‘?\9 UNIVERSITY OF TORONTO éo
6\ Faculty of Arts and Science QV'
%¢ DECEMBER EXAMINATIONS 2001 of’
O CSC 209H1 F Q,v'
/@ Duration — 3 hours Q\’

Examination Aids: None

Student Number: L L

Last Name:

First Name:

Lecture Section: L0101 Lecturer: Reid

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,
and read the instructions below carefully.)

1 /10
2 / 5
This final examination consists of 9 questions on 13 pages (includ-
ing this one), When you receive the signal to start, please make sure # 3: /9
that your copy of the examination is complete. Answer each question " 6
directly on the examination paper, in the space provided. #h
Be aware that concise, well thought-out answers will be rewarded 4 5: /12
over long rambling ones. Also, unreadable answers will be given zero
so write legibly. # 6: /10
You do not need to include header files or do error checking in
C programs except where specifically mentioned in a question. You # T /12
do not need to include the “#!” line in shell or perl programs. The 4 8: /12
last two pages of this exam contain a list of C function prototypes
structs, and some Perl and Bourne shell details. #0: /14
TOTAL: /90
Good Luck!
Page 1 of 13 CONT’D...

CSC 209H1 F Final Examination December 2001

Question 1. [10 MARKS]

Circle the correct answer for the following questions:

TRUE FALSE A process running in the background is an orphaned process.

Signals are used to send several bytes of data from one process to

TRUE FALSE
another process.

A process is in the blocked state if it is waiting for a child to terminate

TRUE FALSE (i.e., it has called wait (&status)).

TRUE FALSE An inode stores the contents of a file.

TRUE FALSE An inode contains a process id.
TRUE FALSE A signal can be generated by a software or hardware event.
TRUE FALSE The kill command is only used to terminate processes.
The following two commands will display the same list of file names:
TRUE FALSE find . -name "a209%" -print,
1ls ./a209%

A new process is created in Unix only when a running process calls

TRUE FALSE fork()

Question 2. [5 MARKS]

What is the output of the following set of Bourne shell commands, given that the current working directory
contains the following files? (’ is a forward quote, and ¢ is a backward quote).

a.c b.h d.ch f.c

cmd="1s"

echo $cmd *

echo *.[ch]

echo "$cmd *.c"

echo ’$cmd *.c’

echo ‘$cmd *.c°

Page 2 of 13 CONT’D...

December 2001 Final Examination CSC 209H1 F

Question 3. [9 MARKS]

In the program below, assume that all processes run until they terminate normally, and the shell that
executes the program does not terminate.

int main() {
int status, pl, p2;
pl = fork(); /*child 1%/

if(pl == 0) {
printf ("A\n");
p2 = fork();/*child 2%/
if(p2 == 0) {
printf ("C\n") ;
} else { order.
printf ("D\n") ;

Part (a) [3 MARKS]
Write the output of this program in a valid

}

wait (&status);

} else {
printf ("B\n") ;

printf ("All done\n"); exit(0);
}
Part (b) [3 MARKS]

For each process in the above program, state whether it is possible for the process to become a zombie. If
it is possible for the process to become a zombie, explain the circumstances under which it could become
a zombie, otherwise explain why the process could not become a zombie.

Part (c) [3 MARKS]

For each process in the above program, state whether it is possible for the process to become an orphan. If
the process can become an orphan explain the circumstances under which it would be orphaned, otherwise
explain why the process could not become an orphan.

Page 3 of 13 CONT’D. ..

CSC 209H1 F Final Examination December 2001

Question 4. [6 MARKS]

When the following Perl patterns are applied to the string $s1, write the value of $1 if the pattern matches
the string. If the pattern does not match the string, write “undef”

$s2 = "Don’t Cry Joe 3:03 1955";

/Qw+)/ 81 =

/O\w+)$/ $1 =

/(\d+)/ $1 =

/(\d:\d\d)$/ $1 =

/(I\d:1+)/ $1 =

/ ([\w\s]+)\s+\d+:\d+\s*\d?/ $1 =

Question 5. [12 MARKs]
Part (a) [3 MARKS]

List three types of software tools, other than an editor and a compiler, that a professional programmer
should be able to use well, and give a one-sentence description of the purpose of each.

Page 4 of 13 CONT’D...

December 2001 Final Examination CSC 209H1 F

Part (b) [4 MARKS]

A programmer chooses a language based on the type of problem to be solved. Give one reason why
a programmer might choose a compiled language over an interpreted language, and one reason why a
programmer might choose an interpreted language over a compiled language for a particular problem.

