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Abstract

In this note, we review the Rademacher complexity and its application in statistical
learning theory.

1 Prerequisites

We first review a few inequalities which are very useful in proving the main results. We leave the
proof of these inequalities in the appendix.
Theorem 1.1. (Markov’s Inequality) Let X be a random variable that assumes only nonnegative
values. Then for every a > 0,

P(X ≥ a) ≤ E[X]

a
.

Theorem 1.2. (Hoeffding’s Lemma [5]) Let X be a random variable such that X ∈ [a, b] and
E[X] = 0. Then for every λ > 0,

E[eλX ] ≤ eλ
2(b−a)2/8.

Remark. This is a commonly used bound for the moment generating function of bounded random
variables and will be used in proving the Hoeffding’s inequality.

Concentration Inequalities We now review a few concentration inequalities.
Theorem 1.3. (Hoeffding’s Inequality [5]) For bounded random variables Xi ∈ [ai, bi] where
X1, · · · , Xn are independent and Sn =

∑n
i=1Xi, then

P (Sn − E[Sn] ≥ t) ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
,

P (E[Sn]− Sn ≥ t) ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
.

Theorem 1.4. (McDiarmid’s Inequality [9]) Consider independent random variablesX1, · · · , Xn ∈
X and a mapping φ : Xn → R. If for all i ∈ {1, · · · , n} and for all x1, · · · , xn, x′i ∈ X , the
function φ satisfies

|φ (x1, · · · , xi−1, xi, xi+1, · · ·xn)− φ (x1, · · · , xi−1, x
′
i, xi+1, · · ·xn) | ≤ ci

then

P (φ (X1, · · · , Xn)− E[φ (X1, · · · , Xn)] ≥ t) ≤ exp

(
−2t2∑n
i=1 c

2
i

)
,

P (E[φ (X1, · · · , Xn)]− φ (X1, · · · , Xn) ≥ t) ≤ exp

(
−2t2∑n
i=1 c

2
i

)
.

Preprint. Under review.



2 Definitions

2.1 Rademacher Complexity of a Set

Rademacher Complexity (Rademacher Average) [13] Given a set of vectors A ⊂ Rm, the
Rademacher complexity is defined as

Rm(A) =
1

m
Eσ

[
sup
a∈A

m∑
i=1

σiai

]
,

where the expectation is taken overσ = {σ1, σ2, · · · , σm} and they are independent random variables
following the Rademarcher distribution, i.e., P (σi = 1) = P (σi = −1) = 1/2.

2.2 Rademacher Complexity of a Function Class

Rademacher Complexity (Rademacher Average) [6, 4] Let P be a probability distribution over
a domain space Z. The Rademacher complexity of the function class F w.r.t. P for i.i.d. sample
S = (z1, z2, · · · , zm) with size m is:

Rm(F) = ES∼Pm
[

1

m
Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]]
,

where the inner expectation is taken over σ = {σ1, σ2, · · · , σm} and they are independent random
variables following the Rademarcher distribution, i.e., P (σi = 1) = P (σi = −1) = 1/2. The
empirical Rademacher complexity is defined as,

R̂m(F , S) =
1

m
Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]
.

Remark. We can motivate the Rademacher complexity from the binary classification. Let f be a
classification function which maps data zi to its label σi ∈ {−1, 1}. It is straightforward to show that
supf∈F

∑m
i σif(zi) is equivalent to minimizing the classification error. Taking the expectation over

all σi amounts to considering all possible labeling (partitioning) of the samples. If F consists of a
single function f , then R̂m(F , S) = 0. If F shatters {z1, · · · , zm}, then R̂m(F , S) = 1. Therefore,
the Rademacher complexity intuitively indicates how expressive the function class is.

3 Preliminary Results

Theorem 3.1. (Scalar Multiplication and Translation) For any A ⊂ Rm, scalar c ∈ R, and vector
b ∈ Rm, we have

Rm({ca+ b|a ∈ A}) = |c|Rm(A).

Proof. If c ≥ 0, then supa∈A (c
∑m
i=1 σiai) = supa∈A (|c|

∑m
i=1 σiai) = |c| supa∈A (

∑m
i=1 σiai).

Otherwise, supa∈A (c
∑m
i=1 σiai) = supa∈A (−|c|

∑m
i=1 σiai) = |c| supa∈A (

∑m
i=1(−σi)ai).

