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Abstract. First-Come-First-Served (FCFS) mutual exclusion (ME) is
the problem of ensuring that processes attempting to concurrently access
a shared resource do so one by one, in a fair order. In this paper, we close
the complexity gap between FCFS ME and ME in the asynchronous
shared memory model where processes communicate using atomic reads
and writes only, and do not fail. Our main result is the first known FCFS
ME algorithm that makes O(log N) remote memory references (RMRs)
per passage and uses only atomic reads and writes. Our algorithm is also
adaptive to point contention. More precisely, the number of RMRs a
process makes per passage in our algorithm is Θ(min(k, log N)), where k

is the point contention. Our algorithm matches known RMR complexity
lower bounds for the class of ME algorithms that use reads and writes
only, and beats the RMR complexity of prior algorithms in this class
that have the FCFS property.

1 Introduction

Coordinating access to shared resources is a key problem in programming mul-
tiprocessors. Mutual exclusion [1], also known as locking, is the approach most
popular in practice for allowing multiple processes to access a shared resource
safely. We consider this problem under the customary assumptions that pro-
cesses are asynchronous (i.e., execute at arbitrary speeds) but do not fail. A
mutual exclusion algorithm for a shared memory multiprocessor consists of a
trying protocol (TP) and an exit protocol (EP) that surround the critical section
(CS). The latter contains code that actually accesses the shared resource. A sin-
gle execution of the TP, CS, and EP is called a passage. When a process is not
inside the TP, EP, or CS, we say that it is in the non-critical section (NCS).

The trying and exit protocols ensure that at most one process can be in
the critical section at a time, while also guaranteeing that processes wanting to
access the resource can eventually do so. We can state the correctness properties
of a mutual exclusion algorithm more precisely as follows:
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Mutual Exclusion (ME): If a process p is in the CS, then no process q 6= p
is in the CS concurrently with p.

Lockout Freedom (LF): If a process p enters the trying protocol, then p even-
tually enters the CS.

Bounded Exit (BE): If a process enters the exit protocol, then the process
returns to the NCS in a bounded number of its own steps.

Note that to satisfy lockout freedom, we must make the (standard) assumption
that every process is live, meaning that as long as it is outside the NCS, it
continues to take steps until it returns to the NCS.

The above properties do not preclude situations where a process waits inside
the trying protocol for a long time while other processes are repeatedly granted
entry to the critical section. This may be undesirable, and a mutual exclusion
algorithm that grants processes entry into the critical section in an order that is
more fair may be preferred. One form of fairness is captured by the First-Come-
First-Served (FCFS) property [2], which informally requires that processes are
granted entry into the critical section in the order in which they execute the
beginning of the trying protocol. To define this more precisely, we split the
trying protocol into two parts: the first part, the doorway (DWY), which a
process completes in a bounded number of its own steps; and a second part, the
waiting room (WRM). We can now define FCFS as follows:

First-Come-First-Served (FCFS): If a process p finishes the doorway before
a process q 6= p starts the doorway, then q does not enter the CS before p
does in the corresponding passages.

A natural way to measure the time complexity of a mutual exclusion algo-
rithm is to count the number of memory accesses performed during a passage.
This is problematic in the asynchronous model as a process may execute an un-
bounded number of memory accesses while busy-waiting for another process to
clear the critical section. Instead, we measure time complexity by counting only
the remote memory references (RMRs) performed during a passage, where an
RMR is a memory access that traverses the processor-to-memory interconnect.
We refer to this measure as an algorithm’s RMR complexity.

To classify memory accesses as local or remote, we consider two shared mem-
ory architectures: the Distributed Shared Memory (DSM) model, and the Cache-
Coherent (CC) model [3]. In the DSM model, each processor is associated with
a memory module that it can access locally, and that others may access only
remotely. In the CC model, on the other hand, any memory location can be
made locally accessible by storing its contents in a local cache, which is kept up
to date (by either updating or invalidating stale entries) by a coherence protocol.
Different varieties of the CC model exist, all satisfying the following property
under ideal conditions: once a variable is loaded into a cache, it remains cached
at least until it is overwritten by another process.