Part (c) [5 MARKS]

Semaphores may be used keep track of the references to some resource (e.g., a file, or a shared data
structure). The creator of the resource also creates and initializes the associated semaphore. The creator
uses the semaphore to determine when it is safe to delete the resource and the semaphore. It is safe to
delete a resource when there are no more references to it. Other processes use the sempahore to indicate
when they are actively using the resource (e.g., they have a file pointer to an open file, or a pointer to a
shared data structure).

Explain, in English, the semaphore operations required 1) by the creator of the resource and 2) by other
processes using the resource. Be clear about when processes might block, and the value of the semaphore
variable at each stage.

Page 5 of 13 CONT’D...

CSC 209H1 F Final Examination December 2001

Question 6. [10 MARKS]

Write a C program that uses fork and pipe to set up the following pipeline and execute it.

grep a209 /u/csc209h/submitted | wc

Page 6 of 13 CONT’D...

December 2001 Final Examination CSC 209H1 F

Question 7. [12 MARKS]

A given remote data server receives a connection request from a client, and reads a file name from the
client. Then it writes the contents of the file to the client, one line at a time (a line will be no longer than
LINE_SIZE). When it finishes sending the file, the server closes the connection.

Complete the following socket client program that sends requests to the remote data server for the
files given in names, creates the file, and writes the lines sent from the server to the file.

You must ensure that the client closes the socket, even when an error occurs. Recall that htons()
must be called to convert a port into network byte order, and that the socket type will be AF_INET.

#define SERVER_PORT 30000
#define LINE_SIZE 16

char *names[5]
char *hostname

{"afile", "bbfile", "cfile", "df", "efile"};
"peng‘uin";

int main(void) {

struct hostent *hp = gethostbyname (hostname) ;

Page 7 of 13 CONT’D...

CSC 209H1 F Final Examination December 2001

Question 8. [12 mMARKS]
Part (a) [8 MARKS]

Write a C program that creates 4 processes. Each of the four processes calls the function do_child()
defined below, and returns the result of do_child() as its termination code. The parent process will print
to standard output the value of each of the child’s termination code. If a child process receives a SIGTERM
signal the child should call a signal handler that terminates the child process, passing the current value
of (result/count) as the child’s termination code. The parent process should not modify the behaviour
of any signals. Several global variables have been declared for you. You may need to write one or more
functions in addition to main.

Part (b) [4 MARKS]
Modify do_child () so that it blocks SIGTERM while it is executing the two lines marked with an X. Write

the additional code beside the function do_child () and indicate with arrows where each piece of the added
code should go.

int child_result;
double result;
int count;

int do_child(void) {
result = 0.0;
count = O;

while(count < 10) {
result += runexp(); /*X*/
count++ /*X*/
}

return result / count;

(Complete part (a) below)

Page 8 of 13 CONT’D...

December 2001 Final Examination CSC 209H1 F

An extra page if you need it.

Page 9 of 13 CONT’D...

CSC 209H1 F Final Examination December 2001

Question 9. [14 mMARKS]

Assume you are given the source code and a Makefile which compiles an executable called updateFile.
The specifications of updateFile are given below. Your job is to write two programs that can be used to
test updateFile: a Perl program that will check if the output of updateFile follows the specifications,
and a Bourne shell program that runs the tests. Do not write updateFile. You may assume that the
source code and Makefile to produce the executable updateFile are in the current working directory.

The program updateFile creates or appends to a file the output from the parent and a child process.
It is run as “updateFile -p <pl> -c <cl> -f <fname>” where <pl> is the number of lines the parent
process writes to the file <fname> and <c1> is the number of lines the child process writes to <fname>.
A line written by the parent begins with “Parent”, and a line written by the child begins with “Child”.
updateFile uses a semaphore to synchronize the writes to the file.

Part (a) [5 MARKS]

Write a Perl program that takes two arguments and reads from standard input. The first argument is
the number of lines of input expected to begin with the word “Parent” and the second argument is the
number of lines expected to begin with the word “Child”. It will print “Correct” to standard output if it
found the correct number of lines beginning with “Parent” and “Child”, and “Wrong” otherwise.

Page 10 of 13 CONT’D...

December 2001 Final Examination CSC 209H1 F

Part (b) [9 MARKS]
Write a Bourne shell program to test updateFile. The shell program uses the Perl program in part a)
which is stored in a file called matchOut to check if the output produced by updateFile conforms to the
specifications.

The shell program produces output that answers the following questions. Assume all necessary files are
in the current working directory:

e Does the makefile correctly produce the executable?

o If the file “afile” exists, does “updateFile -p 5 -¢ 10 -f afile” produce the expected output? Assume
“afile” contains 3 lines beginning with “Parent” and 4 lines beginning with “Child”.

o If the file “bfile” does not exist does “updateFile -p 1 -c 1 -f bfile” produce the expected output?

e Does updateFile remove the semaphore when it terminates? (Assume that the user is not running any
other programs requiring semaphores.) If the semaphore is not removed, the shell program should
remove it.

