CSC148
Lecture 6
lterators and Generators

Algorithm Analysis
Midterm Review

lterators

e |teration is not a new concept

» We've talked frequently about iterating through
the elements of a container (such as a list)

« We also know the difference between an
iterative algorithm and a recursive algorithm.

« So what exactly is an lterator?

lterators

* An lterator is an object that allows you to iterate
through the elements in a container

- In particular, an iterator object defines the next()
method, which returns the next element in the
container.

 Whenever you iterate through the elements of a
container, a lot of the time you are implicitly
using an lterator object.

lterators

« Consider the following code fragment:

foreltin L:
do something with elt

 Under the covers:

- Python calls iter(L) to retrieve the iterator object

- Each iteration of the loop calls the next() method on
the iterator and assigns it to the loop variable elt.

- When there are no more elements in the container,
a call to next() raises the Stoplteration exception.

lterators

« Python can iterate over instances of user-
defined classes if you define a special method

« Simply define the __iter__ (self) method in your
class, and have it return an object that defines
the next() method

lterators

« Examples

Generators

* A generator is a function that returns from its
call by using a yield statement.

 Whenever python sees a function that uses a
yield statement, it returns a “generator object”.
This object is just an iterator (i.e., it has the
method next() defined).

* Thus a generator can be used in any context
where an iterator is required (such as in a loop).

Generators

« The benefit of using a generator function
(instead of defining your own lterator) is that the
current position in your container can be
maintained implicitly by the state of the
generator.

« We'll define the iter method in the BST as
a generator function (like listing 5.29 in your
text).

Algorithm Analysis

» Algorithm analysis is about determining the
computing resources required by an algorithm

« Evaluating the computing resources required by
an algorithm allows us to determine its
efficiency compared to other algorithms

« Computing resources typically refers to the
execution “time” an algorithm requires, but
sometimes may also refer to the amount of
memory an algorithm requires.

e “Time” isn't wall-clock time.

Algorithm Analysis

 We can't just use the wall-clock execution time
for the following reasons:

- The time required for a program to execute may
vary from computer to computer. (A program will
probably be a lot slower on PC from the 90's than a
brand-new PC that has a multicore processor.)

- A “fast algorithm” on a slow computer may be
slower than a “slow algorithm” on a fast computer
on certain inputs

Algorithm Analysis

« Our way of characterizing the time efficiency of
an algorithm

- should be independent of the machine where it may
execute

- be able to distinguish the big differences between
algorithms and not concern itself so much with
“little” differences

e How can we do this?

Algorithm Analysis

 Lets try answering this by way of an example:

« We want to find the sum of N integers from 1 to
N. That is, 1+2+3+...+N.

Algorithm Analysis

Algorithm Analysis

e Observations:

- The first way will take longer for larger N than
smaller N.

- Moreover, the first way will always take longer than
the second way (except possibly for very small N).

Algorithm Analysis

 We can make this more precise by looking at
the number of “steps” performed by each
algorithm.

 We need to define exactly what we mean by a
“Step”_

- A step is a basic unit of computation and can be
done in a fixed amount of time by a computer.

Algorithm Analysis

* We want to determine the number of steps an
algorithm takes as a function of its input size.

 How we define input size depends a lot on the
problem.

» For the summation problem, the input size is N.

« Typically the input size is the number of
elements in the input. For example, the input
size can be the number of elements in a list that
IS to be sorted.

Algorithm Analysis

« For a given algorithm, we'll use the function
T(n) to denote the number of steps the
algorithm takes on input size n.

» T(n) = n+1 for the first solution, and T(n) = 1 for
the second solution.

e But what if we modified the second solution to
look like it does on the following slide?

Algorithm Analysis

sum = N+1
sum =sum * N
sum =sum /2

» Now T(n) = 3.

* Does this really make a difference in how
efficient the algorithm is”? Not really.

* The first algorithm (where we loop through all
integers from 1 to N) takes approximately N
steps, and the second algorithm takes
approximately 1 step.

Algorithm Analysis

« Suppose T(n) = n® + 5*n + 100 for some
algorithm A.

* As the input size increases (i.e., as n
increases), the n° term is going to dominate the
expression. (That is, 5'n+100 doesn't really
contribute much to the overall value of T(n).)

Algorithm Analysis

« Suppose T'(n) = 2*n°+10*n+200 for some
algorithm A’

e Thatis, T'(n) = 2*T(n) (where T(n) is from the
previous slide)
 We can interpret this as follows: For every step

taken by algorithm A, algorithm A' takes 1
additional step.

* |Is the efficiency of algorithms A and A' really all
that different? No.

Algorithm Analysis

* To measure the efficiency of an algorithm, we
only care about approximately how many steps
it takes.

 We don't care about deriving an exact value for
T(n) — its constant factors and non-dominant
terms can be ignored.

« How can we make this idea more precise?
* Big-Oh notation!!!

Big-Oh Notation

« We say that a function f(n) is O(g(n)) if there
exists positive constants ¢ and B such that
- f(n) <=c*g(n) foralln>=B

 Whenever you see “f(n) is O(g(n))” this can be
read as “f has order g”, or “f is big-oh of g”.

« To estimate T(n), the number of steps an
algorithm takes, it suffices to find a function g(n)
such that T(n) is O(g(n)).

Key properties of Big-Oh Notation

« Constant factors disappear
- examples on board
« Low-order terms disappear

- examples on board

Big-Oh Notation

* Big-Oh notation gives us a convenient way to
approximate the number of steps an algorithm
requires in the worst-case, ignoring constant
factors and lower order terms.

* The two summation algorithms that we looked
at before are O(n) and O(1), respectively.

Things to Keep in Mind

» Just because the number of steps an algorithm
takes is O(f(n)) does not mean that the
algorithm takes anywhere near f(n) steps.

- Technically, both summation algorithms we studied
take O(n?) steps.

- In future courses, you'll see other notations related
to Big-Oh that allow you to deal more precisely with
this issue.

Things to Keep in Mind

« Sometimes constant factors have practical
significance.

« Sometimes even though a big-oh analysis may
indicate one algorithm is more efficient than
another, this may only occur after the input size
IS iImpractically large.

Things to Keep in Mind

« Technically O(f(n)) defines a set of functions
» see the big-oh hierarchy drawn on board.

Examples

« Examples of big-oh notation

« Examples of analyzing the time efficiency of
algorithms

Midterm Review

What is an Abstract Data Type (ADT)?
Know how to use Stack/Queue ADTs
Python Exceptions
Object Oriented Analysis

- noun/verb analysis

Namespaces, scopes, dynamic typing
Recursion
Trees, Binary Search Trees

lterators and Generators

Midterm Review

« Study the material you covered in lab
e Study assignments 1 and 2

« Study material covered in lecture and
referenced in your text

