December 2001 Final Examination — Solutions CSC 209H1 F

Question 1. [10 MARKS]

Circle the correct answer for the following questions:

TRUE FALSE A process running in the background is an orphaned process.

Signals are used to send several bytes of data from one process to
TRUE FALSE
U another process.

A process is in the blocked state if it is waiting for a child to terminate
TRUE FALSE (i.e., it has called wait (&status)).

TRUE FALSE An inode stores the contents of a file.

TRUE FALSE An inode contains a process id.

TRUE FALSE A signal can be generated by a software or hardware event.

TRUE FALSE The kill command is only used to terminate processes.

The following two commands will display the same list of file names:

TRUE FALSE find . -name "a209%" -print,
1s ./a209%
TRUE FALSE fAO:E‘EV) process is created in Unix only when a running process calls

Question 2. [5 MARKS]

What is the output of the following set of Bourne shell commands, given that the current working directory
contains the following files? (’ is a forward quote, and ¢ is a backward quote).

a.c b.h d.ch f.c

cmd="1s"

echo $cmd * | 1ls a.c b.h d.ch f.c |
echo *.[ch] ‘ a.c b.h fc ‘
echo "$cmd *.c" | 1ls *.c |
echo ’$cmd *.c’ ‘ $cmd *.c ‘
echo ‘$cmd *.c¢ | a.c f.c |

Page 1 of 10 CONT’D...

CSC 209H1 F Final Examination — Solutions December 2001

Question 3. [9 MARKS]

In the program below, assume that all processes run until they terminate normally, and the shell that
executes the program does not terminate.

int main() {
int status, pl, p2;
pl = fork(); /*child 1%/

if(pl == 0) {
printf("A\n"); Part (a) [3 MARKS]
p2 = fork();/*child 2%/ Write the output of this program in a valid
if(p2 == 0) { order.
printf("C\n"); B
} else { A
printf ("D\n") ; D
} All done
wait (&status); C
All done
} else { All done

printf ("B\n");

printf ("All done\n"); exit(0);
}
Part (b) [3 MARKS]
For each process in the above program, state whether it is possible for the process to become a zombie. If

it is possible for the process to become a zombie, explain the circumstances under which it could become
a zombie, otherwise explain why the process could not become a zombie.

Child 1 would become a zombie if it terminates or is killed before the parent terminates. Child 2 would
become a zombie if it terminates before Child 1 calls wait.

Part (c) [3 MARKS]

For each process in the above program, state whether it is possible for the process to become an orphan. If
the process can become an orphan explain the circumstances under which it would be orphaned, otherwise
explain why the process could not become an orphan.

Child 1 could become an orphan if the parent terminates before it does. Child 2 could not become an
orphan because it’s parent calls wait, so the child is guaranteed to terminate before the child. The parent
could not become an orphan because the shell that executes it does not terminate.

Page 2 of 10 CONT’D...

December 2001 Final Examination — Solutions CSC 209H1 F

Question 4. [6 MARKS]

When the following Perl patterns are applied to the string $s1, write the value of $1 if the pattern matches
the string. If the pattern does not match the string, write “undef”

$s1 = "Don’t Cry Joe 3:03 1955";

/Ow)/ $1 = | Don |

/O\w+)$/ $1 = | 1955 |

/(\d+)/ $1 = | 3 |

/(\d:\d\d)$/ $1 = | undef \

/(I\d:1+)/ $1 = | 3:03 |
/(D\w\sT#)\s+\d+:\d+\s¥\d?/ $1 = | t Cry Joe |

Question 5. [12 MARKs]
Part (a) [3 MARKS]

List three types of software tools, other than an editor and a compiler, that a professional programmer
should be able to use well, and give a one-sentence description of the purpose of each.

e version control system

e build system (e.g. make)
e debugger

e profiler

e regression testing

e issue tracking

Page 3 of 10 CONT’D...

CSC 209H1 F Final Examination — Solutions December 2001

Part (b) [4 MARKS]

A programmer chooses a language based on the type of problem to be solved. Give one reason why
a programmer might choose a compiled language over an interpreted language, and one reason why a
programmer might choose an interpreted language over a compiled language for a particular problem.

A compiled language can lead to faster code since the compiler can perform global optimizations.

An interpreted language is good for short programs or prototypes that do not need to be high-
performance since there are usually many machine level instructions for each line of interpreted code.
Also, the compile debug cycle is shortened.