Algorithms that perform all busy-waiting using local memory references (e.g.,
repeatedly testing the value of a cached variable) are known as local-spin; they



have bounded RMR complexity and offer practical performance benefits [4].
The RMR complexity of an ME algorithm may depend on the number of pro-
cesses contending for access to the CS. Point contention describes this quantity
precisely; for our purposes it is defined as the maximum number of processes
simultaneously outside of the NCS during an execution fragment. An ME algo-
rithm whose RMR complexity grows gradually with point contention is known
as adaptive (to point contention).

Summary of results. Our main technical contribution is an FCFS ME algorithm
based on reads and writes only, which has RMR complexity O(min(k, log N))
when point contention is k and there are N processes. The complexity of our
algorithm is optimal, at least when k ∈ O(log log N) [5] or k ∈ Θ(N) [6]. Prior
algorithms either require stronger synchronization primitives, lack the FCFS
property, or have suboptimal RMR complexity.

Our algorithm uses as building blocks two novel wait-free components: a set-
like data structure called SpecialSet , and a ticket dispensing mechanism. The
SpecialSet records a set of process IDs, and has two operations: InsertSelf(),
which a process can use to add its ID to the set, and RemoveSelf(), which a
process can use to remove itself from the set and also to learn the ID of exactly
one other process in the set (if any). Our SpecialSet and the ticket dispenser are
accessed according to certain restrictions on parallelism, which simplifies their
implementation.

As a complexity upper bound, our algorithm has several implications regard-
ing mutual exclusion:

(1) The worst-case RMR complexity of FCFS ME using only reads and writes
is no greater than for ordinary (i.e., deadlock-free) ME; both problems are
solvable using O(log N) RMRs per passage, matching the recent lower bound
of Attiya, Hendler and Woelfel [6].

(2) FCFS ME can be solved using only reads and writes with RMR complexity
adaptive to point contention, matching the linear lower bound of Kim and
Anderson for k ∈ O(log log N) [5] in addition to the logarithmic worst-case
lower bound [6].

(3) As a consequence of (1) and (2), and the fact that the lower bounds on
ME RMR complexity [6, 5] hold even if comparison primitives (such as
Compare-And-Swap) are available, FCFS ME and adaptive FCFS ME
are no more costly to solve (in terms of RMRs) using reads and writes only
than using reads, writes, and comparison primitives. This strengthens some-
what a prior result of Golab, Hadzilacos, Hendler and Woelfel [7], which
implies the analogous conclusion for ME algorithms that do not have FCFS
or bounded exit.

2 Related Work

The mutual exclusion problem was first solved by Dijkstra [1], although his
solution did not satisfy lockout freedom. Rather, it satisfied a weaker progress
property, called deadlock freedom:



Deadlock Freedom: If some process p is stuck forever in the trying protocol,
then some process q 6= p executes through the critical section infinitely often.

FCFS mutual exclusion was first formulated and solved by Lamport in [2],
where he presented his famous Bakery algorithm. Lamport [8] was also the first
to study fast mutual exclusion. Fast mutual exclusion ensures that a process
takes a constant number of steps entering the CS when there is no contention,
but provides no performance guarantees otherwise. In adaptive mutual exclusion
the performance of an algorithm instead degrades gradually as the contention
for the CS increases. Adaptive mutual exclusion algorithms were presented by
Styer [9], Choy and Singh [10], and Attiya and Bortnikov [11]. These algorithms
are adaptive to metrics different from RMR complexity, and moreover, the RMR
complexity of these algorithms is unbounded.

Yang and Anderson (YA) [12] presented the first mutual exclusion algorithm
that uses only reads and writes and has RMR complexity O(log N). Kim and
Anderson [13] (KA) later presented an adaptive mutual exclusion algorithm,
also using only reads and writes, that used as building blocks parts of Lamport’s
fast mutual exclusion algorithm and the YA algorithm. Its RMR complexity is
O(min(k, log N)), where k denotes point contention. This improves upon the
adaptive algorithm of Afek, Stupp and Touitou [14].