Since σi and −σi follow the same distribution, we have

Eσ

[
sup
a∈A

(
c

m∑
i=1

σiai

)]
= Eσ

[
|c| sup
a∈A

(
m∑
i=1

σiai

)]
. (1)
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Therefore,

Rm({ca+ b : a ∈ A}) =
1

m
Eσ

[
sup
a∈A

m∑
i=1

σi(cai + bi)

]

=
1

m
Eσ

[
sup
a∈A

(
c

m∑
i=1

σiai

)
+

m∑
i=1

σibi

]

=
1

m
Eσ

[
sup
a∈A

(
c

m∑
i=1

σiai

)]
(E[σi] = 0 ∀i)

=
1

m
Eσ

[
|c| sup
a∈A

(
m∑
i=1

σiai

)]
(1)

= |c|Rm(A).

Theorem 3.2. (Summation) Let A,B ⊂ Rm and define A+B = {a+ b|a ∈ A, b ∈ B}. Then,

Rm(A+B) = Rm(A) +Rm(B).

Proof.

Rm(A+B) = Rm({a+ b|a ∈ A, b ∈ B}) =
1

m
Eσ

[
sup

a∈A,b∈B

m∑
i=1

σi(ai + bi)

]

=
1

m
Eσ

[
sup
a∈A

m∑
i=1

σiai + sup
b∈B

m∑
i=1

σibi

]
= Rm(A) +Rm(B)

Theorem 3.3. (Convex hull) Let A ⊂ Rm and A′ = {
∑N
j=1 αja

(j)|N ∈ N,∀j,a(j) ∈ A,αj ≥
0, ‖α‖1 = 1}. Then Rm(A) = Rm(A′).

Proof. Denoting ∆N = {α|α ∈ RN ,∀j, αj ≥ 0, ‖α‖1 = 1}, we have

Rm(A′) = Rm({
N∑
j=1

αja
(j)|N ∈ N,∀j,a(j) ∈ A,αj ≥ 0, ‖α‖1 = 1})

=
1

m
Eσ

 sup
N∈N,α∈∆N ,{a(j)∈A}

m∑
i=1

σi

 N∑
j=1

αja
(j)
i


=

1

m
Eσ

 sup
N∈N

sup
{a(j)∈A}

sup
α∈∆N

N∑
j=1

αj

(
m∑
i=1

σia
(j)
i

)
=

1

m
Eσ

[
sup

a(j∗)∈A

(
m∑
i=1

σia
(j∗)
i

)] (
Here

m∑
i=1

σia
(j∗)
i = max

j

m∑
i=1

σia
(j)
i

)
= Rm(A),

where the second last equality uses the fact that for any vector a ∈ RN , sup
α∈∆N

N∑
j=1

αjaj = max
j
aj .
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4 Main Results

In this section, we state the main results about the Rademacher complexity: (1) how to bound the
expected maximum error in estimating the mean of any function using samples; (2) how to estimate
the Rademacher complexity in some cases.

4.1 Rademacher Complexity and Sampler Error

Theorem 4.1. Let P be a probability distribution over a domain space Z. The Rademacher com-
plexity of the function class F w.r.t. P for i.i.d. sample S = (z1, z2, · · · , zm) with size m is Rm(F).
We have,

ES∼Pm
[

sup
f∈F

(
Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi)

)]
≤ 2Rm(F).

Proof. Pick another independent sample S′ = {z′1, · · · , z′m}. We have

Ez∼P [f(z)] = ES′∼Pm
[

1

m

m∑
i=1

f(z′i)

]
. (2)

Moreover, we have

ES∼Pm
[
ES′∼Pm

[
Eσ

[
sup
f∈F

(
1

m

m∑
i=1

σi (f(z′i)− f(zi))

)]]]

= ES∼Pm
[
ES′∼Pm

[
sup
f∈F

(
1

m

m∑
i=1

(f(z′i)− f(zi))

)]]
(3)

To obtain this, we first note that σ ∈ {−1, 1}m and every possible configuration/value of σ has
probability 1/2m. WLOG, we can permute any configuration of σ so that it can be represented as

[
σu1

= 1, · · · , σuk = 1, σuk+1
= −1, · · · , σum = −1

]
,

where 0 ≤ k ≤ m and u = {u1, · · · , um} is a permutation of {1, · · · ,m}. We want to show, for
any configuration of σ,

ES∼Pm
[
ES′∼Pm

[
sup
f∈F

(
1

m

m∑
i=1

σi (f(z′i)− f(zi))

)]]

= ES∼Pm
[
ES′∼Pm

[
sup
f∈F

(
1

m

(
k∑
i=1

(
f(z′ui)− f(zui)

)
+

m∑
i=k+1

(
f(zui)− f(z′ui)

)))]]

= ES∼Pm
[
ES′∼Pm

[
sup
f∈F

(
1

m

m∑
i=1

(f(z′i)− f(zi))

)]]
.

