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1. Introduction

This thesis investigates the recently proposed method of ’Unsupervised Kernel Regres-

sion’ (UKR). The theoretical placement of this method as a means to pursue Nonlin-

ear Dimensionality Reduction (NLDR) is analyzed, the technicalities involved with its

practical implementation are inspected, and its applicability to real world problems is

explored.

The UKR method stems from the area of Machine Learning which is concerned

with the development of algorithms that discover patterns in data. More specifically,

in relying on the key idea to let a system learn from examples what is important for a

specific task, within this area methods are being developed that help to classify, detect,

manipulate and produce patterns in a wide range of areas. These methods are not only of

increasing practical interest, as they may be used to cope with the ever growing amount

of data available in electronic form today, but also play an important role in the area

of Artificial Intelligence, where they act as models of those mechanisms that lie at the

heart of our own cognitive capabilities.

The methods developed in the area of Machine Learning can be divided into two

broad classes. Those belonging to the first are concerned with generalizing knowledge

presented by means of examples to new, unseen data. Inspired by biological learning,

where any kind of knowledge residing in the examples needs to be pointed at by a

teacher who corrects and thereby adjusts the learning system, the respective area is gen-

erally referred to as Supervised Learning (SL). It is contrasted and complemented by

Unsupervised Learning (UL), which aims at developing systems that in the absence of

prior knowledge automatically discover meaningful information hidden in the example

1



1. Introduction

data. These methods thereby achieve the goal of accounting for the variability in the

data and to provide alternative representations. Besides providing some kind of pre-

processing which is often crucial to simplify a subsequent SL task these systems give

rise to many further applications. Some of these will be sketched throughout. It is this

second class of methods that UKR belongs to.

The two main tasks of UL can be defined as dimensionality reduction and density

estimation. The UKR method may be cast in two distinct ways leading to a variant

that pursues dimensionality reduction and a second variant that includes some kind of

density estimation. This thesis examines only the first variant, and brief references to

the closely related second method will be made at the appropriate places.

1.1. Dimensionality Reduction

Generally, methods in dimensionality reduction discover more compact representations

of their input data, while at the same time they try to keep the usually resulting infor-

mation loss at a minimum. These methods thereby minimize the required storage space

or bandwidth capacity for saving or transmitting the data, which gives rise to some of

their most widespread applications. Additionally, the resulting representations are of-

ten expected to capture the meaning inherent in the data more explicitly. This provides

the basis for applications such as denoising and visualization and has also led to an in-

creasing interest of the area in computational neuroscience for these methods, where the

awareness that many higher level cognitive capabilities are not possible without some

kind of dimensionality reduction is common grounds.

The basis for the reasoning adopted in a large body of methods in Machine Learning

in general and in dimensionality reduction virtually exclusively is to represent the input

and output data for these methods as sets of real valued vectors. For some given set of

input vectors dimensionality reduction then amounts to computing an equally sized set

of output vectors with lower dimensionality that fits the meaning of the input data set as

closely as possible. Since the lower dimensional representations in many circumstances

can be thought of as representing the ’real’ or ’original’ meaning of the data more closely

than the (often noisy) input data, they will formally be denoted by the letter � , whereas

2



1. Introduction

the vectors that are the input to the respective algorithm will be written � , although the

converse notation can often be found in the literature.

For a given set of � input vectors �������	��
������
�������
�� , the problem of dimension-

ality reduction is then defined as that of finding a corresponding set of output vectors
� �����	��
������
�������
�� , a mapping ���! "�$#  "� and a mapping %&�! '�"#  (� such that) �*����
��+�,�+
�-


%/.0�1�324� � � (1.1)

��. � �524� 6�1�/78�9� (1.2)

(see e.g. [CG01]). The function � will also be referred to as ’forward mapping’ or

’coding function’ and % to as ’backward mapping’ or ’decoding function.’ The output

variables are usually referred to as ’scores’ or ’features’ in the literature. Here, the latter

will additionally be denoted ’latent space realizations,’ or simply ’latent variables’ with

reference to chapter 2. Using the common Machine Learning jargon, the process of

determining the scores and estimating models for the involved functions from the input

data will be referred to as training and the set of input data to as training data. De-

pending on the application at hand, not all of the three sub-problems of dimensionality

reduction necessarily need to be solved. If, for example, the aim of the dimensionality

reduction task is to obtain a representation amenable to convenient visualization of a

given dataset, only this representation – in other words, only a set of suitable scores –

is needed. If the purpose is noise reduction or any kind of pattern detection, models for

both the coding and decoding function become necessary in addition. Only the presence

of a model for � is demanded if any kind of pattern production is aimed at.

In those cases in which a model for � or % is needed, the concept of generalization

becomes crucial. The problem of generalization in general refers the fact that usu-

ally only a finite sized training data set is available for adapting a model, which shall

afterwards be applied to new data not in this set. The optimization of the expected per-

formance on the unseen data is the actual objective of the learning task. As a means to

avoid adapting to noise present in the input data, which obviates good generalization and

is usually referred to as overfitting, generally the ’flexibility’ of the model is restrained

3



1. Introduction

by some kind of complexity control. The determination of a suitable complexity control,

referred to as model selection in the literature, is then conducted along with the training

of the actual model and has to make use of the available data in some way. A widely

used approach to model selection which plays an important role in this thesis is cross

validation. It denotes the method of partitioning the available data into training and test

sets and using the first for adapting a model using some specific complexity and the

second to assessing the resulting performance and adjusting the complexity as required.

An iteration of this procedure using different training set/test set partitionings may be

used to improve reliability of the overall outcome. In the special case of the training set

comprising ��� � elements and test set � element giving rise to � train/test iterations

this is referred to as leave-one-out cross validation.

Generally, the notion of generalization is closely connected to the notion of a test set

and the error that a trained model gives rise to on this test set. Since in UL a test set only

contains input elements, the term generalization here usually concerns some projection

error in the input space. However, following [RS00], in this thesis the term generaliza-

tion will be used in a somewhat broader sense and will denote the general problem of

applying the forward or the backward mapping to new input or output elements.

1.2. Nonlinear Dimensionality Reduction /

Overview

The oldest and best understood method for dimensionality reduction is Principal Com-

ponent Analysis (PCA), which is based on the spectral decomposition of the data covari-

ance matrix as described in detail below. As a linear model, PCA has some important

advantages over many of the nonlinear models discussed in this thesis, in particular with

regard to generalization.

Many nonlinear generalizations to PCA have been proposed. A broad class of these

nonlinear models, that will be referred to as ’projection models’ in the following and that

in particular capture some of the generalization properties of PCA, can be represented

in a unified way within the ’Generalized Regression Framework.’ This framework also

4



1. Introduction

builds the starting point for derivation of UKR. This general framework for UL shall be

delineated in chapter 2. The second class of methods in UL – that include some kind

of density estimation as described above – will be referred to as ’generative models’

in the following. These models are also captured within this framework. Since the

generative part of the generalized regression framework also builds the starting point

for a generative variant of UKR (which is not subject of this thesis, however), it will

also be sketched in chapter 2.

Besides these methods there is a second broad class of methods that have been pro-

posed within the last years which are not captured within this general framework and

might therefore be conceived of as heuristic methods. Virtually all of these rely on a

spectral decomposition of some data proximity matrix that gives rise especially to an

efficient computation of latent space realizations of the input data. As these nonlinear

spectral methods in contrast to PCA do not allow for a straightforward estimation of

the involved mappings they have specific problems with regard to generalization. These

kinds of methods will be described in detail in chapter 3.

The UKR method for NLDR can be posed in two ways giving rise to models belong-

ing to the ’projection’ and to the ’spectral’ class, respectively. Both will be described

in chapter 4. Chapter 4 will also present practical considerations regarding their imple-

mentation in detail and illustrate this with several data sets. In addition, issues regarding

generalization will be dealt with in some detail, and in particular a solution to combine

the generalization capability of the projection models with the efficiency of spectral

models will be proposed.

In chapter 5 some applications of UKR used as a method to perform nonlinear di-

mensionality reduction will be presented, where in particular the different prospects

arising from latent space realization, applicability of � and applicability of % will be

focused on.

Chapter 6 gives a review and summary of the issues dealt with in this thesis.

5



1. Introduction

1.3. Conventions and Notation

In the following, scalar and vector valued variables will be denoted by lowercase italic

letters, e.g. � . Matrices will be denoted by uppercase italic letters, e.g.
�

. Only real

valued vectors and matrices will be used. The set of ��� -dimensional input vectors � �
and the set of ��� -dimensional output vectors � � , ��� ��
������/
�� , will be represented by

the ��� � matrix � and by the ��� � matrix
�

, respectively.

A vector of ones will be denoted 	 , a vector of zeros 
 . In the cases where these

notations are used, the dimensionality of these vectors will always be obvious from the

context. The mean of some dataset represented for example by the matrix � is defined

as ��	 . The dataset � will be said to be mean centered if it holds that ��	 ��
 .
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2. Unsupervised Learning as

Generalized Regression

The UKR method investigated in this thesis arises naturally as a nonparametric instance

from the ’Generalized Regression’ framework for Unsupervised Learning[Mei00]. In

this chapter this framework for Unsupervised Learning is be briefly reviewed, an over-

view over the two kinds of models it gives rise to is given, which are Projection Models

and Generative Models, and it is shown how some of the known algorithms in Unsuper-

vised Learning are reflected within this framework.

2.1. Conventional Regression

The purpose of regression is to model a functional relationship between random vari-

ables that is assumed to be made up of a systematic part and some unpredictable, ad-

ditive noise. More precisely, let � denote a function that maps an input random vector
� �  "� onto an output random vector ���  � and let � �  "� denote some (zero

mean) random vector that corresponds to the unpredictable noise. The relationship to

be modeled is then assumed to be given by

� � ��. � 2 � ��
�� .�� 2���� � (2.1)

7



2. Unsupervised Learning as Generalized Regression

To this end an approximation ��� to � is chosen from a set of candidate functions with

respect to the objective to minimize the expected prediction error:

� � � �������
	�� �����
� � ��. � 2

�����
. � 
� 2 � � � � � (2.2)

Under appropriate circumstances the function ��� that satisfies this demand can be shown

to be given by the conditional expectation [HTF01]:

� � � ��� ��� ��� � �
�
�
.5��� � 2 � � � (2.3)

It is referred to as the regression function and its range as the regression manifold. In

practice, ��� needs to be estimated from finite data sets for the input and output variables.

One way this can be achieved is by replacing 2.2 with the empirical prediction error

��� �
� 
�"!$# � �1� � ��. � �32

� ��
(2.4)

and minimizing this functional with respect to the function parameters. The input vari-

ables in this case are practically treated as fixed parameters instead of as random vectors.

Another option is to take into consideration a parameterized model
�
.0��� ��%'& 2 of the

conditional probability density function of the output variables, given the input vari-

ables, for some parameter vector & . Under the assumption of the sample elements to

be drawn independently and all from the same distribution, the product density function

specifies the sample probability density, so that the estimation of � can be realized by

maximization thereof with respect to the function parameters. In practice equivalently

the negative logarithm, (
� � �

� 
�)!$#+*�, � � .0�9�-� � � %'& 2 
 (2.5)

is minimized, which gives rise to a learning principle generally referred to as maximum

likelihood.

8



2. Unsupervised Learning as Generalized Regression

Yet another option that will not be used any further in this thesis, but which is men-

tioned here for the sake of completeness, is to regard the parameters as random vari-

ables themselves and learning as an update of their probability distribution, known as

Bayesian learning [HS89].

2.2. Unsupervised Regression

The task of UL can be approached by utilizing a modified version of the regression

model. As detailed in [Mei00] the difference then lies in the usage of the input variables.

In the supervised case regression amounts to the estimation of a functional relationship

utilizing a sample set for the input and their related output variable realizations. In UL

the input variable realizations are conceived of as missing and therefore in the need to

be estimated together with the functional relationship. The distinction can be expressed

by referring to the input variables in an unsupervised setting as latent variables1.

With regard to the practical learning task two important differences to the supervised

case arise from the use of latent variables, the first of them affecting the definition of the

learning problem: Since the input variables are not given in advance, one has to decide

on a suitable domain for them. For that purpose several distinctions of the type of latent

variables have to be taken into account, all leading to different types of regression man-

ifolds. An important distinction is between deterministic and random latent variables

leading to models referred to as projection models and generative models, respectively.

Another distinction of the latent variable types is between continuous and discrete ones.

Together with the option of choosing a class of candidate functions, where in particular

the distinction between linear and nonlinear functions is of interest, the two dimensions

along which a classification of the latent variables is possible, allow for the formulation

of a wide spectrum of models of UL known from the literature. Some of these will be

sketched in the subsequent sections.

The second novelty of unsupervised regression as compared to the supervised case

1The term latent variable has a longstanding history in statistical modeling and is closely related to the
way it is used here. The informal definition given here is completely sufficient and self-contained
with regard to the way this term will be used in the following.