Several lower bounds exist for the RMR complexity of mutual exclusion and
adaptive mutual exclusion. Kim and Anderson [5] showed that the RMR com-
plexity of adaptive ME algorithms based on reads and writes only must grow
at least linearly with point contention up to Ω(log log N), which is matched by
algorithm KA. Attiya, Hendler and Woelfel [6] later showed that the worst-case
RMR complexity for the same class of algorithms is Θ(log N), which is matched
by algorithm YA. (This builds on prior results by Cypher [15], Anderson and Kim
[16], and Fan and Lynch [17].) A related result by Golab, Hadzilacos, Hendler
and Woelfel [7] implies that the Θ(log N) lower bound is tight also for algorithms
that use comparison primitives, such as Compare-And-Swap (CAS), and do
not require FCFS or bounded exit.

Jayanti [18] presented the first FCFS adaptive mutual exclusion algorithm.
It has RMR complexity O(min(k, log N)), and makes use of LoadLinked and
StoreConditional – a pair of synchronization primitives stronger than reads
and writes.

Taubenfeld [19] also presented an FCFS adaptive mutual exclusion algorithm.
This algorithm is a modification of Lamport’s Bakery algorithm, and uses only
reads and writes. Its RMR complexity, however, is O(k2), which is suboptimal
in light of our results.

3 FCFS Algorithm and High-level Description

Our algorithm (shown below in Figure 1) has the following high-level structure.
In the doorway, a process receives a ticket from a wait-free ticket dispenser
(line 4) that incurs O(min(k, log N)) RMRs per invocation. The dispenser is



similar to a modular atomic counter, which returns tickets with increasing values
from a bounded interval. As the dispenser is not actually atomic, processes that
invoke the dispenser concurrently may receive the same ticket. Also, even though
the dispenser returns tickets from a bounded interval, the interval is large enough
to ensure that tickets are not reused too soon. After a process p obtains a ticket,
it enters the waiting room (lines 5–16) where it adds itself to a priority queue
(Q) ordered by ticket (line 11). To ensure that FCFS is not violated, p waits
to reach the front of the queue before entering the CS (line 15). Once p is done
with the CS, p removes itself from the queue (line 18), and notifies its successor
(lines 20–21).

Figure 1: FCFS Mutual Exclusion Algorithm for process p ∈ {1, ..., N}

shared variables:
Set : SpecialSet , Q : PriorityQueue , Head : array[1..N ] of Boolean

(In the DSM model, Head [p] is local to process p)

private variables:

ticket : {0, .., 7N − 1}, tmp id : integer

loop1

NCS2

Set .InsertSelf() // Doorway begins.3

ticket := ObtainTicket() // Doorway ends.4

LOCK()5

Head [p] := false6

tmp id := Set .RemoveSelf()7

if tmp id 6= ⊥ then8

// Enqueue process tmp id with ‘‘dummy’’ ticket.

Q .Insert((tmp id ,−1))9

Q .Remove((p,−1)) // Remove (p,−1) from queue if present.10

Q .Insert((p, ticket)) // Reinsert p with ‘‘proper’’ ticket.11

tmp id := Q .FindMin() // Get the head process in the queue.12

Head [tmp id ] := true // Notify head process to advance.13

UNLOCK()14

await Head [p] = true // Wait to reach the head of the queue.15

LOCK()16

CS // The critical section.17

Q .Remove((p, ticket)) // Remove p from the priority queue.18

DoneWithTicket()19

tmp id := Q .FindMin()20

if tmp id 6= ⊥ then21

Head [tmp id ] := true // Notify next process to advance.22

UNLOCK()23

end loop24



We use an auxiliary lock (lines 5, 14, 16, 23) to serialize operations on Q . This
allows us to implement Q with a min-heap, which has time complexity O(log k).
The ME algorithm that we use for the auxiliary lock is Kim and Anderson’s
algorithm [13], which has RMR complexity O(min(k, log N)).

The priority queue has standard operations Insert, Remove, and FindMin,
and its entries are pairs of the form (process ID, ticket). Insert is idempotent,
and Remove has no effect if attempting to remove an item that is not in the
queue. FindMin() returns the process ID whose corresponding ticket is minimal
(i.e., the head element), or ⊥ if the queue is empty. What it means for a ticket to
be minimal in a collection of tickets, and more generally how tickets are ordered,
is explained in detail in Section 5.

Processes use the Boolean array Head to notify another process when it
becomes the head of the queue. A process can become the head of the queue
after another process removes itself from the queue in the exit protocol (line 18),
or after the queue is modified in the waiting room (lines 10–11).