To see this, we note that zui and z′ui are independent and symmetric. Hence we proved Eq. (3)
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Combining the above results, we have

ES∼Pm
[

sup
f∈F

(
Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi)

)]

= ES∼Pm
[

sup
f∈F

(
ES′∼Pm

[
1

m

m∑
i=1

f(z′i)

]
− 1

m

m∑
i=1

f(zi)

)]
(Eq. (2))

= ES∼Pm
[

sup
f∈F

(
ES′∼Pm

[
1

m

m∑
i=1

f(z′i)−
1

m

m∑
i=1

f(zi)

])]

≤ ES∼Pm
[
ES′∼Pm

[
sup
f∈F

(
1

m

m∑
i=1

f(z′i)−
1

m

m∑
i=1

f(zi)

)]]
(Jensen’s inequality)

= ES∼Pm
[
ES′∼Pm

[
Eσ

[
sup
f∈F

(
1

m

m∑
i=1

σi (f(z′i)− f(zi))

)]]]
(Eq. (3))

≤ ES′∼Pm
[
Eσ

[
sup
f∈F

(
1

m

m∑
i=1

σif(z′i)

)]]
+ ES∼Pm

[
Eσ

[
sup
f∈F

(
1

m

m∑
i=1

σif(zi)

)]]
= 2Rm(F) (4)

For the last inequality, we use the fact that σi and −σi follow the same Rademacher distribution and

sup
f∈F

(
1

m

m∑
i=1

σif(z′i) +
1

m

m∑
i=1

σif(zi)

)
≤ sup
f∈F

(
1

m

m∑
i=1

σif(z′i)

)
+ sup
f∈F

(
1

m

m∑
i=1

σif(zi)

)

Remark. This theorem shows that one can bound the maximum error in estimating the mean of any
function f using the Rademacher complexity of the set of functions F .

Theorem 4.2. Let F be a set of functions such that for any f ∈ F and for any two values x and
y in the domain of f , |f(x) − f(y)| ≤ c for some constant c. Let Rm(F) and R̂m(F , S) be the
Rademacher complexity and the empirical Rademacher complexity of the set F , with respect to a
random i.i.d. sample S = {z1, · · · , zm} of size m from a distribution P .

1. For any ε ∈ (0, 1),

P
(
R̂m(F , S)−Rm(F) ≥ ε

)
≤ e−2mε2/c2

P
(
Rm(F)− R̂m(F , S) ≥ ε

)
≤ e−2mε2/c2 .

2. For all f ∈ F and ε ∈ (0, 1),

P

(
EP (f(z))− 1

m

m∑
i=1

f(zi) ≥ 2Rm(F , S) + ε

)
≤ e−2mε2/c2

P

(
EP (f(z))− 1

m

m∑
i=1

f(zi) ≥ 2R̂m(F , S) + 3ε

)
≤ 2e−2mε2/c2

Proof. (1) Recall the definition of the empirical Rademacher complexity as

R̂m(F , S) =
1

m
Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]
.
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We observe that R̂m(F , S) is a function of m random variables z1, · · · , zm. Moreover, since
|f(x) − f(y)| ≤ c, any change of one of the random variables would change the R̂m(F , S) by at
most c/m. Therefore, we could apply the McDiarmid’s inequality (Theorem 1.4) to obtain

P
(
R̂m(F , S)− ES [R̂m(F , S)] ≥ ε

)
≤ exp

(
−2mε2

c2

)
.

Relying on the fact that ES [R̂m(F , S)] = Rm(F), we proved the first inequality. The second one
follows similarly.

(2) From Theorem 4.1, we have

ES∼Pm
[
Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi)

]
≤ ES∼Pm

[
sup
f∈F

(
Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi)

)]
≤ 2Rm(F). (5)

We denote event A as(
Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi)

)
− ES∼Pm

[
Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi)

]
≥ ε. (6)

Since Ez∼P [f(z)]− 1
m

∑m
i=1 f(zi) can be seen as a function of m random variables z1, · · · , zm and

any change of one of the random variables would change the outcome by at most c/m, we can again
apply the McDiarmid’s inequality (Theorem 1.4) to obtain P(A) ≤ e−2mε2/c2 .