9



2. Unsupervised Learning as Generalized Regression

regards the necessity to make use of some kind of learning scheme. Since the more

ambitious goal of finding latent variable realizations in addition to parameters defining

a suitable functional relationship needs to be tackled here, one has to conceive of a way

to accomplish these tasks simultaneously. For deterministic latent variables a generally

applicable approach to achieve this twofold objective is the ’Projection - Regression -

Scheme.’ It is obtained from an iteration of a ’Projection’ - Step, used to find optimal

values for the latent variables, given some values for the function parameters, and a

’Regression’ - Step, used to re-estimate function parameters, while the values for the

variables are kept constant. This optimization scheme can be thought of as a deter-

ministic analog to the well known EM-algorithm, which can be applied in case of a

generative model. Both, projection and generative models, the use of their respective

learning schemes and examples of their applications will be described in detail below.

2.3. Optimization

As indicated above, within the Generalized Regression framework learning in general

will be achieved by an iteration of a minimization of 2.4 or 2.5 with regard to the func-

tion parameters and an update of the latent variable realizations. However, the presence

of a usually very large number of parameters in UL, owing to the fact that the latent

variables need to be estimated here, as well, often cause the respective objective func-

tions to be fraught with local minima. Therefore, unless a closed form solution for the

concerned functions exists, the success of the learning task depends crucially on the ini-

tialization or - if no indication regarding auspicious areas in parameter space is available

- on the use of an optimization strategy that helps to avoid or at least to diminish the

chance of getting trapped in a local minimum.

The well-known method of Simulated Annealing tries to achieve this by allowing

for random influences to appeal during the parameter update in an iterative optimiza-

tion process. This alleviates the chance of getting stuck in a local minimum. Gradu-

ally reducing these random influences, called annealing by analogy to the temperature

controlled process of crystal growing, can then result in the probability that the global

minimum of the objective function is actually achieved to be asymptotically, in the limit

10



2. Unsupervised Learning as Generalized Regression

of an annealing schedule infinitely slow, to be equal to one.

An alternative strategy, which will be applied in this thesis, in particular for the ap-

proach described in section 4.2, chapter 4, is the method of Homotopy. This strategy is

based on a set of transformations of the original error function into simpler or smoother

functions with a smaller number of local minima. Minimization of the original func-

tion is then performed by starting with the most simple function present and gradually

reducing the degree of smoothing during minimization until the original error function

is received. Often, a suitable transformation arises automatically from the need to im-

pose a complexity control. Homotopy in this case amounts to gradually releasing the

constraints that the complexity control poses. This is in particular the case for the UKR

model as shown later.

2.4. Projection Models

By using deterministic latent variables one obtains the class of models that is of particu-

lar concern with respect to dimensionality reduction and therefore of special interest for

the methods described in this thesis. The latent variables are in this case treated formally

as parameters that need to be estimated along with the function parameters. Since the

backward mapping is modeled via some kind of projection, these models are generally

referred to as Projection Models. In detail, this means that the score that corresponds

to an observable data space element is given by its projection index which is formally

defined as that latent space element that yields a minimal reconstruction error under � .

The dependency on a particular model for � is often symbolized using the expression ���

for the backward mapping.

In the following the function class will be restricted to contain functions of the form:

��. � 2 � ��� . � 2 
 (2.6)

with parameter matrix
�

and
�

being a vector of basis functions to be specified before-

hand. The two aforementioned optimization steps (Projection- and Regression-Step) are

11



2. Unsupervised Learning as Generalized Regression

then given by:

6� �/� ��� � �
	��
�

�
�9� � ��� . � 2

���

�*� ��
�������
�� 
 (2.7)

and

6� � ����� �
	��
�

 
�

�
�9� � ��� . � �32

���
� (2.8)

Note that in terms of the mappings � and % , involved in NLDR, optimization using

this procedure only directly concerns � , while an optimal % is rather ’plugged in’ instead

of being adapted. In [Mal98] the importance of this proceeding is pointed out in a

comparison of Principal Curves [HS89] which own this property, too, and so called

Autoassociative Neural Networks (see [Kra91]) which do not. In particular, the presence

of so called ambiguity points that cause the projection index defined as above to be a

discontinuous function generally let the latter variant, where the backward mapping is

a continuous function, fail to correctly approximate the given dataset. The importance

of this finding for the UKR method resides in the fact that this method can be posed in

two distinct ways. The first straightforwardly gives rise to a (nonparametric) projection

model similar to those described in this chapter, in particular with the backward mapping

defined as proposed above, while the second variant does not and can empirically shown

to be flawed accordingly. The conclusions to be drawn from this finding will be detailed

in 4.

As stated above, several methods for NLDR known from the literature may be for-

malized within the framework described in this section by varying the latent variable

types and the class of candidate functions. In the following, some of the possible deci-

sions on the latent variables and candidate functions and the algorithms they give rise to

shall be sketched.

12



2. Unsupervised Learning as Generalized Regression

2.4.1. Principal Axes

By defining the latent variable domain to be  � , i.e. using (deterministic) continues

latent variables and restricting the function class to linear functions:

��. � 2 ��� ��� � 
��	�  � 
 � �� ����� 
 (2.9)

the resulting learning method is essentially equal to Principal Component Analysis. Al-

though the Projection-Regression-Scheme could be applied, the special, linear structure

in this case gives rise to a closed form solution. Specifically, this is obtained through an

eigenvalue decomposition of the input sample covariance matrix and therefore will be

described in more detail in chapter 3, where also other, in particular recently developed

nonlinear methods with this special property shall be delineated.

2.4.2. Principal Curves

Restriction of the latent variable domain to a closed interval ��� 
 � � , on the real line, and

� defined as

��. � 2 � ��� . � 2 
 � �� ���
	 
 (2.10)

gives rise to nonlinear (one-dimensional) principal manifolds, or ’principal curves.’ In

fact, this way a generalization of the Principal Curves model proposed by [KKLZ00]

is achieved, that are modeled by polygonal line segments there. The restriction of the

latent variable domain is necessary here, as in this nonlinear case the absence of such a

restriction would result in an interpolation of the training data points.

2.4.3. Principal Points

By using discrete latent variables and defining

��. � 2 � ��� . � 2 
 � ��� ��
�!
������/
���� 
 � �  ���
	 (2.11)

13



2. Unsupervised Learning as Generalized Regression

��� .0� 2 ��� � � 
 (2.12)

one straightforwardly obtains a learning method generally known as Vector Quantiza-

tion. The columns of
�

then represent prototype or codebook vectors, the estimation of

which using the general optimization scheme equals the well known K-means clustering

algorithm.

2.4.4. Local Principal Axes

The use of a mixture of discrete and continuous latent variables together with a linear

dependency on the continuous variables can be interpreted as a generalization of the

vector quantization approach described above. The principal points are in this case

replaced by continuous linear manifolds. This way one obtains a method for nonlinear

dimensionality reduction that is known as ’Local PCA’ in the literature and that can be

used to model nonlinear relationships by residing to the assumption of local linearity.

The absence of a global coordinate system inherent to this approach, however, in-

volves serious shortcomings as described, for example, in [TdSL00]. In fact, the LLE

method, which will be introduced in 3.2.1 originally arose from a series of attempts to

provide a coordination of locally linear models in order to overcome these shortcomings

(see also [RS00] and [VVK02], e.g.).

2.5. Generative Models

The kinds of models in UL that include some kind of density estimation are referred to

as generative models [Mei00]. These models arise automatically from the generalized

regression framework by regarding the latent variables as random variables with non-

trivial distributions. Since the UKR model can be formulated in a way to obtain also a

generative variant, these kinds of models shall be sketched here in short.

If one uses random latent variables, optimization by minimization of 2.4 is no longer

possible, as the interpretation of the latent variables as parameters no longer applies. In-

stead, the maximum likelihood approach (or some kind of Bayesian learning, which

14



2. Unsupervised Learning as Generalized Regression

is omitted in this thesis, as stated) needs to be used. Furthermore, the Projection-

Regression optimization scheme is no longer applicable. It is replaced by an analogous

scheme, known as EM-algorithm, as mentioned above. The detailed description of this

algorithm shall be omitted here, as there exists a large body of literature on this topic

(see, e.g. [Bil97] or [Cou96]). In short, the resulting optimization scheme closely re-

sembles the PR-scheme with the update of latent variable realizations being replaced by

an update of their probability distribution in this case. In the following a few models

and some novelties that arise from the use of random latent variables will be sketched.

Assuming spherical Gaussian noise and a linear dependency on Gaussian latent vari-

ables one obtains a generative counterpart of the linear model given in 2.4.1. For a pre-

defined latent space dimensionality � , the generative version yields an equal solution.

However, as an extension to the projection model, by making use of the special role the

noise variance plays in the generative case, a dimensionality estimating version can be

obtained, by predefined the noise variance.

For non-Gaussian latent variables an estimation scheme for the well-known Inde-

pendent Component Analysis ([Hyv99]) can easily be derived making use of the non-

trivial latent variable distribution here by incorporating the assumption of their being

statistically independent.

As a generative version of the principal points model (2.4.3) a method for density

estimation generally known as ’mixture of Gaussians’ arises straightforwardly from a

(spherical) Gaussian noise assumption. In addition probabilistic versions of the cluster-

ing algorithm and of the local PCA model become possible, for example.
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3. Spectral Methods for

Dimensionality Reduction

One broad class of methods for dimensionality reduction that differs from most of the

approaches delineated in the previous chapter is the class of spectral methods. The

main difference is that these methods do not deploy any iterative optimization scheme.

Instead, they rely on an objective function that has an efficiently computable global

optimum. The by far most important and widely used instance is Principal Compo-

nent Analysis. Recent developments regarding the applicability of spectral methods to

nonlinear learning problems, however, has led to a current rise in their popularity, too.

The point of contact for practically all these methods is that they rely on an optimal-

ity criterion that can be posed as a quadratic form. Therefore, these methods rely on

some variant of the Rayleigh Ritz theorem, which states in short, that for some quadratic

form � minimizer (maximizer) of tr .�������� 2 with respect to the � �"� matrix � , subject

to ����� �
	 , and � 	 � 
 , is the matrix ������ containing the � eigenvectors correspond-

ing to the � smallest (largest) eigenvalues of (symmetric) � (see, e.q. [HJ94] or [Jol86]).

In other words, all these methods rely on an eigenvalue decomposition (EVD) of some

matrix � , hence the name ’spectral methods.’ A further commonness is that � is defined

as some kind of data affinity matrix of a given dataset in all cases, as recently pointed

out by [BH02].

In the following the different spectral approaches to dimensionality reduction will

be described and their specific characteristics, in particular in view of the spectral UKR

variant to be introduced in 4.3, shall be pointed out, beginning with the linear variants
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and PCA. A common drawback of the nonlinear generalizations of PCAis that, although

these inherit the efficiency of their linear counterpart, they do not share the same merits

in terms of generalization, as will be described in detail later. This entails particular

problems with regard to potential applications as pointed out in chapter 1.

3.1. Linear Models

3.1.1. Principal Component Analysis

Principal Component Analysis (PCA) can be regarded as the oldest and most well-

known method for dimensionality reduction1. It can be derived from the objective to

maximize the variance of the projection of a given � -dimensional dataset onto a � -
dimensional subspace. The quadratic form that preoccupies this objective is simply the

(symmetric and positive definite) sample covariance matrix ([Jol86]). Precisely, assum-

ing � to be mean centered, let the spectral decomposition of � ��� be: � � ��� ����� �
and let

���
��� denote the matrix containing the normalized eigenvectors corresponding to

the � largest eigenvalues as columns. The matrix
�

of the latent space vectors that meet

the maximal variance objective is then given by
� � � �� �	� � . Similarly, generalization

to some new observable space element � is performed simply by left-multiplication with� �� �	� , while the application of the forward mapping to some new latent space element �

is performed by left-multiplication with
�
�
�	� . In other words, here one has the unique

case of a method that gives rise to the direct estimation of the involved functions, as la-

tent space realizations are in fact obtained subsequently by applying the obtained model

for � to the given input dataset.

3.1.2. Multidimensional Scaling

The method of Multidimensional Scaling (MDS) deviates somewhat from the other

methods for dimensionality reduction exposed in this thesis, because it is not used as

a method to determine a low dimensional representation of a high dimensional dataset,

1Although the derivation of PCA draws from much broader (but related) objectives, here it will be
treated as a method for dimensionality reduction only.
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3. Spectral Methods for Dimensionality Reduction

but it obtains some dissimilarity measure as input instead. In fact, it thereby fails to meet

the general definition given in chapter 1. It will be described here in short, nevertheless,

as it is generally classified as a method for dimensionality reduction in the literature and

makes up a crucial step of the Isomap algorithm portrayed below.