Our algorithm contains additional features, not described above, to handle
the following race condition: process p finishes the doorway before q starts the
doorway, but then q adds itself to Q before p. By the FCFS property, p should
enter the CS before q, but until p is added to Q , q cannot tell (from the state
of Q alone) whether it should enter the CS before or after p. To prevent q
from entering the CS prematurely, we use special “dummy tickets” and a shared
object, Set , of a set-like type called SpecialSet . At the beginning of the doorway,
at line 3, a process q adds itself to Set . In the waiting room, at line 7, q removes
itself from Set , and also learns the ID of one other process p 6= q in Set , if it
exists (⊥ otherwise). If p exists, then p must be in the trying protocol at or before
the lock at line 5. In that case, q adds p to Q at line 9 with a “dummy” ticket
−1, which is smaller than any “proper” ticket returned by the ticket dispenser
at line 4. The insertion of p into Q in this way guarantees that p will be ahead
of q in Q until p executes the locked code at lines 6–13, where it replaces its
dummy ticket in Q with its proper ticket (lines 10–11). This ensures that q
cannot advance into the CS prematurely.

The set operations (line 3 and line 7), and the ticket dispenser operations
(line 4 and line 19), are explained in more detail in Sections 4 and 5, respectively.

4 SpecialSet – A Set-Like Data Structure

In this section, we describe the data type of the shared object Set used in our
mutual exclusion algorithm. We refer to this type as SpecialSet , because its state
is represented by a set but it supports only a few set operations, and only in
restricted ways.

The sequential specification of SpecialSet is as follows. The state of SpecialSet

is a set of process IDs. Two operations are used to access SpecialSet :

– InsertSelf() adds the ID of the calling process to the set, and returns
nothing.



– RemoveSelf() removes the caller’s ID from the set, and returns the ID of
one other process in the set, if it exists, otherwise returns ⊥.

Processes must access SpecialSet according to the following etiquette:

Condition 1.

(a) The calls to InsertSelf() and RemoveSelf() made by any process occur
in an alternating sequence, beginning with InsertSelf(), and ending with
RemoveSelf(); and

(b) Operation RemoveSelf() is executed in mutual exclusion.

For our purposes, it suffices to make the implementation of SpecialSet for
N processes linearizable and wait-free, with step complexity O(min(k, log N)),
where k denotes point contention. (Note that by Condition 1, if a pro-
cess has completed InsertSelf() but not yet started its subsequent call to
RemoveSelf(), then it is enabled to execute another step, and so we count it
in evaluating point contention.)

Below we describe a simple but non-adaptive implementation of SpecialSet for
N processes, with step complexity O(log N). Then, we give an informal overview
of how the implementation can be made adaptive using existing ideas.

4.1 Non-Adaptive Implementation

The data structure underlying the implementation of SpecialSet for N processes
is a full binary tree of height ⌈log N⌉. Each node in the tree stores a process
ID or ⊥, initially ⊥. We denote the value stored at node n by NodeV al[n]. In
addition to the tree, we use an array MyNode[1..N ] of pointers to tree nodes
or ⊥, initially all ⊥. For any process ID p, we will refer to MyNode[p] as p’s
node. Informally, if MyNode[p] = np for some tree node np then p is in the
set and p uses tree nodes on the path between np and the root node to record
information about itself. In the non-adaptive implementation, np will be a unique
and statically determined leaf node, referred to as p’s leaf node.

Figure 2: Variables used in SpecialSet implementation.

shared variables:
NodeV al: array[1..N ] of process ID or ⊥, initially all ⊥

MyNode: array[1..N ] of pointer to tree node or ⊥, initially all ⊥

Figure 3: InsertSelf() for process p ∈ {1, . . . , N}

MyNode[p] := ID of p’s leaf node25

InsertHelper(p)26

Figure 4: InsertHelper(z)

