Duration: 50 minutes
Aids Allowed: None

Student Number: | L Lo

Last Name: SOLUTION

First Name:

TA: Instructor: Reid

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,
and read the instructions below carefully.)

MARKING GUIDE

This midterm test consists of 5 questions on 7 pages (including this

one), plus the aid sheet. When you receive the signal to start, please #1: / 6
make sure that your copy of the test is complete. Extra space was

left for each of the programming questions. Please indicate clearly #22_ /7
the part of your work that should be marked. e /5

IMPORTANT: You do not need to include the “#!” line in Bourne I —

shell programs you are asked to write. In C programs, you do not # 4: /9
need to add “#include” lines, or do error checking unless the question

requires it, or the program would not function correctly given valid #5__ /6

input without error checking.
TOTAL: /33

Good Luck!

Total Pages = 7 Page 1 CONT’D...

Question 1. [6 MARKS]
Part (a) [2 MARKS]

Briefly explain what the PATH environment variable contains, and what it is used for.

It stores a list of directories. This list is used to locate executable files, rather than specifying the
absolute path.

Part (b) [4 MARKS]

The current working directory contains an executable shell program called doit which is shown below.
Write the output produced by the following echo commands and the contents of the file outfile after
each command has executed. Assume that var is set as shown below and outfile is empty before each
command is executed. (’ is a single quote, ¢ is a backquote.)

#!/bin/sh
doit
echo "$1"
prints contents of outfile
var="then"
doit "$var" > outfile nothing then
doit ’$var’ > outfile nothing $var
echo ‘doit $var > outfile® blank line then
echo doit "now > outfile" doit now > outfile nothing

Page 2 of 7 CONT’D...

Question 2. [7 MARKS]

Write a Bourne shell program that counts the number of files (not directories) in each of the subdirectories
of the current working directory. You do not need to worry about hidden directories or files. Do not use
1s or cat. (You should not need the whole page to write the program.)

for £ in *

do
if [-d $f]
then
count=0
for file in $f/*
do
if [-f $file]
then
count=‘expr $count + 1°
fi
done
echo $f $count
fi
done

Page 3 of 7 CONT’D...

Question 3. [5 MARKS]

Consider the following program. In your answers below, assume that all processes terminate normally.

int main() {
int pl, p2;

pl = fork();
if(pl == 0) {
printf ("A\n");

p2 = fork();

if(p2 == 0) {
sleep(2);
printf ("B\n");
exit (0);

}

wait (0);

}

printf ("C\n");
return(0);

}
Part (a) [1 MARK]

How many processes are created (including the original process)? 3

Part (b) [1 MARK]

How many times is “C” printed? 2

Part (c) [1 MARK]

How many times is “A” printed? 1

Part (d) [1 MARK]
Is it possible for a “C” to be printed before an “A”? Yes

Part (e) [1 MARK]
Is it possible for “B” to be printed last? No

Page 4 of 7

CONT’'D...

Question 4. [9 MARKS]

Parts a) and b) refer to the following C statements:

char *pl, *p2;

char *a = malloc(10 * sizeof (char));
strncpy(a, "bcdefghij", 10);

Pl = a; p2 = a;

Part (a) [l MARK]

Write a C program fragment using pointer arithmetic that sets p1 to point to the character *d’ in the
character array a. Do not use array subscripts.

while(*pl != ’d’)
pl++;
or simply

pl += 2;

Part (b) [l MARK]

Write a C program fragment using array subscripts that sets p2 to point to the character g’ in the
character array a. Do not use pointer arithmetic.

for(i = 0; i < strlen(a); i++)
if (p2[i] == ’g’) {
p2 = &p2[il;
break;

or

p2 = al5];

Part (c) [3 MARKS]
Complete the C function below.

/* Returns a pointer to the first occurrence of the character ¢ in the
* string s. Returns NULL if the character is not found.*/

char *my_strchr(char *s, char c) {

int i;
for(i = 0; i < strlen(str); i++) {
if(strli] == ¢) {
return &str[i];

}
return NULL;

Page 5 of 7 CONT’D...

Part (d) [4 MARKS]

There are three errors in the code below that tests the function in part c). The code compiles cleanly,

without warnings. Identify and describe two of the errors and explain how to fix them.

int main()

{

char *strings[3] = {"Fun", "with", "pointers"};
char *p = malloc(strlen("pointers")+1);
int i;

for(i = 0; i < sizeof(strings); i++) {

p = my_strchr(strings[i], ’'n’);
printf ("p now points to %c\n", *p);
}
return 0O;

e memory leak in malloc for p — don’t need it

¢ Using sizeof is incorrect. It will give us 12, not 3. Use 3 instead.

e If my_strchr returns NULL then we will get a seg fault. Check that p is not NULL before printing.

Page 6 of 7

CONT’'D...

Question 5. [6 MARKS]

Write a C program that takes zero or more command line arguments. You program will check each
argument and print a message indicating whether the argument is a file, a directory, or neither a valid file
nor a directory.

For example suppose the current working directory contains a file called filel and a directory called
dirl and the program is called checkargs. There is also a directory /tmp, and /dev/null exists, but is
neither a file nor a directory. notafile does not exist.

Then checkargs filel dirl notafile /dev/null /tmp will print

filel is a file

dirl is a directory

notafile is not a file or a directory
/dev/null is not a file or a directory
/tmp is a directory

int
main(int argc, char **xargv)
{
int i;
struct stat sbuf;
for(i = 1; i < argc; i++) {

if (stat(argv[i], &sbuf) != -1) {

if (S_ISREG(sbuf.st_mode)) {
printf("Ys is a file\n", argv[i]);

} else if (S_ISDIR(sbuf.st_mode)) {
printf(")s is a directory\n", argv[il);

} else {
printf("%s is not a valid file or directory\n", argv[il);
}
} else {
printf("%s is not a valid file or directory\n", argv[il);
}
}
return 0;

}

Page 7 of 7 END OF SOLUTIONS