In detail, MDS addresses the problem of finding a (usually ’low’ dimensional) data

set from a set of pairwise dissimilarities, such that the distances between the resulting

data points approximate the dissimilarities as closely as possible. Given a dissimilarity

matrix2 � with an EVD � � � � � � the optimal data set is given by � ���� . As stated,

the abandonment of the need to use a data set from some euclidean space as input gives

rise to applications that go beyond generic dimensionality reduction. Often, some kind

of subjective similarity judgment is used as a basis to obtain � , which allows for the

visualization of ’psychological spaces’ [Krz96], for example. If � contains the pairwise

euclidean distances of some real dataset, however, the solution is the same as that from

PCA.

3.2. Nonlinear Models

3.2.1. Locally Linear Embedding

A method that incorporates an EVD in order to accomplish nonlinear dimensionality

reduction and that has arisen a great deal of attention recently is the method of Locally

Linear Embedding (LLE) [RS00]. It is essentially based on geometrical intuitions as

it attempts to determine a lower dimensional embedding of a given dataset that retains

local neighborhood relations between datapoints by making use of the following three-

step algorithm:

1. for each ��� define 	 � the index set of � nearest neighbors

2Generally, the matrix needs some simple preprocessing, which will not be detailed here.
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2. set � � � � � � 
 if���� 	 � and minimize with respect to � � � the objective:� 
�)!$# � �1� �  �����	� �$� � � � ��� 
 s.t.

 
�
���	� �$� � � � (3.1)

3. minimize with respect to � � the objective:� 
�"!$# � � � �

� 
� !$# �$� � �

� ���
(3.2)

�
� �� ����


 (3.3)

with

� � ��� .	�$� � 2 � � � 	�� � � (3.4)

The purpose of the second step is to discover those weights that give rise to an optimal

reconstruction of each observable space datapoint by its neighbors. This step requires

to solve a constrained least squares fit and has a closed form solution. In the case

of ��� � some kind of regularization heuristic is necessary, however. In the third step

those latent variable realizations are then sought that minimize the average (latent space)

error, if reconstructed from their neighbors with the same weights as their observable

space counterparts. By writing 3.3 as tr . ���� � � �/2 it is obvious that this step gives

rise to a quadratic form in the latent variables. Therefore, by requiring
� 	 � 
 and

� � � � 	 � , the solution is given by the eigenvectors belonging to the � (second to)

smallest eigenvalues of � � � ��� � . Particularly advantageous here is the that � is

sparse, allowing for an efficient solution.

Overall, in tending to preserve the weights with which a datapoint is reconstructed

from its neighbors under the sum-to-one constraint, the authors of the LLE algorithm

state that it tends to preserve exactly those properties of each neighborhood that are

invariant under rescalings, rotations, and translations. Hence, the algorithm provides

19
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a mapping from observable to latent data space that tends to be linear for each neigh-

borhood. In other words, LLE determines a low dimensional global representation of

a manifold embedded in a higher dimensional space by assuming it to be arranged in

linear patches. This assumption also defines the tender spot of the LLE algorithm, since

a violation of it lets the algorithm fail. This is in particular the case, if noise is present

in the data.

Generalization

The authors of the LLE algorithm propose two ways of generalizing a trained model

to new latent or observable space elements. The first, non-parametric, approach is in

principle a straightforward re-application of the main procedures that lie beneath the

learning algorithm itself: for a new latent or observable vector generalization of � or

% , is achieved by: (i) identifying the new datapoints’ neighbors among the training or

latent variable set, respectively, (ii) determining corresponding reconstruction weights,

and (iii) evaluating the function as a linear combination of the found neighbors with

their corresponding weights.

The theoretical justification for this kind of generalization lies in the same geomet-

rical intuitions that the lle-algorithm itself is based on. In particular the assumption of

local linearity is crucial for this approach to generalization to work properly, so that

the dependency on noise-free data applies here in the same manner as above. The fact

that the concept of generalization is most essentially based on the presence of noise,

however, thereby represents a serious problem for this approach.

The second, parametric, approach to generalization that is proposed by the authors

is to train a supervised model on the input-output data pairs that are available after the

application of LLE. The problems affecting non-parametric generalization can be cir-

cumvented this way. The resulting overall algorithm consists of two separate parts - an

unsupervised and a supervised part - with two unrelated objectives: optimal reconstruc-

tion of the latent data elements from their neighbors for the first and minimization of the

expected prediction error for the second (see 2.1). A final model assessment is there-

fore based on the prediction error in the space of the observable variables. The problem

is that it is not at all clear to what extend complying with the first objective is able to
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preoccupy the second. This is in clear contrast to the projection models described in

2.4 that estimate latent variable realizations and a model for the forward mapping at the

same time and both with the objective to minimize the observable space error.

3.2.2. Isomap

A method for NDLR that arose similar attention as LLE is the Isomap (isometric feature

mapping) algorithm proposed by [TdSL00]. It can be regarded as a heuristic approach,

too, but it is based on completely different intuitions than LLE. Isomap similarly em-

anates from the observable data being distributed along a low-dimensional manifold,

but abstains from the assumption of linear patches. It seeks to find a low-dimensional

embedding that preserves distances between datapoints as measured along the manifold

- so called ’geodesic’ (locally shortest) distances. The crucial point in this algorithm is

therefore to derive these geodesic distances from the datapoints (more precisely, their

euclidean distances) in an efficient way. To achieve this the authors propose the three

step algorithm of (i) computing a topology-preserving network representation of the

data, (ii) computing the shortest-path distance between any two points which can effi-

ciently be done by using dynamic programming, (iii) determining the low-dimensional

representation that preserves the computed distances as closely as possible using Multi-

dimensional Scaling (MDS) on these distances.

With regard to generalization, Isomap shares the same shortcomings of LLE, be-

cause of its likewise rather heuristic quality. In fact, as in contrast to LLE not even a

heuristic generalization of the involved mappings can be naturally derived from the in-

tuitions the algorithm is based upon, the authors suggest to train a supervised model on

the obtained completed dataset – resulting in the same shortcomings that hold above.

3.2.3. Kernel PCA

Another spectral approach to nonlinear dimensionality reduction, which at first glance

resembles the UKR variant to be described in 4.3 with regard to its incorporation of both

kernel and spectral methods, is Kernel PCA. A closer look reveals important differences,

however.
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Kernel PCA stems from a line of research on kernel based methods that is based on

the idea to incorporate an implicit (usually highly nonlinear) mapping to some higher

dimensional feature space by exploiting the finding that dot products in such a feature

space can equivalently be computed using the original data space vectors alone through

the help of kernel functions [Bur98], which is often referred to as ’kernel trick.’ In

order to apply this idea to Unsupervised Learning, the classical PCA approach may be

recast in a form that makes use of inner products only. In [SSM99] the derivation of

this formulation is given resulting in an algorithm to compute principal components in

a higher dimensional feature space. Technically this amounts to performing the EVD of

the matrix of pairwisely evaluated kernel function.
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4. Unsupervised Kernel Regression

This chapter describes the method of Unsupervised Kernel Regression as recently intro-

duced by [Mei03]. In a first step the concept of Nonparametric Regression is introduced.

Then two distinct ways of extending this concept to Unsupervised Learning will be de-

lineated in the subsequent two sections. In addition, a combination of the objective

functions these two variants give rise to which has in particular proven to be useful with

regard to practical considerations, will be proposed in the section that follows.

4.1. Unsupervised Nonparametric Regression

4.1.1. The Nadaraya Watson Estimator

Chapter 2 introduced the purpose of regression as that of modeling a functional relation-

ship between variables by choosing that element from a parameterized set of candidate

functions that minimizes the empirical prediction error on a training data set, which is

asymptotically equivalent to taking the conditional expectation:

��. � 2 � � � ��� ��� � �
�
�
.0��� � 2 � � (repeated) � (4.1)

In contrast to 2.1, where the approximation of the regression function has been real-

ized by minimization of the empirical prediction error or maximization of the data log-

likelihood, one obtains a nonparametric variant of the regression estimation, if one aims

directly at modeling the conditional expectation. This can be achieved by considering
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a non-parametric estimator 6
�

of the joint probability density function
�
. � 
� 2 of the in-

volved variables, taking into account that 4.1 can be relocated to yield:

��. � 2 ��� �
�
. � 
� 2 � �

�
�
. � 
� 2 � � � (4.2)

By utilizing the multivariate Kernel Density Estimator (KDE) to model the joint density

[Sco92]:

6
�
. � 
� 2 � �

�
� 
�)!$# � � . � 
 � �32 � � .0� 
�9� 2 
 (4.3)

with
� . �,
�� 2 being multivariate Kernel functions and � . �+
�� 2 denoting the unnormalized

portions thereof, so that with the normalization constants � � and � �� �
� . �,
�� 2 ��� �

�
� � � . �+
���2 ��� � � (4.4)

and � �
� . �,
�� 2 ��� �

�
� � � . �,
�� 2 ��� ��� (4.5)

hold, the estimate of the regression function becomes1

��. � 2 �
� �� !$# � . � 
 �

� 2 � �� �	 !$# � . � 
 � 	 2 
 (4.6)

1The symbol 
 will be overloaded to denote both the observable space and latent space Kernel func-
tions, and later on also the matrix of kernel functions. Since the dataspace kernel functions cancel out
in 4.6, here they are only specified with latent space arguments; later on, however, they will be used
to accommodate data space arguments analogously.
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which is known as the Nadaraya Watson Estimator [Bis96]. In this thesis only the

spherical Gaussian

� . � � 
 �
� 2 ��������. ��� � � � � � �

� ��� 2 (4.7)

and the Epanechnikov kernel function

� . � � 
 �
� 2 �

�
� � #	 � � � � � �

� � � 
 if
�

� � � �
� � ��
 �

�!
 otherwise
(4.8)

will be deployed and both denoted by � . �,
�� 2 . The function used will be indicated at the

respective places.

The function parameter � determines the kernel bandwidth and provides a means to

adjust the model complexity for the Nadaraya Watson Estimator.

4.1.2. Unsupervised Nonparametric Regression

As in the parametric case, the transition to unsupervised regression is made by regarding

the regressors as latent. In contrast to the parametric case, however, that poses the

twofold objective of finding suitable latent variable realizations along with parameters

defining a functional relationship, here both objectives are achieved at the same time

by merely taking care of finding suitable latent variable realizations, because of the

nonparametric nature of the problem. This way the ’double burden’ that problems in

UL hitherto gave rise to is eliminated, resulting in methods that resemble those from

SL, because they depend on the estimation of only one class of parameters.

As pointed out in [Mei03], in the unsupervised case the Nadaraya Watson Estimator

may be deployed in two ways. The first is to treat the latent variables in 4.6 as parame-

ters to be estimated. By measuring the observable space error one obtains the objective

function dealt with in detail in the next section. The second way is to compute the

latent variable realizations by simply applying the Nadaraya Watson Estimator to the

observed variables, that are regarded as input in this case. In other words, this variant

amounts to computing the nonparametric regression function in the opposite direction.
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The objective function for this approach is obtained by measuring the latent space error.

In that case, a nontrivial coupling of the resulting latent variable realizations has to be

accounted for, a problem that can be solved efficiently by a spectral decomposition as

described in 3. This variant will be described in 4.3.

4.2. Observable Space Error Minimization

To obtain a loss function for learning suitable latent variable realizations one might con-

ceive of 4.6 as being parameterized by the latent data matrix
�

and measure the mean

square reconstruction error on the observed variables[Mei03]. The resulting objective

function of this UKR variant, denoted oUKR in the following, is given by:

� . � 2 � �
�

� 
�)!$# � �1� �

� �� !$# � . � � 
 �
� 2 � �� �	 !$# � . � � 
 � 	 2

���
(4.9)

� �
�
�
� � ����

(4.10)

with

� � � � � . � � 
 �
� 2� �	 !$# � . � � 
 � 	 2 � � � � 	 �

Since the effect of any variation of the kernel bandwidth could be equivalently

caused by a change in the average scale of the latent variable realizations, in the fol-

lowing, if not stated otherwise, the kernel bandwidth will be conceived of as being

constant ( � ����� � ) and any influence on the model complexity will be accounted for or

effected by the latent variable norms only.
�

– and by virtue of 4.6 at the same time � – will then be estimated by minimizing

4.10. Since a minimization without further restrictions on the objective function would

drive the latent variable scales to infinity, however, with the reconstruction error for

the training data set at the same time approaching zero, it is obvious that some kind of

complexity control has to be imposed in order for the optimization problem to be well
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defined [Mei03]. Practical considerations regarding both minimization and restriction

of the model complexity will be delineated in the next section.