l := MyNode[z]27

foreach node n on path from l to root do28

NodeV al[n] := z29

end30



Figure 5: RemoveSelf() for process p ∈ {1, . . . , N}

Output: process ID or ⊥
l := MyNode[p]31

foreach node n on the path from l to root do32

if n has a sibling node then33

n′ := sibling of n34

q := NodeV al[n′]35

if q 6= ⊥ and MyNode[q] 6= ⊥ then36

InsertHelper(q)37

MyNode[p] := ⊥38

return q39

end40

end41

end42

MyNode[p] := ⊥43

return ⊥44

The InsertSelf() access procedure for process p first determines p’s leaf
node at line 25, and then passes control to the helper function InsertHelper(p),
which is also used by RemoveSelf(). (Here the ID of p’s leaf node is statically
determined, but in the adaptive version of the algorithm it is not.) In function
InsertHelper(p), the calling process traverses the binary tree from p’s node
to the root and writes p’s ID at each node visited.

The RemoveSelf() access procedure works as follows. The caller, say pro-
cess p, first determines its tree node, say l, by reading MyNode[p]. Next, p
traverses the tree from l to the root. For each node visited, p reads the ID
stored at the sibling node (O(log N) nodes in total). For each process ID encoun-
tered, say q, p checks whether q’s node is not ⊥. If the latter condition holds,
then p stops its traversal immediately after inspecting q’s node, and executes
InsertHelper(q). (Here q 6= p holds because p’s leaf node is statically deter-
mined.) By calling InsertHelper(q) at this point, p ensures that if there are
any nodes between the current node and the root that contain the ID p, they will
be overwritten with an ID that is still in the set. If this were not done, then future
calls to RemoveSelf() might behave as though there are no remaining items
in the set, and erroneously return ⊥. Finally, p’s execution of RemoveSelf()
overwrites MyNode[p] with ⊥ and returns q. Otherwise, if no such q is found,
then upon reaching the root node, p’s execution of RemoveSelf() overwrites
MyNode[p] with ⊥ and returns ⊥.

4.2 Adaptive Implementation

The non-adaptive implementation of SpecialSet described above can be altered
so that its step complexity becomes adaptive to k – the point contention (as
defined earlier for executions involving a SpecialSet object). The main idea is to
choose p’s node so that it has distance O(min(k, log N)) from the root, which



is difficult since p’s node must be unique among all processes that are in the
set. One approach is to build the tree dynamically using splitter-like objects,
which are based on Lamport’s “fast path” mechanism. Anderson and Kim used
such objects to construct an adaptive ME algorithm based on reads and writes
only [13]. The RMR complexity of this algorithm is O(min(k, log N)), and key
portions of it have step complexity O(min(k, log N)).

Rather than using pieces of the Anderson and Kim algorithm to create our
adaptive implementation of SpecialSet , we execute the entire ME algorithm in
our implementation and extract certain useful information from that execu-
tion. This allows us to re-use complex synchronization machinery directly rather
than modifying it and re-proving its correctness properties. The wait-free por-
tion of the trying protocol of the Anderson-Kim algorithm is executed inside
InsertSelf(), and the remainder in RemoveSelf(). Since RemoveSelf() is
executed in mutual exclusion by Condition 1, this means that the executing pro-
cess will never busy-wait inside the Anderson-Kim algorithm. (In fact, we can
replace the locks used therein with “no-ops”.)

5 Ticket Dispenser

Our mutual exclusion algorithm internally uses numbered tickets, much
like Lamport’s bakery algorithm [2]. Tickets are obtained by calling
function ObtainTicket(), which is used in conjunction with function
DoneWithTicket() according to the following etiquette:

Condition 2. The calls to ObtainTicket() and DoneWithTicket()
made by any process occur in an alternating sequence, beginning with
ObtainTicket(), and ending with DoneWithTicket().

Informally, we can think of ObtainTicket() as returning a (not necessarily
unique) element of some pool of free tickets, and DoneWithTicket() as clean-
ing up some internal state once a process is done using a particular ticket. (Using
a pair of functions in this way makes the ticket dispenser somewhat more com-
plex to specify, but easier to implement.)

We say that a process is participating in the ticket dispenser if it has be-
gun its call to ObtainTicket() but not yet completed its subsequent call
to DoneWithTicket(). If a participating process has completed its call to
ObtainTicket(), then we say that it holds the ticket returned by that call.
A ticket is active if it is held by some process, otherwise it is inactive. Tickets
satisfy the following properties:

Specification 1.

