CSC148
Lecture 8

Algorithm Analysis
Binary Search
Sorting



Algorithm Analysis

« Recall definition of Big-Oh: We say a function
f(n) is O(g(n)) if there exists positive constants
c,B such that

- f(n) <=c*g(n) foralln>=B

e Let T(n) be the worst-case “running time” of an
algorithm on input size n. (In this context,
“‘running time” means the number of steps that
the algorithm takes.)



Algorithm Analysis

* Loosely speaking, we approximate T(n) by
finding a function g(n) such that T(n) is O(g(n)).

e Saying that this is an “approximation” for the
running time isn't entirely accurate. Consider
the algorithm for summing the numbers from 1
to n that we saw last week.



Algorithm Analysis

« The first algorithm, which loops through all the
numbers from 1 to n, has time complexity O(n).

* The second algorithm, which uses a formula,
has time complexity O(1).

* |s the following statement true: “both algorithms
have time complexity O(n*2)”?

* It is! Consider the definition of Big-Oh, and you
will see why.



Algorithm Analysis

« Clearly neither algorithm takes anywhere near
n"2 steps.

« We said that Big-Oh notation is used to
approximate T(n), but the last example
demonstrates that the notation can lead to
inaccurate approximations. What's going on??

* In actuality, Big-Oh notation gives us a
convenient way of expressing an upper-bound
on the running time of an algorithm.



Algorithm Analysis

e Saying that the summation algorithms take
O(n”*2) time, although true, doesn't convey as
much information as we'd like.

* To make our upper-bound as meaningful as
possible, we want to make it “tight”.

* Intuitively, O(g(n)) is a tight upper-bound for
T(n) if g(n) is the smallest and simplest function
that satisfies the big-oh criteria.



Algorithm Analysis

* For example, O(n) is a tight upper-bound for 6n,
but O(n"2) is not.

* More precisely, if for every function h(n) such
that T(n) is O(h(n)) it is also true that g(n) is
O(h(n)), then we say g(n) is a tight asymptotic
bound on T(n).

- Think carefully about this definition. Why does it
capture the intuition described on the previous

slide?



Algorithm Analysis

 Big-oh hierarchy on board

» Examples of analyzing algorithms.



Binary Search

 |I'm thinking of a number between 1 and 100,
each of which is equally likely. After you make a
guess, l'll tell you if you guessed the number, or
iIf the number is higher or lower than your
guess.

« If you want to determine the number in as few
guesses as possible, what strategy should you
employ?



Binary Search

* A naive approach would be to simply start
guessing each number from 1 to N, ignoring the
high/low information, until you guess the
number. But there's a better way...

* You can always eliminate half the possible
numbers by guessing the midpoint in the range
of remaining possibllities.

* By eliminating half the remaining numbers in
each guess, you can determine the number I'm
thinking in no more than 7 steps.



Binary Search

 In general, if I'm thinking of a number from 1 to
n, you can determine the number in no more
than ceill(log n) steps.

« We can apply this same idea to searching for
an item in a sorted list.

« Given a sorted list of n items, you want to
determine whether the item is in the list.



Binary Search

* A naive approach is to search linearly for the
item.

« Since the list is sorted, you can search the list
more intelligently.

« As with the guessing numbers game, check to
see if the item is at the midpoint of the list.

- If the item is at the midpoint, you are done.

- Otherwise, you know whether the item is in the first
half or second half of the list. This means you can
eliminate half the list from consideration.




Binary Search

« After you've eliminated half the items from
consideration, recursively search for the item in
the remaining half.

o If the item is NOT in the list, then eventually
you'll try searching an empty list, at which point
you are done.

* Binary search has time complexity O(log N),
where N iIs the size of the list.



Sorting

e Sorting methods that you've seen in 108:

— Bubble sort
- Selection Sort
- |Insertion sort

* These sorts all have time complexity O(n"2).

« We'll discuss a new sorting method, called
merge sort, that has time complexity O(n log n).



Merge Sort

* Merge sort recursively

— sorts the first half of the list
— sorts the second half of the list
- merges the two halves into a newly sorted list

e Lets assume we have a list in which the first
and second halves are sorted, but the whole list
itself may not be sorted.

 How can we merge the two halves to create a
new list that's sorted and contains all the
elements of the original list?



Merge Sort

« Examples of merge on board.



Merge Sort

« Before we can actually use the merge
procedure we just discussed, we have to
somehow get to the point where the two halves
of the list are sorted.

* This is done recursively.
« What is our base case?



Merge Sort

A list containing 1 element is sorted.
 Lets develop mergesort in Wing.



Merge Sort

« Advantages:

- O(n log n) time compelxity

 see discussion on board for why mergesort has this time
complexity

« Disadvantages

- requires additional space for the merged list



Quick Sort

» Recursive, like merge sort, sorting is “in place”.
That is, additional space is not required.

 The main idea behind quicksort is contained Iin
the partition procedure. It works by choosing a
“pivot” element and

- finding the correct position of the pivot element in
the final sorted list (this is called the “split point”)

- moving elements less than the pivot before the split
point, and other elements after the split point.



Quick Sort

« Quick sort works by partitioning the list (using
the partition procedure described above), and
then recursively sorting the lists before and
after the split point.



Quick Sort

 Examples on board



Quick Sort

 Lets look at the quick sort procedure in Wing.