The generalization of a trained model to new latent space or observable space el-

ements is straightforward. Since a model for � is learned along with suitable latent

variable realizations, the oUKR method closely resembles the projection models de-

scribed in 2.4. The only difference is that no iterative training procedure is necessary

here, because no parameters need to be estimated. Application of the regression func-

tion to new latent space elements is therefore possible simply by plugging these into

4.6. And the backward mapping % can be defined analogously to 2.7:

%�.5� 2 � � ������� 	 �
�

�
� � ��. � 2

���� � (4.11)

This requires to solve a nonlinear optimization problem, that should be initialized suit-

ably. A straightforward choice as an initialization is

��� � � �������
	��
�
� �

� � ��. � �52
���� 
�*� ��
������/
��-
 (4.12)

requiring a search over the number of training data points.

From the reasoning laid out so far a generative model is obtained simply by regard-

ing the latent variables as random variables as in 2.5 and maximizing the conditional

log-likelihood (see chapter 2) which can be derived straightforwardly (see [Mei03] for

details).

4.2.1. Optimization

The objective function is nonlinear with respect to the latent variables and needs to be

minimized iteratively. Since it is possible for the gradient of the objective function to be

computed analytically, some gradient based optimization scheme may be used. For the

partial derivatives with respect to the latent variables it holds:

�
� . � 2
�

� � � �

� 
	 !$# � 

� !$# � �� � 	 � ��
� � 	
�

� � � 
 (4.13)
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with
� 	

denoting the � �
	

column of
�

.

Since there are � latent vectors with � components each, it is obvious that the time

complexity for computation of the gradient amounts to at least � .0� �
� ��2 . This is in-

deed the complexity class for computation of the gradient, if one pre-computes � �� � 	
and � ��������� �

� � . Computation of these terms gives rise to costs of � .0� �
� 2 and � . � � � ��2 ,

respectively. While this is clear for the first expression, the second one deserves special

attention. It holds:

� 	 �� � � � � ��
� � 	
�

� � �

�
� 
� !$# � � � �

�
� � � � � . � 	 
 � � 2� �

� !$# � . � 	 
 �

� 2
� � 	 � �

�
� 
� !$# � � � �	 � �

� !$# � . � 	 
 �

� 2�

�

� � � � . � 	 
 � � 2
�

� � �
� 
� !$# � . � 	 
 �

� 2 � � . � 	 
 � � 2 	 � � 	
� 
� !$#

� � . � � 
 �

� 2�
� � �

�
� � . � 	 
 � �02

�
� � � 
 �

� �� �
� !$# � . � 	 
 �

� 2

� 
� !$# � � � � � . � 	 
 � � 2

�
� � �

�

�	 � �
� !$# � . � 	 
 �

� 2 

� 	 � � 	 � 

� !$#
� � . � � 
 �

� 2�
� � �

�
� � . � 	 
 � �52

�
� � � 


� 
� !$# � � � � . � 	 
 � � 2 �

(4.14)

Therefore

� 	 �� � � �
� 	�

	 �
� � � �

.�� 	 2 � 	 � � 	 � � � � � � . � 	 
 � �52
�

� � � 
 � 	 � 

with

� 	 � �
� 
� !$# � . � 	 
 �

� 2 
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 	 �� � � �
� 
� !$# � � � � � . � 	 
 � � 2

�
� � � � � � �

� � . � 	 
 � �32
�

� � �
� � � 	

� 
� !$# � � � � � . � � 
 � � 2

�
� � � 


� � � � �
� 
� !$#

� � . � � 
 �

� 2�
� � � 


� 	 � � �
� 
� !$# � � � � . � 	 
 � � 2 �

The terms � ,  , � , � may be pre-computed, which amounts to a time complexity of

� . � � 2 , � . � � � ��2 , � . � � ��2 and � . � � � 2 , respectively.

Throughout this chapter only the Gaussian kernel function will be used. In this case

the derivative is given by

� � . � � 
 � 	 2
�

� � � �
� � . � 	 
 � �52

�
� � � � �� � � . � � 
 � 	 2�. � � � � � 	 � 2 �

To further reduce time complexity for computation of the objective function as well

as its gradient, a sparse structure of the kernel matrix might be induced by residing to a

kernel function with finite support, such as the Epanechnikov kernel or the differentiable

’quartic kernel’ [Sco92]. An exploration of this approach, however, is not within the

scope of this thesis.

Ridge Regression

The above mentioned requirement to restrict the model complexity can be met by adding

a regularization term  . � 2 to the objective function that constrains the scale of latent

variable realizations in some way. This is is referred to as ’ridge regression’ or ’weight

decay’ in the literature (see [HS89]). The resulting penalized objective function then
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reads

��� . � 2 ��� . � 2 ���  . � 2 � (4.15)

The parameter
� �� functions as a means to control the influence of the regularization

term and thereby provides a way to control the model complexity. The matrix of suitable

latent variable realizations is now determined by minimizing the penalized objective

function2:

� ���� � ��� � �
	��
� � � . � 2 � (4.16)

A straightforward choice for the regularization term is one that equally restricts the

euclidean latent variable norms, which can be achieved by defining

 . � 2 � �
� � ����

� (4.17)

Other regularization terms are conceivable, however. In fact, these might even be

desirable in specific circumstances, since they could provide a facility to include some

kind of top-down knowledge by imposing constraints upon the latent variables and their

relations. This finding will be evaluated in more detail in section 4.2.2. In the following,

if not stated otherwise, the variant given in 4.17 will be used only.

To deal with the presence of local minima, an optimization strategy such as the ho-

motopy scheme described in 2.3 needs to be applied for minimization of 4.15. Here,

this practically amounts to slowly decreasing
�

during optimization. In order to avoid

overfitting, the error that the projection of an independent test set onto the resulting

manifold gives rise to might be tracked. As an illustration, the approximations of the

two-dimensional ’noisy S-manifold,’ embedded in a three-dimensional space, which are

depicted in 4.1, have been determined this way (see Appendix A for details on the gen-

eration of the toy datasets used here in the following). Here, in particular the importance

of a well chosen annealing strategy becomes obvious. While the two panels to the right

2Note that for optimization by gradient descent the gradient given in 4.13 needs to be modified by adding
the derivative of the respective penalty term with respect to the latent variables.
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visualize the progression of the latent variable realizations obtained from a reasonably

chosen annealing strategy, the two panels to the left show the effect of too fast anneal-

ing and the result of getting stuck in a local minimum leading to an only suboptimal

final solution. The out-most illustrations have been rescaled to accommodate visualiza-

tion of the latent variable realizations, while the innermost panels show the same results

in a consistent scale for each of the two progressions, making visible the enlargement

of the latent realizations throughout the annealing progress. It is obvious that, while

the solution to the left after 20 annealing steps spans an area that is approximately five

times larger than the solution to the right after 350 steps, the final solution using ’slow’

annealing clearly captures the structure of the original data set far better than the left

one.

A general drawback of using ridge regression and homotopy that is related to the

necessity of a suitably ’slow’ annealing schedule is efficiency. Datasets containing a

thousand or more elements in a few hundred dimensions have shown to be problematic

to handle and therefore might ask for alternative strategies. One option will be exposed

in the following.

Constrained Optimization

While adding a penalty term as described above can be interpreted as imposing a soft

constraint on minimization of the objective function by including the tendency to fa-

vor small norm solutions, it is also possible to use a strictly constrained optimization

algorithm instead by re-defining the optimization problem as

� ���� � ��� � �
	��
� � . � 2 
 (4.18)

subject to �9. � 2


���!
 (4.19)

with � defining some nonlinear constraint. In analogy to 4.17 one might set

�9. � 2 � 	 � � ����
� � 
 
 (4.20)
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Figure 4.1.: The effects of different annealing strategies. The dataset on the top, consist-
ing of � ��� � � datapoints sampled from the two-dimensional ’S-manifold’
distribution with spherical Gaussian noise ( �

�
� � ��� ) has been approxi-

mated using: (left)  � annealing steps, with
�

being declined geometrically
with factor � �,� after each step and (right) ��� � annealing steps, with

�
being

declined with factor � ��� . Start value for
�

was ��� � in all cases. The latent
variables have been initialized randomly from a uniform distribution over
the unit square. Note the tendency of the latent space realizations to arrange
spherically provoked by using the Frobenius norm as regularization.
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Figure 4.2.: The effects of different optimization constraints using the two-dimensional
’S-manifold’. The left plot shows the solution obtained from lUKR with
kernel bandwidth � set to ��� � (see section 4.3). The solution was used as an
initialization for oUKR using bound constraints as defined in 4.21 in one
case (middle plot) and the nonlinear constraint as defined in 4.20 in another
(right plot).

for example, in order to restrict the average latent variable norms. Alternatively, simple

bound constraints be applied. For this means, 4.19 may be simplified to yield
(


� �



� � 
 (4.21)

with

(
and

�
being matrices of lower and upper bounds, respectively.

Making use of the homotopy strategy here then amounts to gradually releasing the

constraints by directly decreasing or increasing the entries of

(
or
�

, respectively, or by

increasing � . However, an important difference to ridge regression is that, if a latent ma-

trix initialization
� ����� � is available, one may abstain from homotopy and derive suitable

constraints from the initialization instead, for example by setting

(
� � � � � � . � ����� � 2 and� � � � � � . � ����� � 2 or by setting � �

� � ����� � � �� , with � defined as above. The question

that remains, of course, is where to obtain such an initialization owning the required

property of being correctly scaled so that suitable constraints can be derived in some

way. The solutions that the LLE algorithm yields, for example, are not useful here as

they are arbitrarily scaled as described in 3. Nevertheless, there is a way to obtain such

a suitably scaled initialization, as will be described in 4.4.
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In anticipation of the results given there, an example of the constrained (re-)optimi-

zation of such an initialization is depicted in figure 4.2. A two-dimensional approxima-

tion of a dataset consisting of 500 elements of the noise-free ( � � � ) ’S-manifold’ was

determined using the lUKR variant that will be described in section 4.3. The obviously

sub-optimal solution shown to the right was then used as an initialization
� ����� � for the

oUKR method. Constrained optimization was used in two different ways on this initial-

ization. In the first case, bound constraints were used with

(
and

�
defined as above. In

the second, a nonlinear constraint (4.20) was used with � defined as above. The figure

shows that both strategies are able to improve the sub-optimal initialization. In addi-

tion, the influence that a constraint has on the final solution is visible. This influence is

obviously stronger than it has been using ridge regression.

’Built in’ Cross Validation

An alternative means of regularization that abandons the need to estimate any hyper-

parameters and the associated necessity to embed the minimization of 4.15 in an em-

bracing cross validation loop can be obtained using a cross validation mechanism ’built

into’ the objective function. This is done by utilizing only a subset of the training data

at every function evaluation, excluding in particular the data point to be approximated

in the current evaluation step, so that an external validation set becomes over-due. Us-

ing ’leave-one-out’ cross validation, where the only vector excluded is the one to be

approximated, gives rise to the modified objective function:

�
��� �

� 
�"!$# � �1� � � � � . � �02

���
(4.22)

� �
� 
�)!$# � �1� �

� ���! � � . � � 
 �
� 2 � �� 	 �! � � . � � 
 � 	 2

� �
(4.23)

�
�
�

�� ����
(4.24)

34



4. Unsupervised Kernel Regression

with

�� � � . � � � � � 2 � . � � 
 �
� 2� 	 �! � � . � � 
 � 	 2 � � � � 	 �

Then, an optimal embedding is given by

� ���� � ����� �
	��
� �

� � . � 2 � (4.25)

While normally the ’leave-one-out’ strategy is often problematic, because it is the

computationally most expensive cross validation variant, the ’built in’ alternative adopted

here provides a convenient ’trick’ to exploit and utilize the coupling of all datapoints

and the related � . � � 2 complexity each function evaluation of the UKR method, being

a kernel based method, gives rise to anyway. Thereby, leave-one-out cross validation

becomes possible without any additional computational cost.

Applying homotopy is still possible using the built in cross validation variant, since

one may still add a penalty term to 4.24 or constrain the solutions accordingly. In fact,

one might even prefer the modified objective function over 4.10 for this means in order

to forgo the tracking of some test error. But alternatively, if a suitable initialization is

available, the built in cross validation mechanism also allows for some direct optimiza-

tion. A well chosen initialization is vital in this case, however, because of the highly

nonlinear structure of the objective function. An illustration is depicted in figure 4.3: A

random initialization, as depicted at the top in (a), is not leading to a satisfactory result

as can be seen at the bottom in (a). An only suboptimal solution that the LLE algorithm

might yield, which can happen in particular in the presence of noise or because of a

badly chosen neighborhood size (see 3.2.1), is seen at the top of (b) and provides the

grounds for this method to find an appropriate embedding (see bottom of (b)).
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Initialization:

Solution:

a) b)

Figure 4.3.: Illustration of the importance of a suitable initialization for the built in
leave-one-out cross validation variant. Noisefree two-dimensional ’halfcir-
cle’ dataset to the left and one-dimensional UKR approximation to the right.
While UKR fails to find a suitable approximation for randomly initialized
latent variables as can be seen in (a), an only suboptimal LLE-solution pro-
vides a starting point to obtain a satisfactory result, however, as shown in
(b).