(a) The domain of tickets is the set of integers modulo mN for some integer
m ≥ 3.

(b) At any time, the set of tickets that are active is confined to some interval of
fewer than mN/2 consecutive integers modulo mN .



We will use (a) and (b) as follows to define a total order on the set of tickets
that are simultaneously active. Given two active tickets i and j, where i < j,
we will say that i is less than j (denoted i ⊳ j) if j − i < mN/2, otherwise
we will say that i is greater than j (denoted i ⊲ j). (We will also use E and D

to denote weak inequalities.) Finally, if i = j then we will say i is equal to j.
For technical reasons, we also define a special dummy ticket, denoted −1, which
can be compared against and is less than any active ticket. We say that two
tickets are comparable if they are simultaneously active (or one or both is −1),
and incomparable otherwise. Finally, note that our mutual exclusion algorithm
compares tickets only implicitly, inside the priority queue.

Having defined an ordering among simultaneously active tickets, we are now
ready to specify the correctness properties of ObtainTicket().

Specification 2. Consider any execution at the end of which distinct processes
p and q hold tickets tp and tq, respectively. Let Cp and Cq denote the calls to
ObtainTicket() that generated these tickets, respectively.

– If Cp occurred before Cq, then tp ⊳ tq.
– If Cp occurred after Cq, then tp ⊲ tq.
– If Cp and Cq were concurrent, then the ordering among tp and tq is arbitrary

To simplify the implementation of the operations ObtainTicket() and
DoneWithTicket(), we restrict concurrent executions of these functions as
follows:

Condition 3.

(a) Function DoneWithTicket() is executed in mutual exclusion.
(b) Moreover, if processes p and q are participating simultaneously and hold tick-

ets tp and tq, respectively, where tp ⊳tq, then p subsequently completes a call
to DoneWithTicket() before q does. (In other words, p stops participating
before q does.)

Condition 4. For any execution fragment during which some process p is (con-
tiguously) participating in the ticket dispenser, every other process participates
at most three times during that execution fragment.

Condition 5. For any execution fragment during which some process p is
(contiguously) executing inside ObtainTicket(), if another process q exe-
cutes ObtainTicket() (partially or completely) during that fragment, then
q does not subsequently call DoneWithTicket() before p finishes its call to
ObtainTicket() under consideration.

For our purposes, an implementation of the ticket dispenser must satisfy the
following: given that Conditions 2–5 hold, Specifications 1–2 must hold, and
the InsertSelf() and RemoveSelf() operations must have step complexity
O(min(k, log N)), where k denotes point contention. (Note that by Condition 2,
if a process has completed ObtainTicket() but not yet started its subsequent
call to DoneWithTicket(), then it is enabled to execute another step, and so
we count it in evaluating point contention.)



5.1 Adaptive Implementation

Next, we describe an implementation of the ticket dispenser that is adaptive in
the number of participating processes.

Figure 6: Variables used in ticket dispenser implementation.

shared variables:
Tickets : array[0..7N -1] of {INUSE, FREE }
initially Tickets [0..(3N-1)] = FREE and Tickets [3N..(7N-1)] = INUSE

lastTicket : 0..7N -1 initially 7N -1

private variables:
ticket : 0..7N -1 uninitialized

Figure 7: Implementation of ObtainTicket().

first := lastTicket45

i := 146

// Find upper bound on the smallest FREE ticket.

while i < 3N ∧ Tickets [(first + i) mod 7N ] = INUSE do47

i := min {3N, i × 2}48

// Now do binary search to find the ticket.

last := first + i49

while first < last do50

midpoint := ⌊(first + last)/2⌋51

if Tickets [midpoint mod 7N ] = INUSE then52

first := midpoint + 153

else54

last := midpoint55

// At this point first = last holds.

ticket := first mod 7N56

Tickets [ticket ] := INUSE57

return ticket58

Figure 8: Implementation of DoneWithTicket().

// Reset a ticket that was previously active.