Part (c) [b MARKS]

Semaphores may be used keep track of the references to some resource (e.g., a file, or a shared data
structure). The creator of the resource also creates and initializes the associated semaphore. The creator
uses the semaphore to determine when it is safe to delete the resource and the semaphore. It is safe to
delete a resource when there are no more references to it. Other processes use the sempahore to indicate
when they are actively using the resource (e.g., they have a file pointer to an open file, or a pointer to a
shared data structure).

Explain, in English, the semaphore operations required 1) by the creator of the resource and 2) by other
processes using the resource. Be clear about when processes might block, and the value of the semaphore
variable at each stage.

Creator: Creates and initializes the semaphore to 0. When it deletes the semaphore, it blocks until
the value of the semaphore is 0, and then deletes the semaphore.

Other processes: Gets a semaphore. When a process is actively using the resource it increments the
semaphore variable, and decrements the semaphore variable when it is finished using the resource. Other
processes never block on a semaphore operation.

Page 4 of 10 CONT'D. ..

December 2001 Final Examination — Solutions CSC 209H1 F

Question 6. [10 MARKS]

Write a C program that uses fork and pipe to set up the following pipeline and execute it.

grep a209 /u/csc209h/submitted | wc

int

main()

{
int fd[2];
char buf[10];

pipe (fd) ;
if ((fork()) == 0) {

dup2(£fd[1], fileno(stdout));
close(£d[0]); close(£fd[1]);
execlp("/usr/ucb/grep", "grep", "a209",
"/u/csc209h/submitted", 0);
perror("exec");
} else {
dup2(£d[0], fileno(stdin));

close(£d[0]); close(£fd[1]);

execlp("/usr/bin/wc","wc", (char *)0);
perror ("exec");

Page 5 of 10 CONT’D...

CSC 209H1 F Final Examination — Solutions December 2001

Question 7. [12 MARKS]

A given remote data server receives a connection request from a client, and reads a file name from the
client. Then it writes the contents of the file to the client, one line at a time (a line will be no longer than
LINE_SIZE). When it finishes sending the file, the server closes the connection.

Complete the following socket client program that sends requests to the remote data server for the
files given in names, creates the file, and writes the lines sent from the server to the file.

You must ensure that the client closes the socket, even when an error occurs. Recall that htons()
must be called to convert a port into network byte order, and that the socket type will be AF_INET.

#define SERVER_PORT 30000
#define LINE_SIZE 16

char *names[5]
char *hostname

{"afile", "bbfile", "cfile", "df", "efile"};
"penguin";

int main(void) {
struct hostent *hp = gethostbyname (hostname) ;

int i; FILE *fp; int soc; char buf [BLOCK_SIZE];
struct sockaddr_in peer;

peer.sin_family = AF_INET;
peer.sin_port = htons(SERVER_PORT) ;
peer.sin_addr = *((struct in_addr *)hp->h_addr);

for(i = 0; i < 5; i++) {
soc = socket (AF_INET, SOCK_STREAM, 0);

if (connect(soc, (struct sockaddr *)&peer, sizeof(peer)) == -1) {
perror(“"client:connect"); close(soc);
exit(1);

}

write(soc, names[i], strlen(names[i]));

if ((fp = fopen(names[i], "w")) == NULL) {
perror ("fopen") ;
close(soc);
break;

}

while(read(soc, buf, sizeof(buf))) {
printf ("%s\n", buf);
fprintf (fp, "%s", buf);

}

close(soc);

fclose(fp);

Page 6 of 10 CONT’D. ..

December 2001 Final Examination — Solutions CSC 209H1 F

Question 8. [12 mMARKS]
Part (a) [8 MARKS]

Write a C program that creates 4 processes. Each of the four processes calls the function do_child()
defined below, and returns the result of do_child() as its termination code. The parent process will print
to standard output the value of each of the child’s termination code. If a child process receives a SIGTERM
signal the child should call a signal handler that terminates the child process, passing the current value
of (result/count) as the child’s termination code. The parent process should not modify the behaviour
of any signals. Several global variables have been declared for you. You may need to write one or more
functions in addition to main.

Part (b) [4 MARKS]
Modify do_child () so that it blocks SIGTERM while it is executing the two lines marked with an X. Write

the additional code beside the function do_child () and indicate with arrows where each piece of the added
code should go.

int child_result;
double result;

int count;
int do_child(void) { | sigset_t tset;
result = 0.0; <--| sigemptyset (&tset);
count = 0; | sigaddset(&tset, SIGTERM) ;

while(count < 10) {
<-- sigprocmask(SIG_BLOCK, &tset, NULL);
result += runexp(); /*X*/
count++ /*X*/
<-- sigprocmask(SIG_UNBLOCK, &tset, NULL);
}
return result / count;

s
(Complete part (a) below)

Page 7 of 10 CONT’D...