4.2.2. Experiments

Visualization of the regression manifold

As stated above, since the oUKR method determines a model for � along with suit-

able latent variable realizations, the application of the regression function to new latent

space elements is straightforward. This makes it possible to visualize the the learned

regression manifold (for up to three-dimensional embedding spaces) by sampling the

latent space and ’plugging’ the obtained latent space elements into the learned model

for � . As shown in figure 4.2.2 this procedure has been used to visualize the effects that

a rescaling of the latent data matrix
�

has on the resulting regression manifold. It is

obvious that for a rescaling factor � � �!� � the regression manifold degenerates to the

sample mean. The result that the rescaling factor � � ��� � gives rise to is shown in the

rightmost plot in the top row.
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Figure 4.4.: Visualization of the different regression manifolds resulting from rescaling
the latent data matrix. For the one-dimensional ’noisy S-manifold’ dataset
shown in the bottom left corner a low-dimensional representation was ob-
tained using UKR with homotopy. The plots show in successive order from
left to right and from top to bottom the visualization of the regression mani-
fold obtained from sampling latent space along a regular grid after rescaling
the latent data matrix with factors 0.0, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0, 8.0,
15.0, 30.0, � �

�
,  � � � �

, and � � �

.
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Figure 4.5.: The built in cross validation error � � �
(depicted in blue) compared to the

error on an independent test set �
�������

(depicted in red). The left column
shows the error progressions averaged over 50 runs, the middle and right
column show out of the 50 runs only those with the largest deviations be-
tween the two error progressions according to the

(
�

norm and to the

(
���
	

norm, respectively. In the first and third row the progressions for the one-
dimensional ’noisy S-manifold’ with � � � � � and � � � ��� , respectively,
are depicted. The second and forth row show the respective progressions
resulting from a faster annealing schedule. The two bottom rows show the
error progressions for the two-dimensional ’S-manifold’, again for � ���!� �
and � � � ��� , respectively.
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Figure 4.6.: The effect that a rescaling of the latent data matrix obtained from using the
built in leave-one-out cross validation variant of oUKR has on the error that
projection of an independent test set gives rise. The plots in the succession
from left to right correspond to the settings described in the caption of figure
4.5 from top to bottom for the four top plots.

Built In Cross Validation vs. Homotopy

As stated, the built in cross validation error criterion is a promising computational short-

cut for solving the problem of model selection. In order to provide empirical evidence

that this criterion is of real practical value, an investigation of the distribution of the

resulting error ( � ���
) as compared to the average error on an independent test set (con-

taining elements � �������� 
�*� ��
������ 
� ��� � �
),

�
����� � � �

� ������� 
�)!$# � � �������� � ��.5%/.0�

��� � �

� 2 2
����



has been undertaken. To this end, the UKR model has been trained on the one-dimen-

sional and on the two-dimensional ’S-manifold’ datasets, comprising 50 elements each,

in one setting without noise and in another with spherical Gaussian noise ( � � �!� � ).

The homotopy scheme has been applied using the penalized objective function (4.15)

with regularization parameter
�

starting with ��� � in all cases and being annealed with

factor �!��� in one setting and for the one-dimensional case with factor � �,� in another.
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The error on a test set, consisting of � � � datapoints in each setting, has been tracked

throughout and its average over 50 runs for each setting is depicted together with the

cross validation error in 4.5 (first column). Overall, a strong correlation between these

quantities can be noticed in all settings. They even converge as the number of training

steps increases. In addition, the largest deviations along the � � runs between the two

error progressions according two the

(
�

norm, as well as to the

(
���
	 norm, are depicted

in columns 2 and 3, respectively. They show significant differences only on the outset

of the learning process, revealing the actual reliability of the cross validation criterion.

Another finding that becomes obvious from the plots is that a rise of the test error

hardly ever occurs. Even for the settings in which the rather ’radical’ annealing factor

� �,� has been applied, the test error monotonously decreases. This gives rise to the as-

sumption that a change in
�

rather leads to a slight deformation of the error surface than

to a complete restructuring of it, so that the homotopy method causes a local optimizer

to track a once reached local minimum during the overall optimization process.

The built in cross validation error, on the other hand, as can be seen in the plots

for the two-dimensional datasets, does happen to rise. The plots in the last row show

that this can even be the case when the test error is obviously still falling. From this

observation one may draw the conclusion that an application of the built in cross valida-

tion criterion will rather give rise to underfitting than to overfitting. In order to collect

more evidence for this conclusion, a further experiment has been conducted. The final

solutions for the one-dimensional datasets have been used as an initialization for an it-

erative minimization of � ���
. Then the effect that a rescaling of the resulting latent data

matrix with some rescaling factor � has on the test error has been measured. If training

by minimization of � � �
leads to an over-regularization, rescaling with a factor ��� �

greater than one should result in a decreasing test error. Figure 4.6 shows that this is

the case, indeed. While downsizing the latent variable scale leads to an increasing test

error, enlarging leads to a decreasing error. The optimal rescaling factor with respect to

the test error is approximately  in all settings. This indicates that built in cross valida-

tion indeed tends to a slight over-regularization. Since the reason to deploy this error

criterion is to circumvent overfitting and since the increase of the test error that this

over-regularization gives rise to is small as can be seen in the plots it can be concluded
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that the built in leave-one-out criterion is indeed a practical alternative to other, external,

model selection strategies.

Modeling Top-down influences: ’Implicit Clustering’

In 4.2.1 the effects that different optimization constraints and regularization terms have

on the resulting latent space realization are mentioned, suggesting to use these in order

to include some kind of top-down knowledge into this unsupervised method. In fact, the

introduction of top-down influences into methods from UL is an important and emerging

topic. In particular research in cognitive science, especially cognitive modeling, is con-

cerned with questions regarding the integration of bottom-up and top-down processing.

The importance of this is increasingly agreed upon and the occurrence of this in human

brain functioning is common grounds (see [GSSSK00] or [SKK], for example). In the

context of Unsupervised Learning, constraining of the learning process by introduction

of some kind of knowledge provides a step towards this direction.

Although an evaluation of the potential of the UKR method in this context goes be-

yond the scope of this thesis, an example of the facility to include top-down knowledge

through the use of appropriately tailored optimization constraints shall be given here:

Figure 4.7 shows a dataset consisting of two ’half circles.’ Fitting a model to such a

disrupted manifold is not trivially possible for the known algorithms for dimensionality

reduction. [RS00] e.g. state that it is an open question, how to deal with non-uniformly

sampled data. However, including knowledge of the partitioning structure through the

optimization constraints into the learning procedure, might simplify the task. This has

been tried by using constrained optimization (see 4.18), with nonlinear optimization

constraint

�9. � 2 � � 	 � � � �
��� 


�

 (4.26)

forcing the latent variable values to assemble in two groups. Parameter � has been

initialized to �!�+� and has been increased by factor two after every update of the latent

variable realizations. The second to right plot shows the effect of generalizing % to

new observable space vectors from the same distribution and the rightmost plot the
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Figure 4.7.: ’Implicit Clustering’ (From left to right): Partitioned dataset; latent space
realization; projection of a test data set onto the resulting manifold; visual-
ization of the regression manifold obtained from sampling latent space.

effect of generalizing � to new latent space elements, showing in particular the effect of

sampling along the ’gap,’ leading to an approximately linear connection of two adjacent

ends of the two ’half-circles.’ In forcing the latent vectors to assemble in two groups the

procedure may be interpreted as an ’implicit’ latent space clustering.

4.3. Latent Space Error Minimization

By turning the roles of the latent and the observable variables and regarding the first

as outputs and the second as regressors the learning problem can also be defined as

finding a suitable latent variable realization for every given data vector by deploying the

Nadaraya Watson Estimator in this case in order to directly compute the regression of �

onto � [Mei03]:

� � %/.0� 2 � �
� �� !$# � .5� 
� � 2 �

�
� �	 !$# � .0� 
� 	 2 � (4.27)

Measuring the error in latent data space in this case leads to the objective function

�
��� � . � 2 � �

�
� 
�)!$# � � � �

� �� !$# � .5�9� 
� � 2 �
�

� �	 !$# � .5�9� 
 � 	 2
���

 (4.28)
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� �
�
� � ��� ���� 
 (4.29)

with

��� � � � � .0�9� 
� � 2� �	 !$# � .0�1� 
� 	 2 � � � � 	 � (4.30)

which defines a quadratic form in the latent variables and can therefore be solved by a

spectral decomposition, as detailed below. The resulting UKR variant will be denoted

lUKR in the following.

Note, that while the UKR variant described in the previous section is based upon the

simultaneous – and in fact associated – determination of latent variable realizations and

a model for � , here determination of the latent data matrix is connected to, and there-

fore leading to, an implicit estimation for the backward mapping % , instead. This has

got important implications regarding generalization: Since no model for � is learned,

generalization of the regression function to new latent space elements drops out. As

a consequence, generalization of the backward mapping to new observable space ele-

ments by projection as in 4.11 is not possible, either. The implicitly learned model for

the backward mapping therefore remains the only alternative. However, as indicated in

2.4, this variant can be problematic, because it is a continuous function. Overall, it is

obvious that a major shortcoming of this UKR variant regards generalization.

4.3.1. Optimization

An optimal latent data matrix is given by

� ���� � ��� � �
	��
� �

��� � . � 2 � (4.31)

Relocating 4.28 to yield

�
��� � . � 2 � tr . ���� � �� � � 2 (4.32)
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shows that the problem defines a quadratic form ��� � � � � �� and may be solved by an

EVD as described in 3. In other words, constraining the solutions by requiring

� � � � and
� � � � 	 � 
 (4.33)

optimal latent space realizations are simply given by the eigenvectors corresponding to

the � (second to) smallest eigenvalues of � [Mei03].

While in 3.2.1 sparsity of � was provoked automatically through the use of small

neighborhood sizes ( �


� ), here the same effect needs to be achieved by using a

bandwidth limited kernel function such as the Epanechnikov Kernel (4.8). In contrast

to the previous section, here no compensation of the choice of a kernel bandwidth � by

automatic adjustment of the latent variable norms takes place3. Therefore the applica-

tion of this method relies on a predefined observable space kernel bandwidth. In fact,

without a reasonable choice for � , no good solutions can be expected, as detailed below

The problems of lUKR with regard to generalization are visualized in figure 4.3.1.

Although the embedding correctly captures the low dimensional structure (a), the ambi-

guity points are mapped onto scores in a wrong way so that the model fails to preserve

the structure as shown in plot (c). The inappropriate regression manifold due to inap-

propriate scaling of the latent matrix that the EVD gives rise to is also visualized (b).

4.3.2. Choosing the Observable Space Kernel Bandwidth

The quality of the solution that the lUKR variant yields depends crucially on the choice

of a suitable kernel bandwidth � . This dependency is illustrated in figure 4.9 where

latent space solutions for several datasets and varying kernel bandwidths are shown.

Samples from the ’halfcircle’, the one-dimensional ’S-manifold’, the ’spiral’, and the

two-dimensional ’S-manifold’ were used. The noise variance was varied in three steps,

using � � � / �!�+� / � �  , � � � / � �  / � � � , �!� � / � � ��� / �!� � � , and � � � / � ��� / � � � for the respective datasets.

The respective sample sizes were � ��� � � , � � � � � , � ��� � � , and � ��� � � , for each

3Note that the symbol � which has beed used to denote the latent space kernel bandwidth before here
denotes the observable space bandwidth. In all that follows � will denote the observable space kernel
bandwidth only.
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Figure 4.8.: Visualization of the inappropriate scaling and of the flawed generalization
of the backward mapping for a solution that lUKR gives rise to. lUKR has
been applied with kernel bandwidth ��� � � � on a sample of 500 elements
from the ’noise S-manifold’ with � � � ��� .

of the noise variance choices. For each dataset in addition one sparsely sampled dataset

was used. The dataset sizes in that case were � � � � , � � � � , � � � � , and � ��� � � .

From the illustration it can be observed that those bandwidths that give rise to a solu-

tion which obviously reflects the low-dimensional structure present in the dataset reside

in an interval whose width is dependent on the ’complexity’ of the manifold. For the

’half-circle’ dataset the (visual) quality of a solution is indifferent with regard to � . As

the complexity is increased by turning to the ’noisy S’ and later to the ’spiral’ dataset, the

interval of optimal solutions gets smaller. Note, that the absence of an observable space

error criterion calls for such a visual quality measure. In 4.4 a quantitative assessment

will be given.