We denote event B as

Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi)− 2Rm(F) ≥ ε. (7)

From Eq. (5), event B implies event A. Therefore, we have P(B) ≤ P(A) ≤ e−2mε2/c2 which
proves the first inequality.

We denote event C as

R̂m(F , S) ≥ Rm(F)− ε. (8)

From the first part of this theorem, we know that P(C) ≥ 1− e−2mε2/c2 .
We denote event D as

Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi) ≥ 2R̂m(F) + 3ε. (9)

It is clear that event C and event D happening together would imply event B, i.e., P(C ∩D) ≤ P(B).
Therefore, we have

P

(
Ez∼P [f(z)]− 1

m

m∑
i=1

f(zi) ≥ 2R̂m(F) + 3ε

)
= P(D)

= P(C ∩D) + P(C ∪D)− P(C)

≤ P(B) + 1− P(C)

= 2e−2mε2/c2 .

Remark. This theorem shows that for bounded functions: (1) the Rademacher complexity is well ap-
proximated by the empirical Rademacher complexity; (2) the estimation error of the mean function is
well approximated by twice the Rademacher complexity. One could combine the one-side inequalities
in the first part as P

(
|R̂m(F , S)−Rm(F)| ≥ ε

)
≤ 2e−2mε2/c2 .

6



4.2 Estimating the Rademacher Complexity

In this section, we review the standard techniques in estimating the Rademacher complexity.

Theorem 4.3. (Massart’s Lemma [8]) Assume |F| is finite. Let S = {z1, · · · , zm} be a random i.i.d.
sample, and let

B = max
f∈F

(
m∑
i=1

f2(zi)

) 1
2

then

R̂m(F , S) ≤
B
√

2 ln |F|
m

Proof. For any s > 0, we have

esmR̂m(F,S) = esEσ[supf∈F
∑m
i=1 σif(zi)],

≤ Eσ
[
es supf∈F

∑m
i=1 σif(zi)

]
(Jensen’s inequality)

= Eσ

[
sup
f∈F

es
∑m
i=1 σif(zi)

]
≤
∑
f∈F

Eσ
[
es

∑m
i=1 σif(zi)

]
(inner part is positive)

=
∑
f∈F

m∏
i=1

Eσ
[
esσif(zi)

]
. (independence of σ)

where σ = {σ1, σ2, · · · , σm} is the set of Rademacher random variables. Since Eσ[σif(zi)] = 0
and −f(zi) ≤ σif(zi) ≤ f(zi), we can apply Hoeffding’s Lemma (Theorem 1.2) to obtain,

Eσ[esσif(zi)] ≤ es
2f2(zi)/2.

Plugging this into the previous inequality, we have

esmR̂m(F,S) ≤
∑
f∈F

m∏
i=1

es
2f2(zi)/2

=
∑
f∈F

e(s2/2)
∑m
i=1 f

2(zi)

≤
∑
f∈F

e(sB)2/2

= |F|e(sB)2/2

Hence, for any s > 0,

R̂m(F , S) ≤ 1

m

(
ln |F|
s

+
sB2

2

)
By optimizing over s, one can find that setting s =

√
2 ln |F|
B yields

R̂m(F , S) ≤
B
√

2 ln |F|
m

Remark. This theorem provides an upper bound on the empirical Rademacher complexity when the
class of function is finite.
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Theorem 4.4. (Talagrand’s Contraction Lemma [7]) Let Φ1, · · · ,Φm be l-Lipschitz functions from
R to R, σ1, · · · , σm be Rademacher random variables, and S = {z1, · · · , zm} be a random i.i.d.
sample. Then, for any hypothesis set F of real-valued functions, the following inequality holds,

1

m
Eσ

[
sup
f∈F

m∑
i=1

σi(Φi ◦ f)(zi)

]
≤ l

m
Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]
= lR̂m(F , S)

In particular, if Φi = Φ,∀i ∈ {1, · · · ,m}, then the following holds

R̂m(Φ ◦ F , S) ≤ lR̂m(F , S)

Proof. We have

1

m
E
σ

[
sup
f∈F

m∑
i=1

σi(Φi ◦ f)(zi)

]
=

1

m
E

σ/σm

[
E
σm

[
sup
f∈F

um−1(f) + σm(Φm ◦ f)(zm)

]]
,

where um−1(f) =
∑m−1
i=1 σi(Φi ◦ f)(zi).