Tickets [(ticket + 3N) mod 7N ] := FREE59

lastTicket := ticket60

The algorithm uses a shared circular array Tickets of length 7N , whose en-
tries represent the state of the correspondingly numbered tickets. Each entry is
either INUSE or FREE, indicating, as we explain later, whether the corresponding
ticket is active. The shared variable lastTicket stores the ticket that was held by
the last process that stopped participating in the ticket dispenser, i.e., the last
process that called DoneWithTicket(), and is used by ObtainTicket() to



efficiently find a FREE ticket. ObtainTicket() uses a two-stage search mecha-
nism to determine the next FREE ticket. First, the algorithm attempts to find an
interval of consecutive tickets, starting at lastTicket , that contains a FREE ticket.
This is done at lines 45–49 by searching rightwards from lastTicket in steps of ex-
ponentially increasing size, up to a distance of 3N . Starting at lastTicket ensures
that the search is adaptive to point contention, k, and taking steps of exponen-
tially increasing size bounds the total number of steps taken to be O(log k). We
only need to search up to a distance of 3N from lastTicket , since, by Condition 4,
every other process participates at most three times while the search is being
done. This means there will be at most 3(N − 1) INUSE tickets after lastTicket .

Once a FREE ticket is found, the interval from lastTicket to the FREE ticket is
guaranteed to contain at least one FREE ticket. However, there may be another
FREE ticket earlier in the interval. The algorithm performs a binary search of the
interval at lines 50–55 to pinpoint such a ticket if it exists. The ticket computed
is stored in the private variable ticket at line 56, and marked INUSE at line 57.

Function DoneWithTicket() simply resets a previously-active ticket at
line 59 (so that it can be reused later), and then updates lastTicket at line 60.

6 Correctness of FCFS ME Algorithm

In this section we provide a very high-level overview of why the FCFS ME
Algorithm defined in Figure 1 is correct, and why it has RMR complexity
O(min(k, log N)).

The correctness of the FCFS ME algorithm relies on the correctness of the
SpecialSet and ticket dispenser implementations outlined in Sections 4 and 5.
These implementations are correct only if they are used according to the eti-
quette outlined in Conditions 1–5. Our proof that these conditions hold in Fig-
ure 1 relies on the ME algorithm satisfying FCFS. Our proof for FCFS, however,
relies on the correctness of the SpecialSet and ticket dispenser, which leads to
a cycle of dependencies. We deal with this cycle through careful induction on
the length of the execution history. (An execution history is an alternating se-
quence of states and process steps, where a state consists of the values assigned
to all private and shared variables in the system, and a step is a shared memory
operation by a process.)

The proof proceeds in two parts. The first part shows that FCFS holds in any
execution history in which the SpecialSet and ticket dispenser are correct. The
second part uses induction to show that Conditions 1–5 hold in any execution
history, and hence that the SpecialSet and ticket dispenser are correct. We pro-
ceed in reverse, sketching the second part of the proof first, and then sketching
the remaining details.

Lemma 1. Conditions 1–5 hold in any execution history of the algorithm.

Proof sketch. By inspection of the ME algorithm in Figure 1, Conditions 1–3(a)
hold. To show that Conditions 3(b)–5 hold, we use induction on the length of
the execution history H . In the initial state of H , no process has taken a step,



and so the conditions hold trivially. We assume that the conditions hold up to
some state s in the execution history, and show that the conditions also hold in
the next state s′ after s. Suppose, by way of contradiction, that the conditions
do not hold in state s′. Since all conditions are satisfied up to s, it can be shown
that exactly one condition is not satisfied in s′. Due to space limitations, we
only argue for a contradiction when Condition 4 does not hold. In this case,
there must be some process p contiguously participating in the ticket dispenser
while another process q participates four times. Process q must have started
participating for the fourth time when it took a step between s and s′. It turns
out (by Condition 5) that p must have finished executing ObtainTicket()
before q went through the CS when it participated in the ticket dispenser the
second time. Thus, during q’s third time participating, p will have finished the
doorway before q starts it. FCFS holds prior to s′, and so q cannot execute
through the CS and participate a fourth time until p has executed through the
CS. But this means that when q participates for the fourth time, p will no longer
be participating contiguously, contradicting the assumption that it is.

Lemma 2. The algorithm satisfies mutual exclusion.

Proof. The lemma follows from the correct use of the auxiliary lock, which sur-
rounds (among other things) the CS.

Lemma 3. The algorithm satisfies bounded exit.