The dependency on a parameter defining a neighborhood size in some way is char-

acteristic of the spectral methods for NLDR in general. For the LLE algorithm, for

example, (see 3.2.1) it is given as the number of nearest neighbors, � . The theoret-

ical connection between this neighborhood parameter and appropriate latent solutions

remains an open question. But some hints that at least help restrict the search space

for suitable bandwidths may be derived from theoretical considerations. Some of these

shall be sketched in the following.
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Figure 4.9.: Dependency of the lUKR solutions on the choice of the observable space
kernel bandwidth. lUKR was applied with various kernel bandwidths on
the different datasets visualized in the top row. The latent space real-
izations for increasing � are visualized beneath the visualization of each
respective dataset. The range in which � has been varied is the same
within each of the four classes of datasets. In detail, the ranges are� �!�+��� 
�!� � � � , � � �,� � 
�� � � � � , � � �,����
�!�,� � � , and � � ��� ��
��!�+� � � for the ’halfcircle’,
’one-dimensional S-manifold’, ’spiral’, and, ’two-dimensional S-manifold’
dataset, respectively.
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Kernel Density Estimation

The most obvious solution to the bandwidth estimation problem is to take that kernel

width that gives rise to an optimal kernel density estimator. This approach, which may

be motivated with reference to the assumption that the ’real’ bandwidth that the under-

lying density gives rise to, should be the right one this situation, too, is flawed, however.

A commonly used and simple approach to bandwidth estimation is by maximizing

the cross validation log likelihood [Sco92](
� � . � 2 � � 

�)!$#+*�, � �
� � �

 
� �! � � . � � 
 �

� 2 
 (4.34)

For the Epanechnikov kernel, this function is monotonously rising within the whole

range of values for � that gave rise to the plots in figure 4.9, showing that this approach

to finding a suitable bandwidth to apply lUKR has to be dismissed.

Connected Graph

A strict lower bound beyond which no suitable solutions are to be expected can be

derived from an approach to dimensionality reduction referred to as Laplacian Eigen-

maps([BN]). In drawing from Spectral Graph theory, the authors propose an algorithm

that is similar to the lUKR method and is based on an EVD of a matrix derived from

a kernel matrix, with the Epanechnikov Kernel replaced by a bandwidth limited Gaus-

sian Kernel. Though the theoretical background is quite different from the regression

background adopted by UKR, it suggests a lower bound for � that is straightforwardly

transferable to this situation. In particular, interpreting the kernel matrix as a graph

connectivity matrix gives rise to a lower bound as the smallest value for � that yields

a fully connected graph. Values beyond this connectivity threshold yield an eigenvalue

problem that is numerically unstable and that therefore needs to be dismissed. The la-

tent space realizations that result from a too small kernel bandwidth can be seen, for

example, in the top row of figure 4.9. Obviously they are not better than any randomly

initialized latent data matrix.

Practically it appeared that the strategy to choose a value for � just above the connec-
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tivity threshold – which has to be determined by some search procedure – yields good

results the toy datasets most of the time. There have been cases, however, where this

criterion did not yield appropriate results, and where a larger value for � was needed.

Observable Space Noise Variance

Another approach to the direct estimation of � may be derived from the theory of Noisy

Interpolation. In [Web94] a solution is proposed to the (supervised) objective to gen-

eralize a mapping implicitly given by a set of (noisefree) input/output variables to new,

unseen samples, where the new input data might have been corrupted by noise. For a

spherical input space noise model with variance �
�
, minimization of the output space

error leads to a nonparametric function equal to the Nadaraya Watson Estimator (4.6),

with the kernel bandwidth � being replaced by �
�
.

This viewpoint provides a re-interpretation of the ’reversed’ regression approach that

the lUKR variant adopts, where the latent variables which are treated as being noiseless

in the standard regression model given in 2.1 (which might still provide the conceptual

background of the overall situation) are regarded as outputs, and the observables which

are regarded as being corrupted by noise are treated as inputs. Thereby this viewpoint

additionally provides a hint towards which values for � might prove useful by suggesting

the observable space noise variance.

The visual assessment in figure 4.9 seems to contradict such an approach at first

sight, since the introduction of noise obviously does not lead to a displacement of the

area of optimal values for � towards larger values. Instead, rather a displacement to-

wards smaller values seems to be the case. However, the theory of Noisy Interpolation

is based on the assumption of noise-free training data, which does not hold here, of

course. In order to obtain an approximation to this noise-free input data set one may

use some ’data condenser’ as for example the ’reduced set density estimator’ proposed

by [GH02]. The reduced data set together with the original data set could be used to

estimate the noise variance, for example by performing local PCA on the reduced data

set and estimating the variance of the original data set in the space orthogonal to the

space spanned by the eigenvectors from the PCA solution. Then lUKR can be applied

using the reduced data set alone as input and the estimated noise variance as kernel
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bandwidth. This approach may point towards a promising direction for future research.

It will not evaluated further here.

Iteratively

A way to find a suitable kernel bandwidth that is more expensive, but safer, than the

direct estimation approaches is to iterate the lUKR method and choose that bandwidth

that yields the best solution. The 1d-search space, that the use of spherical kernels gives

rise to let this approach still be tractable for large samples sizes. For this method to be

applicable, a criterion to assess the optimality of the solutions for different kernel widths

needs to be defined.

One approach is to measure the resulting latent space error (4.28) after application

lUKR. Empirically, this approach has not proven useful, as �
��� �

, similar to 4.34, in-

creases monotonously within the range of useful kernel bandwidths. However, a variant

that showed to be leading to satisfactory results can be obtained by a slight modification

of �
��� �

. Analogous to the built in cross validation criterion described in 4.2.1 one may

use a latent space built in cross validation criterion by modifying 4.28 and defining:

�
��� �
��� . � 2 � � �

�
� � ���� ����

(4.35)

with

�� � � � . � � � � � 2 � .5�9� 
� � 2� 	 �! � � .0�9� 
� 	 2 � � � � 	 �
By choosing the bandwidth that minimizes 4.35 one can indeed obtain results that are

good with regard to the visual assessment. However, as in the case of the ’connec-

tivity criterion’ described above, there are cases, where this criterion obviously under-

estimates the correct bandwidth, which leads to solutions that resemble the ’random’

solutions depicted in the top rows of figure 4.9.

Several alternative approaches to assess the optimality of the solutions for different

kernel bandwidth that rely on the rescaling of the latent data matrix can be suggested.

One may, for example, rescale the matrix with the objective to approximate an estima-
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tion of the probability density function of the observable variables by an estimation of

the probability density function in latent space. Alternatively, one may first compute

a local PCA solution in observable data space and then rescale the latent data matrix

with the objective to approximate the local distances of the latent variable realizations

obtained from PCA by the ones obtained from lUKR. The first of these approaches led

to good results, practically. For the second it appears that the preprocessing by some

data condensers as mentioned above is advisable. However, all these approaches shall

not be described here in more detail, because there is one alternative approach that has

shown to be superior to all the others. If one is willing to conduct a procedure with an

iterated rescaling of the latent data matrix anyway, one may perform the rescaling with

the objective to minimize the observable space error. This approach allows to profit

from the advantages that the oUKR method has because of its observable space error

criterion and has in particular proven to be more reliable than the other iterative band-

width estimation procedures. It gives rise to a combination of the latent space and the

observable space error criteria and will be described in detail in the next section.

4.4. Combination of Latent and Observable

Space Error Minimization

As shown in 4.2 the mean square reconstruction error provides a reasonable and stable

error criterion for learning a low-dimensional approximation to a high-dimensional data

set. The price for the application of this criterion in 4.10, however, is its high computa-

tional complexity and an objective function that depends on an extremely large number

of parameters and that is fraught with local minima. Minimization of this function has

therefore shown to be relying crucially on a reasonable initialization for the latent data

matrix. The latent space error criterion deployed in 4.3, on the other hand, while lead-

ing to an objective function amenable to optimization through an efficient and global

eigenvalue decomposition, has shown to be inapplicable in determining a suitable data

space kernel width, which this variant crucially depends on, however.

A way out of this dilemma is pointed out by a combination of the latent space and
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observable space error criteria. Taking advantage of the computational efficiency of the

spectral UKR method, we can embed this into a 1d-search to find that kernel bandwidth

that gives rise to an optimal eigen solution – with optimality being defined by an ob-

servable space error criterion. In detail, for every lUKR solution that results from a

specific kernel bandwidth � the observable space error criterion given in 4.10 can be de-

termined by computing the nonparametric regression on every vector from the obtained

latent data matrix. The resulting observable space reconstruction error then provides a

means to assess the quality of the received eigen vector solution associated with � . This

way we receive a efficient algorithm to compute a (nonparametric) principal manifold

relying on a purely data driven error criterion.

Because of the arbitrary scaling of the lUKR solution, however, direct application

of 4.10 would not make sense, as has been indicated above. For this error criterion to

still become applicable the lUKR solution might be adapted by minimizing 4.10 with

respect to
�

first. This way one receives an overall optimization scheme in which the

application of lUKR might be interpreted as merely providing an initialization for the

oUKR method. A computationally more feasible alternative would be to simply repair

the actual main defect of the lUKR solution, which is indeed the inappropriate scaling,

by minimizing 4.10 with respect to the latent data matrix scaling alone. Details for this

procedure are given below. The application of the combined error criterion using rescal-

ing alone can also be interpreted as an iteration of the computation of a lUKR solution

followed by the application of a supervised nonparametric regression model on the re-

sulting complete dataset, since rescaling the latent variable realizations is equivalent to

finding a suitable latent space kernel bandwidth. Using a different rescaling factor for

every latent space dimension, as described in the next section, is that way equivalent to

using structured kernels.

Additionally applying the oUKR method in each iteration gives rise to the interpre-

tation of the overall method providing a way to tackle the problem of global vs. local

optimization by replacing the high-dimensional search space for suitable initializations

for the application of the oUKR method by a one-dimensional search space. This makes

an exhausting, global optimization scheme more tractable and avoids the need to reside

to methods like simulated annealing, for example.
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Regardless of which strategy – using the latent matrix as an initialization for fur-

ther training using oUKR or just adapting scale factors – is chosen, presence of the

observable error criterion makes it even more so possible to assess the goodness of

different solutions quantitatively and thereby provides an important supplement to the

mere visual assessment adopted in the previous section. Especially the different direct

approaches to estimating � can be compared appropriately with this criterion, which

will be done in 4.4.2.

4.4.1. Optimization

In summary, for the combined error criterion the learning task can be carried through

using the following algorithm:

for � � ��� ����� ��� �������	��� 
 � ��� � �

use lUKR with kernel width �
to compute latent data matrix

�

determine diagonal rescaling matrix �
by minimizing (a penalized variant of) ���� � .�� � 2
set
� � ��� �

(optional:) additionally apply observable space UKR on
�

if � ��� � . � 2


� ���������

� ���� � � � 
�� ��������� � ����� � . ��� � 
 2
optimal embedding resides in

� ����

Several hints for a suitable range to search for � might be derived by the reasoning

delineated in the previous section. This is crucial, since for large datasets even the EVD

becomes too expensive to embed into a large number of iterations.

Rescaling of the Latent Data Matrix

Rescaling of the latent variable values can be practically realized using a scalar rescaling

factor � globally applied to the latent data matrix or by determining a suitable factor �9�
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for every latent space dimension � :
��������� � ��� � 
 with � � ��� � � %/. � 
�������
 ��2 or � � � � � ��%�. ��# 
�������
 � � 2 �

As stated above, to determine suitable rescaling factors the observable space error cri-

terion can again be applied, in this case being a function of the rescaling matrix � :

� .�� 2 �
� 
�)!$# � �1� �

� �� !$# � .�� � � 
�� �
� 2 � �� �	 !$# � .�� � � 
 � � 	 2

���
(4.36)

The rescaling of the latent data matrix by minimization of 4.36 poses a nonlinear opti-

mization problem similar to the one described in 4.2. In contrast, however, here the pa-

rameters reside in an only � -dimensional space making the optimization problem more

tractable. As in the case of the observable space UKR method some gradient based

optimization scheme may be applied, with the gradient of the objective function taking

a similar form as in 4.2.1. It contains subtle differences, however, and shall therefore be

given here in detail, as well. With
� 	

defined as above, it similarly holds:

�
� .�� 2
�
�
� �

� 
	 !$# � 

� !$# � �� � 	 � ��
� � 	
�
�
� 
 (4.37)
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and here again, pre-computing particular terms can help to restrain the computational

costs. In particular, by setting analogously

6� 	 �� � � � ��
� � 	
�
�
�

�
� 
� !$# � � � �

�
�
� 	 � . � 	 
 � � 2� �

� !$# � . � 	 
 �

� 2
� � 	 � 


� �� �
� !$# � . � 	 
 �

� 2

� 
� !$# � � � � � . � 	 
 � � 2

�
�
�

�

�	 � �
� !$# � . � 	 
 �

� 2�

� 	 � 
� !$#

� � . � � 
 �

� 2�
�
� 
 	

� 
� !$# � � � � . � 	 
 � � 2 


�
6 	 ��
6� 	 �

. 6� 	� 2 6� 	 �
. 6� 	 2 � 


(4.38)

computation of the gradient amounts to an overall complexity of � .0� �
� ��2 , with

6� 	 � �
� 
� !$# � . � 	 
 �

� 2 


6 	 �� � �
� 
� !$# � � � � � . � 	 
 � � 2

�
�
� 


6� 	� � �
� 
� !$#

� � . � 	 
 �

� 2�
�
� 


6� 	 � � �
� 
� !$# � � � � . � 	 
 � � 2 
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which amount to costs of � . � � 2 , � . � � � ��2 , � . � � ��2 , and � . � � � 2 , as before. A gain in

efficiency here, due to a smaller number of different terms computed, gets compensated

by the fact, that there is no large number of derivatives becoming zero, as was the case

before. As before, Gaussian kernels may be used. The derivative of these with respect

to the rescaling factors is given by

� � .�� � 	 
�� �

� 2�
�
� � � �� � � .�� � 	 
�� �

� 2 .
� 	 �
�

�

�
� 2
�
�
� �

The need make use of a way to control the model complexity applies in the same way as

in 4.2. Here, the built in leave-one-out cross validation variant (see 4.2) is particularly

recommendable, because it avoids the need to use an external test set. This would be

especially undesirable here, since usually the latent matrix rescaling will already be

embedded into a search for a suitable kernel bandwidth.