By the definition of the supremum, for any ε > 0, there exist f1, f2 ∈ F such that

um−1(f1) + σm(Φm ◦ f1)(zm) ≥ (1− ε)

[
sup
f∈F

um−1(f) + σm(Φm ◦ f)(zm)

]

um−1(f2)− σm(Φm ◦ f2)(zm) ≥ (1− ε)

[
sup
f∈F

um−1(f)− σm(Φm ◦ f)(zm)

]
,

since otherwise the RHS would be the new supremum.

Therefore, we have

(1− ε) E
σm

[
sup
f∈F

um−1(f) + σm(Φm ◦ f)(zm)

]
,

=(1− ε)

[
1

2
sup
f∈F

[um−1(f) + (Φm ◦ f)(zm)] +
1

2
sup
f∈F

[um−1(f)− (Φm ◦ f)(zm)]

]

≤1

2
[um−1(f1) + σm(Φm ◦ f1)(zm) + um−1(f2)− σm(Φm ◦ f2)(zm)]

≤1

2
[um−1(f1) + um−1(f2) + `sgn (f1(zm)− f2(zm)) (f1(zm)− f2(zm))] (Lipschitz condition)

=
1

2
[um−1(f1) + `sf1(zm) + um−1(f2)− `sf2(zm)] (Simplify s = sgn (f1(zm)− f2(zm)))

≤1

2
sup
f∈F

[um−1(f) + `sf(zm)] +
1

2
sup
f∈F

[um−1(f)− `sf(zm)] (Definition of supremum)

= E
σm

[
sup
f∈F

um−1(f) + `σmf(zm)

]
(Definition of σm)

Since the above inequality holds for any ε > 0, we have

E
σm

[
sup
f∈F

um−1(f) + σm(Φm ◦ f)(zm)

]
≤ E
σm

[
sup
f∈F

um−1(f) + `σmf(zm)

]
.

Here we use the fact that if (1− ε)a ≤ b for all ε > 0, then a ≤ b. To see this, if a = 0, then 0 ≤ b
and a ≤ b. For a 6= 0, let us first assume a > b. We set ε = a−b

2|a| > 0, then (1 − ε)a = a+b
2 if

a > 0 and otherwise (1− ε)a = 3a−b
2 . Therefore (1− ε)a ≤ b implies a ≤ b which contradicts the

assumption.

We can apply the above analysis to all other σi(i 6= m) to finish the proof.

8



Remark. This theorem establishes the relationship between the empirical Rademacher complexity
of the class of functions and the one of another class of functions constructed by its composition with
some Lipschitz functions. Since the proof requires neither f nor Φ to be a single-variable function,
the result could be generalized to the multi-variate case.
Theorem 4.5. (Covering Number Bound [12]) Let F be a class of real-valued functions, S =
{z1, · · · , zm} be a random i.i.d. sample, and C(F , ε, ‖ · ‖1,S) be the size of minimal ε-cover of F
w.r.t. ‖ · ‖1,S , i.e., the covering number. Assuming

sup
f∈F

(
1

m

m∑
i=1

f2(zi)

) 1
2

≤ c,

then we have

R̂m(F , S) ≤ inf
ε>0

(
ε+

c
√

2√
m

√
lnC(F , ε, ‖ · ‖1,S)

)
.

Proof. Fix any ε > 0. Let F̂ be a minimal ε-cover of F w.r.t. ‖ · ‖1,S , i.e., for any f ∈ F , there exists
f̂ ∈ F̂ such that 1

m

∑m
i=1 |f(zi)− f̂(zi)| ≤ ε. Note that F̂ ⊆ F due to the definition of the ε-cover.