CSC 209H1 F Final Examination — Solutions

An extra page if you need it.

void quit(int code) {
exit(child_result);
}

int main(void) {
int res, i, pid, status; int total;
struct sigaction sa, old;

for(i = 0; i < 3; i++) {

if((pid = fork())== 0) {
sa.sa_handler = quit;
sigemptyset(&sa.sa_mask) ;
sa.sa_flags = 0;

res = sigaction(SIGTERM, &sa, &old);
child_result = do_child();
exit(child_result);

}
for(i = 0; i < 3; i++) {
if ((pid = wait(&status)) > 0) {

total = WEXITSTATUS(status);
printf ("Result from %d = %d\n", pid, total);

Page 8 of 10

December 2001

CONT’'D...

December 2001 Final Examination — Solutions CSC 209H1 F

Question 9. [14 mMARKS]

Assume you are given the source code and a Makefile which compiles an executable called updateFile.
The specifications of updateFile are given below. Your job is to write two programs that can be used to
test updateFile: a Perl program that will check if the output of updateFile follows the specifications,
and a Bourne shell program that runs the tests. Do not write updateFile. You may assume that the
source code and Makefile to produce the executable updateFile are in the current working directory.

The program updateFile creates or appends to a file the output from the parent and a child process.
It is run as “updateFile -p <pl> -c <cl> -f <fname>” where <pl> is the number of lines the parent
process writes to the file <fname> and <c1> is the number of lines the child process writes to <fname>.
A line written by the parent begins with “Parent”, and a line written by the child begins with “Child”.
updateFile uses a semaphore to synchronize the writes to the file.

Part (a) [5 MARKS]

Write a Perl program that takes two arguments and reads from standard input. The first argument is
the number of lines of input expected to begin with the word “Parent” and the second argument is the
number of lines expected to begin with the word “Child”. It will print “Correct” to standard output if it
found the correct number of lines beginning with “Parent” and “Child”, and “Wrong” otherwise.

#!/local/bin/perl

$ARGV[0] ;
$ARGV[1];

my $np
my $nc

my $sumParent = 0;
my $sumChild = O;
while (<STDIN>) {

if (/"Parent/) {
$sumParent++;

}

if(/~Child/) {
$sumChild++;

}

if ($sumParent == $np && $sumChild == $nc) {
print "Correct";

} else {
print "Wrong";

}

Page 9 of 10 CONT’D. ..

CSC 209H1 F Final Examination — Solutions December 2001

Part (b) [9 MARKS]
Write a Bourne shell program to test updateFile. The shell program uses the Perl program in part a)
which is stored in a file called matchOut to check if the output produced by updateFile conforms to the
specifications.

The shell program produces output that answers the following questions. Assume all necessary files are
in the current working directory:

e Does the makefile correctly produce the executable?

o If the file “afile” exists, does “updateFile -p 5 -c¢ 10 -f afile” produce the expected output? Assume
“afile” contains 3 lines beginning with “Parent” and 4 lines beginning with “Child”.

o If the file “bfile” does not exist does “updateFile -p 1 -c 1 -f bfile” produce the expected output?

e Does updateFile remove the semaphore when it terminates? (Assume that the user is not running any
other programs requiring semaphores.) If the semaphore is not removed, the shell program should
remove it.

Some commands you will find useful are “whoami” which prints the name of the user, “ipcrm sem <key>”
which removes a semaphore, and “ipcs —-s” which produces output of the form:

key semid owner perms nsems status
0x0006£385 5177350 a209xxxx 666 1

make

if [! -x updateFile]

then
echo "cannot find updateFile"
exit

fi

touch afile

echo "Parent foo
Child blah

Child blah

Child blah

Parent Child

Child Parent

Parent Parent" > afile

rm bfile

updateFile -p 5 —-c 10 -f afile
matchOut 8 14 < afile

updateFile -p 1 -c 1 -f bfile
matchOut 1 1 < bfile

Page 10 of 10

(continued)
name=‘whoami ¢
sem=‘ipcs -s | grep $name’

if [-z "$sem" 1]
then

echo "Semaphore removed"
else

echo "Semaphore not removed"
fi

END OF SOLUTIONS