4.4.2. Experiments

lUKR initialization vs. LLE initialization

Instead of using lUKR as an initialization for rescaling or for the application of oUKR,

one may also use the solution that another spectral method or any other heuristic method

for dimensionality reduction gives rise to, of course. Therefore it is natural to ask, how

the potential of other methods to provide a suitable initialization compares to that of

lUKR. A comparison between the potential of lUKR and LLE is given in table 4.1.

Depicted is for different datasets and on the average for ten runs the final error � ���

obtained from using lUKR and LLE as an initialization for rescaling with the objective

to minimize � ���
and additional application of oUKR. For LLE for every run the best

rescaling error has been chosen that could be obtained for all neighborhood sizes �
ranging from � � ��� � � � to � � � � � � � � � . For UKR the best kernel bandwidth

has been determined analogously by choosing the bandwidth in the range between that

value that yields a ’connected graph’ (see 4.3.2) and that value that causes at least one

neighborhood to cover the whole dataset, using the Epanechnikov Kernel.

The results show that lUKR clearly outperforms LLE with regard to its potential

55



4. Unsupervised Kernel Regression

halfcircle scurve spiral
�
�

0.0 0.2 0.0 0.5 0.0 0.05
LLE + rescaling 0.00060 0.0735 0.3279 0.4677 0.2364 0.2453

lUKR + rescaling 0.00035 0.0472 0.1107 0.1911 0.1971 0.2057
LLE + oUKR 0.00059 0.0300 0.0790 0.0725 0.0582 0.0400

lUKR + oUKR 0.00035 0.0218 0.0481 0.0685 0.0319 0.0369

Table 4.1.: Comparison of LLE and UKR as a means to provide an initialization for
subsequent minimization of � ���

with regard to the latent variable scale only
(two top rows) and with regard to the latent variables (bottom two rows.)

as an initialization for rescaling and also for subsequent application of oUKR. With

regard to mere rescaling the resulting error is approximately half as high for lUKR

as compared to LLE on the average for all datasets. The performance gain is not as

high but still obvious regarding subsequent application of oUKR. Here, interestingly an

extreme general performance gain – independent of the initialization – as compared to

mere rescaling is obvious for all datasets except for the ’halfcircle.’

Additionally, it can be observed that after mere rescaling there is no significant dif-

ference in the performance gain with regard to presence or absence of noise. But after

applying oUKR the performance gain that lUKR gives rise to is smaller as compared

to mere rescaling in the presence of noise than without noise. In other words, oUKR

is able to ’repair’ to some extend the defect in the spectral solutions that noise gives

rise to and this capability of repairing is stronger for LLE initializations than for lUKR

initializations.

Comparison of different Bandwidth Estimation Strategies with regard to

Observable Space error

Section 4.3.2 has examined the dependency of the lUKR solutions on the choice of

a suitable observable space kernel bandwidth and proposed different strategies for the

selection of a suitable bandwidth. The absence of a quantitative performance measure

demanded a visual assessment of the different solutions. The presence of the observable

space error criterion now allows for a quantitative investigation of this dependency. The

results of such an investigation are depicted in figure 4.10. In extension of the visual
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evaluation illustrated in figure 4.9, here the different bandwidths and estimation strate-

gies are related to � ���
, using the same toy datasets. It is obvious that the observable

space error clearly reflects the findings that were derived from the visual presentation.

The fact that the range for suitable solutions is dependent on the complexity of the man-

ifold is reflected in the graphs, as is the observation that for the ’halfcircle’ dataset the

quality of the lUKR solution is indifferent with regard to � . The numerical instability

for small values for � is reflected in a very large value for �
���

that obviously abruptly

drops when � exceeds some critical value. In the plots that show � ���
also the threshold

values that yield a connected graph are shown in form of a green ’x’. The values were

obtained by a search procedure: � was initialized by that value that gives rise to at least

one non-zero kernel function value, if evaluated on every datapoint and its correspond-

ing nearest neighbor using the Epanechnikov kernel and was increased with factor ��� � �
until the graph connectivity criterion (see 4.3.2) was met. Generally, the connectivity

threshold corresponds quite well to the critical value that yields the obviously stable

solutions. In some cases, however, it underestimates the critical value, confirming the

aforementioned findings. The dependency of �
��� �
��� on � is depicted beneath each plot

for � ���
. Analogous conclusions can be drawn from these: The minimum of �

��� �
��� corre-

sponds to the minimum of � ���
quite well, too, but the tendency to underestimate – also

mentioned before – is obvious here, as well. Overall, it becomes obvious that both crite-

ria described may be used as a lower bound to search for a value for � with the objective

to minimize � � �
, but they are not useful to directly derive such a value. The evalua-

tion of the other criteria for determining a suitable value for the kernel bandwidth that

could be rejected already (such as the monotonously rising log-likelihood, see 4.3.2)

shall not be described in detail, since a comparison to � ���
has only been able to confirm

these. Overall, it can be concluded that none of the approaches to bandwidth selec-

tion proposed in 4.3.2 is safe enough to represent a serious alternative the strategy to

use the observable space cross validation error and choose a suitable kernel bandwidth

iteratively.
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Figure 4.10.: Dependency of the observable space and the latent space built in leave-
one-out cross validation errors on � . Beneath the scatter plot for each
dataset � � �

and �
��� �
��� are depicted for varying kernel bandwidths. In addi-

tion, the ’connectivity threshold’ is marked in the plots for � ���
.
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iris glass diabetes
q 1 2 1 2 1 2

GTM 2.7020 0.9601 8.0681 1.9634 6.7100 1.8822
PPS 2.5786 0.8757 7.9465 1.8616 6.5509 1.8202

lUKR 2.1164 1.2667 7.6977 6.1930 6.4130 4.9041
lUKR + oUKR 1.2017 0.5961 5.8665 4.3678 5.8018 3.9466

oUKR HOM 0.9414 0.5651 4.7515 3.6402 6.2488 3.9619

Table 4.2.: Evaluation of the test error that UKR gives rise to as compared to the test er-
ror that PPS gives rise to on several benchmark datasets. Key: GTM (Gener-
ative Topographical Mapping), PPS (Probabilistic Principal Surface), lUKR
(UKR using latent space risk minimization), oUKR (UKR using observable
space risk minimization), lUKR + oUKR (oUKR with initialization provided
by lUKR), oUKR HOM (oUKR with homotopy scheme).

Fitting ’Nonparametric Principal Surfaces’ to Real World Data

Since the use of the observable space error criterion gives rise to an interpretation of the

UKR model as a nonparametric variant of a principal curve or surface, an evaluation of

the performance of this model as compared to a parametric counterpart on some bench-

mark datasets suggests itself. For this end the UKR model was trained on three publicly

available datasets from the ’UCI Machine Learning repository’: ’iris,’ ’glass’ and ’pima

indians diabetes,’ which consist of 150, 214, and 768 elements in 4, 9, and 8 dimen-

sions, respectively (see [CG01] for more details). The test conditions that have been

used are similar to those used in [CG01], where a new approach to principal surfaces

named ’Probabilistic Principal Surfaces’ (PPS) is evaluated using these same datasets.

In detail, the PPS model is a modified version of the ’Generative Topographic Map’

(GTM) (see, e.g. [BSW98]) and degenerates to this for specific (hyper-) parameter set-

tings. In table 4.2 the performances of UKR are shown along with the results the authors

obtained using (generic) GTM, as well as PPS. One important difference regarding the

coming off of the results that should be noted, is that the results concerning UKR have

been obtained by training and adjusting hyper-parameters on a training set only. The

shown error represents the resulting error on an independent test set. The columns for

PPS and GTM, in contrast, show the test set error, where the model hyper-parameters

have been adjusted using this same test set.
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In detail, the UKR model was trained, using the following test conditions: for a total

of 25 runs, each (pre-whitened) dataset has been partitioned randomly into training and

test set of the same size. Then, for latent space dimensions � � � in one setting and for

� �  in another, scores have been computed using the algorithm given in 4.4.1, where

the observable space error has been used for rescaling only. The error that projection of

the corresponding test set on the resulting manifold gives rise to, averaged over all 25

runs, is shown in table 4.2, third row. The results that a further training on the resulting

scores using oUKR (4.2) gives rise to are shown below, and the results obtained using

oUKR alone, by applying the homotopy scheme with a penalized built in leave-one-out

cross validation objective function, in the last row.

From the table it becomes obvious that in the case of � � � the UKR results clearly

outperform those obtained from GTM and PPS, despite the parameter optimization on

the test set that gave rise to these results as mentioned above, suggesting UKR to be

a reasonable alternative to parametric models, as a first conclusion. While for � � 
UKR is not able to keep up with the extreme performance gain on the ’glass’ and the

’diabetes’ dataset, which may be probably due to test set optimization scheme, on the

’iris’ dataset the best UKR results outperform the other two methods here, as well.

More interestingly, it can be observed that, although mere application of lUKR

yields decent results already, additional training using oUKR is able to dramatically

further improve these. On the ’iris’ dataset the average error is even minimized approxi-

mately by factor � ��� for both latent space dimensionalities. The superiority of the oUKR

variant with regard to the observable space test error is further backed up by the results

obtained using this method alone. Here, a further improvement can be observed in all

but one setting, which is the one-dimensional approximation of the ’diabetes’ dataset,

where in the two-dimensional case, however, this method is even able to come close to

the GTM/PPS results.

Overall, the results obtained by these experiments abet the conclusion that UKR is

reasonable choice indeed when it comes to approximating a high dimensional dataset by

some lower dimensional manifold. The much better results of the oUKR variant clearly

compensate for the higher computational effort. In a practical situation the observable

space dimensionality and data set size may demand to weigh up the the computational

60



4. Unsupervised Kernel Regression

resources available against the generalization performace needed by the application at

hand. Here, the combination of lUKR and oUKR might provide a reasonable compro-

mise.
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In the following some applications of NLDR as achieved by using UKR shall be demon-

strated. It has been argued before that different kinds of applications demand a solution

of the different facets of the overall problem of dimensionality reduction. The appli-

cations demonstrated here have been chosen to reflect this categorization. They have

therefore been drawn from a uniform domain in order to abet a convenient compari-

son of the different facets of dimensionality reduction. In particular, a visual (image

processing) domain has been chosen where each observable space element represents

a black-and-white image by holding its pixel intensities encoded as real numbers. The

advantage of such a visual domain is that it allows for a particularly straightforward

application of the involved methods and thereby prevents the essential concepts from

being obscured by technical details. Nevertheless, it should be noted that these applica-

tions are transferable to any other domain where some vector valued data representation

is possible.

5.1. Visualization

An application of dimensionality reduction that does not necessarily require an estima-

tion of the coding or decoding function, since it gives rise to methods that only depend

on the presence of latent space realizations, is visualization. Being a regularly used in-

strument in the area of ’datamining,’ visualization provides a means to discern patterns

and structures in complex data that can be used to to gain insights and draw inferences

about this data. It is regularly applied in many areas where there are large amounts
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of data that need to be made sense of in some way. A common procedure used in

visualization is to provide a representation for a given dataset that facilitates the per-

ception of neighborhood relations or the clustering structure of the data. In order to

make such properties of the data accessible to human perception, a lower dimensional

representation is particularly helpful and gives rise to the deployment of methods for

dimensionality reduction.