Proof. The Kim and Anderson [13] algorithm, which we use for the auxiliary
lock, satisfies bounded exit. Consequently, it follows from the structure of our
algorithm that it too satisfies bounded exit.

Lemma 4. The algorithm satisfies FCFS.

Proof sketch. Assume that some process p finishes the doorway before some
process q starts the doorway, and suppose, by way of contradiction, that q enters
the CS before p in the corresponding passages. Immediately before q does so,
p and q hold their tickets simultaneously. Since p finished the doorway before
q started it, p’s call to ObtainTicket() finished executing before q’s call to
ObtainTicket() started. This and the ticket dispenser specification imply that
p’s ticket is smaller than q’s. If p adds itself to Q at line 11 before q, then q has
no hope of entering the CS before p since p will be in front of q in Q . So it must
be the case that q adds itself to Q before p by executing the locked segment
of code at lines 6–13 before p. In this case, however, q’s call to RemoveSelf()
at line 7 returns tmp id 6= ⊥ (possibly tmp id = p), since Set contains p. This
means that at line 9, q adds some process to Q with a dummy ticket. Process
q cannot be signalled to enter the CS while there is a dummy ticket in Q , and
it turns out the latter condition holds at least until p adds itself with its proper
ticket to Q . When p does add itself to Q , it will be in front of q, since p has
a smaller ticket than q. This implies that p will enter the CS before q, which
contradicts the assumption that q enters before p.



Lemma 5. The algorithm satisfies deadlock freedom.

Proof sketch. Suppose, by way of contradiction, that deadlock freedom does not
hold. That is, some process p loops forever in the trying protocol, and after some
point in the execution, no process enters the CS. It turns out that the only place
where p may be looping is at line 15, while waiting to be signalled to enter the
CS. Furthermore, since there is a point after which no process enters the CS,
there must be a last call to Q .FindMin() (line 12 or 20). The contradiction
that we derive is to show that after the last call to Q .FindMin(), there must be
another call to Q .FindMin().

When the last call to Q .FindMin() occurs, it cannot return ⊥. If it did
return ⊥, this would mean Q is empty. But then p’s final execution of the locked
segment of code at lines 6–13 must occur after the last call to Q .FindMin(),
otherwise p would already be in the queue and at (or about to execute) line 15
when the latter call occurs. This implies that p executes Q .FindMin() after the
last call to Q .FindMin().

It also follows that when the last call to Q .FindMin() occurs, it returns the
ID of a process q that is not associated with a dummy ticket. If q were associated
with a dummy ticket, then q must be in the trying protocol before the locked
segment of code. This means that q eventually executes Q .FindMin() after the
last call to Q .FindMin().

Thus, one of the two following cases must hold: (i) the last call to
Q .FindMin() is at line 12 and returns the ID of the caller, a process q; or
(ii) the last call to Q .FindMin() is at line 20 and returns the ID of a process q
that is at lines 14–16 at the time. In both cases, q will eventually be signalled
to enter the CS, and so q will eventually call Q .FindMin() at line 20, after the
last call to Q .FindMin().

Lemma 6. The algorithm satisfies lockout freedom.

Proof. Lockout freedom follows directly from FCFS (Lemma 4) and deadlock
freedom (Lemma 5).

Lemma 7. The algorithm has RMR complexity O(min(k, log N)) in both the

DSM and CC models.

Proof sketch. The ticket dispenser operations and SpecialSet operations have
step complexity O(min(k, log N)). For the auxiliary lock at lines 5, 14, 16, 23,
we use the adaptive mutual exclusion algorithm of Kim and Anderson [13], which
has RMR complexity O(min(k, log N)). For the priority queue, we use a min-
heap implementation, which has step complexity O(log k). The busy-wait loop
at line 15 incurs O(1) RMRs in the CC model, and no RMRs in the DSM model.
Every other line of the algorithm causes at most O(1) RMRs per passage.

The preceding lemmas culminate in the following theorem:

Theorem 1. The algorithm defined by Figure 1 is a correct FCFS mutual ex-

clusion algorithm, and it has RMR complexity O(min(k, log N)) in both the DSM

and CC models, where k is the point contention and N is the number of processes

in the system.
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