We have

R̂m(F , S) =
1

m
Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]

=
1

m
Eσ

[
sup
f∈F

(
m∑
i=1

σi

(
f(zi)− f̂(zi)

)
+

m∑
i=1

σif̂(zi)

)]

≤ 1

m
Eσ

[
sup
f∈F

(
m∑
i=1

σi

(
f(zi)− f̂(zi)

))]
︸ ︷︷ ︸

A

+
1

m
Eσ

[
sup
f∈F

(
m∑
i=1

σif̂(zi)

)]
︸ ︷︷ ︸

B

. (10)

Here we use the property of the supremum in the last inequality. Note the f̂ has a dependency on
f so that one can not drop the supremum inside the term B. Now we will bound terms A and B
respectively. For the term A, we have

1

m
Eσ

[
sup
f∈F

(
m∑
i=1

σi

(
f(zi)− f̂(zi)

))]
≤ 1

m
Eσ

[
sup
f∈F

(
m∑
i=1

∣∣∣σi (f(zi)− f̂(zi)
)∣∣∣)]

≤ 1

m
Eσ

[
sup
f∈F

(
m∑
i=1

|σi|
∣∣∣(f(zi)− f̂(zi)

)∣∣∣)]

≤ 1

m
Eσ

[
m∑
i=1

ε

]
= ε, (11)

where the we use |σi| = 1 in the last equality. For the term B, we have

1

m
Eσ

[
sup
f∈F

(
m∑
i=1

σif̂(zi)

)]
≤ 1

m
Eσ

[
sup
f̂∈F̂

(
m∑
i=1

σif̂(zi)

)]

≤ sup
f̂∈F̂

(
1

m

m∑
i=1

f̂2(zi)

) 1
2

√
2 ln |F̂ |
m

≤ c
√

2 lnC(F , ε, ‖ · ‖1,S)

m
. (12)

For the second inequality, we use Massart’s lemma in Theorem 4.3. For the last inequality, we use the
assumption in this theorem and the definition of the covering number. By first combine the bounds in
Eq. (11) and Eq. (12) and then taking the infimum over ε > 0, we complete the proof.
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Remark. This theorem establishes the upper bound of the empirical Rademacher complexity of the
class of (possibly infinite number of) functions F . The key idea is to first relate the class of (possibly
infinite number of) functions to its (finite size) cover and then use Massart’s Lemma to bound the
covering number.
Theorem 4.6. (Dudley’s Entropy Integral Bound [12]) Let F be a class of real-valued functions,
S = {z1, · · · , zm} be a random i.i.d. sample, and C(F , ε, ‖ · ‖2,S) be the size of minimal ε-cover of
F w.r.t. ‖ · ‖2,S . Assuming

sup
f∈F

(
1

m

m∑
i=1

f2(zi)

) 1
2

≤ c,

then we have

R̂m(F , S) ≤ inf
ε∈[0,c/2]

(
4ε+

12√
m

∫ c/2

ε

√
lnC(F , ν, ‖ · ‖2,S)dν

)
.

Proof. Fix S = {z1, · · · , zm}. For each j ∈ N+, let εj = c
2j and Cj ∈ F be a minimal εj-cover of

F w.r.t. ‖ · ‖2,S . We have |Cj | = C(F , εj , ‖ · ‖2,S). For any f ∈ F and j ∈ N+, let fj ∈ Cj such
that ‖f − fj‖2,S ≤ εj . The sequence f1, f2, . . . converges towards f . This sequence can be used to
define the following telescoping sum, for given n ∈ N to be chosen later:

f = f − fn +

n∑
j=1

(fj − fj−1),

where f0 = 0. This telescoping sum can the regarded as a “chain" connecting f0 to f (why the
technique is named as chaining). We have

R̂m(F , S) =
1

m
Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]

=
1

m
Eσ

sup
f∈F

m∑
i=1

σi

f(zi)− fn(zi) +

n∑
j=1

(fj(zi)− fj−1(zi))


≤ 1

m
Eσ

[
sup
f∈F

m∑
i=1

σi (f(zi)− fn(zi))

]
+

n∑
j=1

1

m
Eσ

[
sup
f∈F

m∑
i=1

σi (fj(zi)− fj−1(zi))

]
.

The first term is bounded as below,
m∑
i=1

σi (f(zi)− fn(zi)) ≤
m∑
i=1

|f(zi)− fn(zi)|

≤ m

√√√√ 1

m

m∑
i=1

(f(zi)− fn(zi))
2

≤ mεn, (13)
where the second inequality uses the fact that for any a ∈ Rm, we have

2

(
m∑
i=1

|ai|

)2

=

m∑
i=1

m∑
j=1

2|ai||aj | ≤
m∑
i=1

m∑
j=1

(
a2
i + a2

j

)
= m

m∑
i=1

a2
i +m

m∑
j=1

a2
j = 2m

m∑
i=1

a2
i .