Examples of the visualization of a dataset consisting of face images are shown in

figures 5.1 and 5.2. The dataset consists of 400 grayscale images taken from the Cam-

bridge Olivetti Research Lab (ORL) database of faces, cut down in size to 64 � 64

pixels. There are 10 images of each of 40 different persons. First lUKR has been ap-

plied using the combined error criterion described in section 4.4. The optimal kernel

bandwidth � � � �,���  � � � � �

with regard to the observable space error was obtained by

using 30 search steps. Then the resulting latent data matrix has been used as an ini-

tialization for oUKR, that was applied using the built in leave-one-out cross validation

criterion. While the two-dimensional representation obtained from applying lUKR (fig-

ure 5.1) and the one that further training with oUKR gives rise to (figure 5.2) obviously

both capture the structure of the data quite well, it is also obvious that they are quite

different. Not only is the average scale of the latent space realizations obtained from

training with oUKR approximately ten times higher than the lUKR initialization, but

the datapoints are also spread out much more homogeneously for the first. In addition

it is obvious that the grouping of the datapoints with regard to the different subjects is

reflected in both low-dimensional representations, but much more clearly for the oUKR

solution. For the lUKR solution, on the contrary, the tendency of the scores of some

subjects to spread out along the horizontal axis is notable.

The degree of freedom within the dataset that is captured in the solution this way

corresponds to head rotations. This becomes clear from figure 5.3, in which the original

images of some of the subjects, sorted with regard to the score in the first latent space

dimension of the lUKR solution, are depicted. This automatic indexing that the lUKR

solution thereby gives rise to points towards another major application area of NLDR

in general. Interestingly, the tendency of oUKR to distribute the data more homoge-

neously, while at the same time concentrating more on grouping structure, in this case
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Figure 5.1.: Two-dimensional representation of the whole ’olivettifaces’ dataset, using
lUKR. Each of the 40 distinct persons is represented by one symbol (the
letters [a-z], digits [0-9] and in addition the symbols [+], [-], [:], [=], and
[*] have been used). In addition, for convenient visualization the symbols
have been colored randomly, but consistently for each person.
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Figure 5.2.: Two-dimensional representation of the ’olivettifaces’ dataset obtained by
using oUKR with the lUKR solution depicted in figure 5.1 used as an ini-
tialization.
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Figure 5.3.: Automatic indexing: Seven faces from the olivettifaces dataset sorted ac-
cording the first eigenvalue of the lUKR solution.

destroys this specific capacity. Experiments showed that it is not possible to achieve this

kind of indexing using the oUKR representation. On the other hand, this variant would

be much more useful as a kind of preprocessing for some kind of classification with

regard to the different subjects, for example. In general, it becomes obvious that despite

the advantages that the observable space error criterion has, there are cases in which the

spectral UKR variant is able to capture some properties of the data distribution in a way

that may be more valuable for some applications.

An example of the visualization of a dataset of grayscale images of handwritten

digits is shown in figures 5.4 and 5.5. The images were taken from the National Insti-

tute of Standards and Technology (MNIST) database of handwritten digits. A subset of

1500 images was randomly chosen from the database. The subset thus contains approx-

imately equally sized sets of images of the ten represented classes (digits [1] to [10]).

From figure 5.4, in which the two-dimensional representation of a subset containing the

[0]s, [1]s, and [7]s is depicted, it is obvious that not only a grouping with respect to the

different classes takes place, but also the inner-class variability is captured. This effect

becomes even more obvious in figure 5.5, where the two-dimensional representation of

a subset containing only the [8]s is shown, which was obtained by also using only this

class for training.
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Figure 5.4.: Visualization of a subset of the MNIST digits dataset using the original im-
ages. A two-dimensional representation of a randomly chosen � � � � � �
elements comprising subset of the whole dataset was computed using the
combined error criterion described in section 4.4 with 20 iterations to search
for an optimal � . Depicted are randomly chosen subsets of the elements
belonging to the classes [0], [1], and [7]. The visual representation was cre-
ated by randomly choosing latent space elements and displaying the corre-
sponding observable space element as a grayscale image at the latent space
coordinates only in the case that no other element within a pre-specified
area around the chosen element has already been chosen before. Otherwise
the latent space element has been rejected.
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Figure 5.5.: Visualization of a subset of the MNIST digits containing only [8]’s. lUKR
was used with � � � �  � � � �

. The visualization strategy described in the
caption of figure 5.4 has been used here, too.
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5.2. Pattern detection

If models for both the coding and decoding function are available, some kind of pattern

detection becomes possible. The term pattern detection here refers to the problem of

discovering those data instances within a large dataset that have specific predefined

properties. It can be interpreted as a special binary classification problem where the

membership to a specific class of objects vs. non-membership shall be determined.

Since the training data in such a setting only comprises the positive examples, it is often

referred to as ’one-class’ problem in the literature.

Dimensionality reduction can be used for the purpose of detection by measuring

the error � ��� � � .5� 2&� �
�
� � ��.3%�.5� 2 2

� �
that the projection of a data vector � onto the

manifold obtained by training on class-members only gives rise to and then, subject to

some predefined threshold parameter � , asserting class membership, iff � ��� � �


���

holds.

Here, this strategy has been used for the detection of handwritten digits from the

MNIST-dataset described above. More specifically, the problem of detecting instances

that represent an [8] has been tackled. For this purpose UKR has been deployed to train

a manifold using 80 randomly chosen pictures that represent an [8]. Then another subset

(disjunct to the training set) comprising 1000 randomly chosen elements was used to as-

sess the detection performance. The results are shown in figure 5.6 in the form of ROC

plots. ROC (’Receiver-Operating-Characteristics’) plots provide a straightforward, vi-

sual way to assess the quality of a pattern-detection system. In their most frequently

used variant they display the (normalized) ratio of class members that have been cor-

rectly classified as such (called ’true positives’) and non-members that have wrongly

been classified as class members (called ’false positives’) for various threshold values.

Figure 5.6 shows the ROC plots that result from using the two different models for

% – the projection model (4.11) and the ’feed forward’ model (4.27) – in the top and

in the bottom row, respectively. The latent space dimensionalities � � � and � � 
were used. For a latent data matrix obtained from using lUKR and another matrix

obtained from further training with oUKR the ROC plots are depicted. In addition

the ROC plot that results from a nearest-neighbor approach to detection is shown as
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Figure 5.6.: ROC plots to assess the performance of UKR used as a method for pattern
detection. The axes labeled (’1 - specificity’) represent the relative number
of false positives, the axes labeled (’sensitivity’) the relative number of true
positives. The top two plots show the performance using UKR with % mod-
eled by projection, the bottom two plots the performance that results from
modeling % in a ’feed forward’ fashion. The results for lUKR are depicted
in blue, the results for oUKR in green and as a reference the results for a
nearest neighbor approach to detection are depicted in black in each plot.
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a reference. The nearest-neighbor method amounts to simply replacing ��.3%�.5� 2 2 in the

definition of � ��� � � by the nearest neighbor of � among the training data. The plots reveal

a slight gain in performance for UKR as compared to the nearest-neighbor approach in

the case that % is modeled by projection. In the other case no performance gain can

be observed. It is also obvious that the improvement is more significant for � � 
than for � � � , indicating that further raising the latent space dimensionality may lead

to a further improvement. Interesting is that the lUKR approach used alone is able to

slightly outperform the oUKR approach in the case where % is modeled by projection.

To answer the question if the detection application represents another example where the

oUKR method is not superior to mere application of lUKR (with subsequent rescaling)

would demand a further investigation, however.

5.3. Pattern production

Once the degrees of variability in a given dataset have been revealed it is possible to

create new elements belonging to the same kind by producing observable space vectors

that obey the respective constrictions of variability. If a model for � is present, this is

achieved straightforwardly by producing latent space elements and ’plugging’ these into

the learned model. This way simple linear operations in latent data space give rise to

possibly highly nonlinear operations in observable space. Above and beyond this, some

kind of interpolation, extrapolation or analogy making with regard to the training data

elements can be achieved, for example, as pointed out in [TdSL00].

An example of obtaining new data elements by interpolation using the face images-

dataset from above is given in figure 5.3. The top row shows the effect of interpolating

in observable space between two pictures of the same person where the viewing direc-

tion is different (left-most and right-most picture), resulting in a simple cross-fade. The

second row shows the result of interpolation in latent space which corresponds to a non-

linear transformation in observable space that obviously captures the head-rotation that

naturally connects the two face examples far better. The two rows below analogously

show the effect of interpolating between face images of different persons. Here, again

the superiority of latent space interpolation is visible.
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Figure 5.7.: Interpolation in observable space vs. interpolation in latent space.

An additional example for the production of new patterns on the grounds of a set of

examples is shown in figure 5.8. The example was produced by combining interpolation

with similarity based retrieval, another important application of NLDR that can only be

touched on here. The figure depicts the detailed screens of a movie that show the gradual

deformation of a face, also known as ’morphing.’ The face deformations movie starts

with a woman’s face (top left corner) which is gradually deformed to yield the face of

another person, which is deformed again, and so on, until after 13 stages the first picture

is obtained again.
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Figure 5.8.: ’Face Deformations’
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This thesis evaluated the potential of Unsupervised Kernel Regression as a method for

Nonlinear Dimensionality Reduction.

NLDR was exposed to be consisting of the problems of (i) determining a low-

dimensional dataset, (ii) determining a nonlinear latent to observable space mapping � ,

and (iii) determining a nonlinear observable to latent space mapping % , where depend-

ing on the application different combinations of (i), (ii) and (iii) might be demanded.

Furthermore it has been argued that in case a model for � or % is needed, the problem of

generalization becomes a subject matter of crucial importance.

The two methods the UKR framework gives rise to, termed oUKR and lUKR, and

technical issues regarding their implementation have been investigated, such as nonlin-

ear optimization and complexity control for the first, and kernel bandwidth selection for

the second. In addition, the specific characteristics of the two approaches with regard

to generalizing the involved mappings to unseen data have been pointed out. Specific

shortcomings of the two methods, such as the computational burden for oUKR, and for

lUKR the dependency on a suitably chosen observable space kernel bandwidth and the

lacking capacity for generalization led to considerations regarding a consolidation of

both. The resulting algorithm and the UKR approach generally have been proven to be

profitable in several applications.

As the restricted scope of this thesis admitted only a brief early investigation of the

potential of the UKR approach, some issues have only been touched and others tackled

rudimentarily, here. Among the issues that are in need of further investigation are in

particular (i) the use of bandwidth limited kernel functions to restrain the computational
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burden of oUKR, as pointed out in 4.2, (ii) particularly suited nonlinear optimization

strategies in general to further cope with the computational complexity of this UKR

variant, and (iii) the different bandwidth selection strategies for lUKR, such as the use

of the observable space noise variance in cooperation with some ’reduced set density

estimators,’ as described in 4.3.

In addition, several promising variations and extensions of the UKR method cer-

tainly deserve a further exploration. Among the topics that point towards promising di-

rections for future research are in particular (i) the generative variant of oUKR pointed

out in 4.2, (ii) the introduction of top-down influences that the oUKR method allows for

by making use of an accordingly customized complexity control referred to in the same

section, and (iii) the recently introduced third UKR version, that supplements oUKR and

lUKR by performing ’Feature Space Error Minimization’ in some higher dimensional

feature space [Mei03] through the use of the ’kernel trick’ (see 3.2.3).

Overall, it became clear that UKR is a valuable method for NLDR. There has been

a longstanding and strong demand for such methods, that hitherto could not be met

with complete satisfaction, because of the aforementioned shortcomings of the methods

available today. Therefore, especially the abundance of applications, that NLDR gives

rise to ask for a further investigation and point towards far-reaching developments to be

made in the future.
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A. Generation of the Toy Datasets

The preceding chapters used several two- and three-dimensional toy datasets for illus-

tration purposes. In the following the generation of these datasets will be described.

All datasets have been generated by a random vector � or are given by the union of

two sets generated by two random vectors � # and � � . For the different datasets used, the

random vectors are defined as follows:

� ’halfcircle:’

� �
��� ,�� .��/2� 	�� .��/2	� � ��
 (A.1)

� ’2 halfcircles:’ The same as the ’halfcircle’ dataset, but with a different interval

for � (see below).

� ’one-dimensional S-manifold’ or ’S-curve’

� # � �
� ,�� .�� 2� 	 � .�� 2�� � ��
� � � �
�

� ,�� .��/2 � � 	 � .�� 2� � ��
 (A.2)

� ’two-dimensional S-manifold1:’

1The definition for the S-curve dataset is the same that has been used by [RS00] for illustration purposes.
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� # � � � ,�� .�� 2�
� 	 � . �/2�� � ��
� � � � � � ,�� . �/2�

 � � 	 � .�� 2�� � ��
 (A.3)

� ’spiral:’

� �
��� ,�� . �/2� 	�� . �/2���� 	 � � . ���� � � � �2 � ��
 (A.4)

In all cases, the distributions of the random variables � and � are uniform on an

interval that depends on the dataset. The intervals used for � for the different datasets are

(in the same order as the definition of the random vectors): � � 
	� � , � � 
�� ���
� ��� �� 
�� � � � ��� � ,� � �!� � � 
�� � � � � , � � � � � �!
 � � � � � , � � 
���� � . The interval for � is � � 
 � � � � .
The random vector u is spherically Gaussian with standard deviation � in each di-

rection.
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