Some commands you will find useful are “whoami” which prints the name of the user, “ipcrm sem <key>”
which removes a semaphore, and “ipcs —-s” which produces output of the form:

key semid owner perms nsems status
0x0006£385 5177350 a209xxxx 666 1

Page 11 of 13 CONT’D...

CSC 209H1 F Final Examination December 2001

int accept(int sock, struct sockaddr *addr, int addrlen)

int bind(int sock, struct sockaddr *addr, int addrlen)

int close(int fd)

int closedir(DIR *dir);

int connect(int sock, struct sockaddr addr, int addrlen)

int execl(const char *path, char *argvO, ..., (char *)0)

int execlp(const char *file, char *argv0O, ..., (char *)0)

int execv(const char *path, char *argv[])

int execvp(const char *file, char *argv[])

int fclose(FILE *stream)

int FD_ISSET(int fd, fd_set &fds)

void FD_SET(int fd, fd_set &fds)

void FD_CLR(int fd, fd_set &fds)

void FD_ZERO(fd_set &fds)

char *fgets(char *s, int n, FILE *stream)

int fileno(FILE *stream)

pid_t fork(void)

FILE *fopen(const char *file, const char *mode)

int fprintf(FILE *stream, const char *format, ...)

struct hostent *gethostbyname(const char *name)

int kill(int pid, int signo)

int listen(int sock, int n)

int open(const char *path, int oflag)

DIR *opendir(const char *name);

int pclose(FILE *stream)

int pipe(int filedes[2])

FILE xpopen(char *cmdstr, char *mode)

struct dirent *readdir(DIR *dir);

ssize_t Readline(int filedes, void *buf, size_t maxlen);

ssize_t Readn(int filedes, void *buf, size_t nbytes);

int select(int maxfdpl, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)

int semctl(key_t key, int semnum, int cmd, union semun arg)
/*cmd has the value SETVAL, GETVAL, IPC_RMID */

int semget(key_t key, int nsems, int semflags)

int semop(int semId, struct semops *sem ops, int nops)

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

int sigaddset(sigset.t *set, int signum);

int sigemptyset(sigset.t *set);

int sigprocmask(int how, const sigset t *set, sigset_t *oldset);
/*how has the value SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK */

unsigned int sleep(unsigned int seconds);

int socket(int family, int type, int protocol)

int sprintf(char *s, const char *format, ...)

int stat(const char *file name, struct stat *buf);

char *strncat(char *dest, const char *src, size_t n);

int strncmp(const char *sl1l, const char *s2, sizet n);

char *strncpy(char *dest, const char *src, size_t n);

int wait(int &status)

int waitpid(int pid, int *stat, int optiomns)

void Writen(int filedes, const void *buf, size t nbytes);

WIFEXITED(status) WEXITSTATUS (status)
WIFSIGNALED (status) WTERMSIG(status)
WIFSTOPPED (status) WSTOPSIG(status)

Page 12 of 13 CONT’D...

December 2001

struct sockaddr_in {
sa_family_t

Final Examination

sin_family;

unsigned short int sin_port;
struct in_addr sin_addr;
unsigned char pad[8];
};
struct hostent {
char *h_name; /*
char **xh_aliases; /* alias list */
int h_addrtype; /*
int h_length; /*
char *xh_addr_list; /*

}

struct sigaction {

void (*sa_handler) (int);

sigset_t sa_mask;

host address type */
length of address */
list of addresses */

/* Unused */

official name of host */

int sa_flags; /* 0 %/
}
Shell and Perl comparison operators
| Shell | Perl Description
-d filename -d filename Exists as a directory
-f filename -f filename Exists as a regular file.
-r filename -r filename Exists as a readable file
-w filename -w filename Exists as a writable file.
-x filename -x filename Exists as an executable file.
-z string string eq "" True if empty string
strl = str2 strl eq str2 True if strl equals str2
strl != str2 strl ne str2 True if strl not equal to str2
intl -eq int2 intl == int2 True if intl equals int2
-ne, -gt, -1t, -le | '=, >, >=, K, <= For numbers
1=, >, >=, <, <= ne, gt, 1t, le For strings
-a, -o &&, || And, or.
Perl pattern matching:
\s space
\w | word
\d | digit
(] one character of a set Meta characters that
[*] | any character not in set need to be escaped are
+ one or more N CYLL .8 7+
* Zero or more
? Zero or omne
any character

Perl functions:
push(ARRAY, LIST)

pop(ARRAY) -- returns LIST
sort BLOCK LIST -- returns LIST
defined (SCALAR) -- returns true if SCALAR is defined, false otherwise
split (/PATTERN/, SCALAR) - returns LIST

Page 13 of 13

CSC 209H1 F

END OF EXAMINATION