For the second term, we first note that fj(zi)− fj−1(zi) could be constructed in |Cj ||Cj−1| different
ways since fj ∈ Cj and fj−1 ∈ Cj−1. Therefore, by Massart’s Lemma (Theorem 4.3), we have

n∑
j=1

1

m
Eσ

[
sup
f∈F

m∑
i=1

σi (fj(zi)− fj−1(zi))

]
≤

n∑
j=1

max
fj∈Cj

fj−1∈Cj−1

(
m∑
i=1

(fj(zi)− fj−1(zi))
2

) 1
2
√

2 ln |Cj ||Cj−1|
m

≤
n∑

j=1

6(εj − εj+1)

√
2 ln |Cj ||Cj−1|√

m
,
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where the last inequality uses the fact that

(
m∑
i=1

(fj(zi)− fj−1(zi))
2

) 1
2

≤

(
m∑
i=1

(fj(zi)− f(zi))
2

) 1
2

+

(
m∑
i=1

(f(zi)− fj−1(zi))
2

) 1
2

≤
√
m(εj + εj−1) = 3

√
mεj = 6

√
m(εj − εj+1).

Note that |Cj | = C(F , εj , ‖ · ‖2,S). Since the covering number C(F , ε, ‖ · ‖2,S) is non-increasing
w.r.t. the ε and εj−1 > εj , we have |Cj−1| ≤ |Cj | and

R̂m(F , S) ≤ εn +
12√
m

n∑
j=1

(εj − εj+1)
√

lnC(F , εj , ‖ · ‖2,S)

≤ 2εn+1 +
12√
m

∫ c
2

εn+1

√
lnC(F , ν, ‖ · ‖2,S)dν,

where the last inequality holds since the integral is bounded below by the lower Riemann sum as
the function C(F , ε, ‖ · ‖2,S) is non-decreasing w.r.t. ε. For any ε ≥ 0, we can choose n such that
ε ≤ εn+1 ≤ 2ε or equivalently n = sup{j|εj ≥ 2ε}. Therefore, for any ε ≥ 0, we have

R̂m(F , S) ≤ 4ε+
12√
m

∫ c
2

ε

√
lnC(F , ν, ‖ · ‖2,S)dν,

The theorem follows by taking the infimum over ε ∈ [0, c2 ].

Remark. One can also set c = supf∈F
(

1
m

∑m
i=1 f

2(zi)
) 1

2 to make the bound tighter [14]. This
theorem improves the upper bound of the empirical Rademacher complexity using Dudley’s chaining
technique. To see this, following [14], let lnC(F , ε, ‖ · ‖2,S) ≤ gm(ε) and let Gm(ε) be the analytic
function whose derivative at ε is gm(ε). Then by Theorem 4.6, we have

R̂m(F , S) ≤ inf
ε∈[0,c/2]

(
4ε+

12√
m

∫ c
2

ε

√
lnC(F , ν, ‖ · ‖2,S)dν

)

≤ inf
ε∈[0,c/2]

(
4ε+

12√
m

∫ c
2

ε

gm(ν)dν

)

= inf
ε∈[0,c/2]

(
4ε+

12√
m
Gm(ν)|

c
2
ε

)
=

12Gm( c2 )
√
m

+ inf
ε∈[0,c/2]

(
4ε− 12Gm(ε)√

m

)
.

Let us consider the case where lnC(F , ε, ‖ · ‖2,S) = O( 1
εp ) for some p > 0. We have

R̂m(F , S) ≤ O
(

24√
m(2− p)

( c
2

) 2−p
2

+ inf
ε∈[0,c/2]

(
4ε− 24√

m(2− p)
ε

2−p
2

))
= O

(
1

m1/2
+

1

m1/p

)
(14)
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Recall the bound in Theorem 4.5, we have

R̂m(F , S) ≤ inf
ε>0

(
ε+

c
√

2√
m

√
lnC(F , ε, ‖ · ‖1,S)

)

≤ inf
ε>0

(
ε+

c
√

2√
m

√
lnC(F , ε, ‖ · ‖2,S)

)

≤ inf
ε>0

(
ε+

c
√

2√
m
g1/2
m (ε)

)

= inf
ε>0

(
ε+O

(
1√
mεp/2

))
= O

(
1

m1/(p+2)

)
(15)

where the second inequality uses the fact that C(F , ε, ‖ · ‖1,S) ≤ C(F , ε, ‖ · ‖2,S).

