to use that solution to come up
with the solution to the original problem!

But | don't know how to solve that slightly
smaller problem!

If | could solve a problem that's even a bit
smaller than that one ...

Recursion

« Recursion: a method for solving problems that
involves

- breaking a problem down into smaller and smaller
subproblems until you get a small enough problem
that can be solved trivially

- using the solution to the smaller problem to solve
the larger problem

Recursion — The Base Case

* The “small enough problem that can be solved
trivially” is known as the base case.

e Recursion ends when the base case has been
reached.

Thinking Recursively

* The idea behind recursion is very easy to state

» Thinking recursively takes some practice

 Lets spend some time working on a few
examples

Determining the sum of a list of
Integers
* Wing!

Factorial Function

« The expression “n!” is read as “n factorial”. It is
recursively defined for non-negative n as
follows:

-nl=n*(n-1)! forn>=1
-0l =1 (base case)

« Lets come up with both iterative and recursive
solutions in Wing!

A Well-known Sequence

« 0,1,1,2,3,5,8,13,21,34, ...
 What's the pattern?

 How do we define it recursively?

Fibonacci Sequence

e F(n)=0ifn=0
e F(n)=1ifn="1
* F(n) = F(n-1) + F(n-2) if n > 1

» Implementing a recursive function naively can
sometimes be inefficient!

« Lets compare iterative and (naive) recursive
implementations in Wing

e |terative version much faster than recursive.
Why?

Towers of Hanol

e Three pegs

* A number of different sized discs, all stacked
from largest disc (at bottom) to smallest (at top)
on peg 1.

 Move the discs from peg 1 to peg 3, using peg
2, without ever putting a larger disc on top of a
smaller disc

Towers of Hanol

 How do we modify this function we wrote In
Wing (same as the function in your text) so that
it returns the total number of moves required?