If p > 2, we have R̂m(F , S) ≤ O
(

1
m1/p

)
from Theorem 4.5 which is tighter than the one from

Theorem 4.5, i.e., O
(

1
m1/(p+2)

)
in Eq. (15).

If p < 2, we have R̂m(F , S) ≤ O
(

1
m1/2

)
from Eq. (14) which is still better than the one in Eq. (15).

If p = 2, we have R̂m(F , S) ≤ O
(

ln
√
m√
m

)
from Eq. (14) which is still better than the one in Eq.

(15), i.e., O
(

1
m1/4

)
.

Theorem 4.7. (Sudakov’s Theorem [15]) There exists a constant c > 0 such that

R̂m(F , S) ≥ c

lnn
sup
ε>0

ε

m

√
logC(F , ε, ‖ · ‖2,S).

Proof. TBD.

5 Application in Statistical Learning Theory

In this section, we demonstrate the application of Rademarcher complexity in deriving generalization
bound in statistical learning theory.

5.1 Supervised Learning

The basic setting of the supervised machine learning goes as follows. We are given some random
sample S = {(Xi, Yi) ∈ Z|i = 1, · · · ,m}, drawn from some (typically unknown) distribution D
defined over Z . Here input data Xi ∈ X , output label Yi ∈ Y , and Z = X ×Y . Typical examples of
X and Y are Rd and {−1, 1} respectively. Then we specify the function (a.k.a. hypothesis or model
or concept) class F ⊆ {f : X → Y}, e.g., all the neural networks with a particular architecture, and
the loss function ` : Y ×Y → R. Specifically, the empirical risk (a.k.a. empirical error) is denoted as

LS(f) =
1

m

m∑
i=1

`f (Xi, Yi) =
1

m

m∑
i=1

`(f(Xi), Yi). (16)

We often care more about the true risk (a.k.a. generalization error or true error) as below

LD(f) = E(X,Y )∼D`f (X,Y ) = E(X,Y )∼D`(f(X), Y ). (17)

For ease of notation, we compose the loss function and the model to form a new family of functions
H = {`f : Z → R|f ∈ F}.
A very popular learning paradigm is called empirical risk minimization (ERM) which basically finds
a function f in the class F so that the empirical risk is minimized. Other paradigms exist, e.g., the
structural risk minimization (SRM).

12



From the perspective of statistical learning theory, people care about bounding the true risk using
the empirical risk, i.e., the generalization bound. One type of such bounds is based on the technique
called uniform convergence which intuitively requires that the empirical risk is close to true risk for
all hypotheses in the class uniformly.

5.2 Rademacher Complexity based Uniform Convergence

We now state the generalization bound using Rademacher complexity which also belongs to the
uniform convergence type of bound.
Theorem 5.1. LetH be a set of functions such that for any `f ∈ H and for any two values (X1, Y1)

and (X2, Y2) in Z , |`f (X1, Y1) − `f (X2, Y2)| ≤ c for some constant c. Let R̂m(H, S) be the
empirical Rademacher complexity of the set H with respect to a i.i.d. sample S = {(Xi, Yi)|i =
1, · · · ,m} drawn from any distribution D defined over Z . For any δ ∈ (0, 1) and any `z ∈ H, with
probability at least 1− δ,

LD(f) ≤ LS(f) + 2Rm(H, S) + c

√
log (1/δ)

2m
(18)

LD(f) ≤ LS(f) + 2R̂m(H, S) + 3c

√
log (2/δ)

2m
(19)

Proof. Substituting f and F in Theorem 4.2 with `f andH respectively and using the second part of
the results finish the proof.

Remark. One can work out the value of c for specific loss function and model class. For example,
with the 0-1 loss function `(f(X), Y ) = 1[f(X) 6= Y ] = 1−Y f(X)

2 and linear separator, one can
show c = 1. The tricky part is how to bound the empirical Rademacher complexity. Section 4.2
provides some general tools. One can see e.g., [13], for results on SVM.

6 Concluding Remark

Many materials in this note are based on the chapter 14 of the excellent book [10]. I added some
details in all the proofs to make them easier to understand. The proofs of the concentration inequalities
are largely based on the lecture note [3]. For additional reading on this topic, see for example, the
references [6, 4, 2, 13, 11].
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7 Appendix

We restate some of the theorems and provide their proof.
Theorem 1.1. (Markov’s Inequality) Let X be a random variable that assumes only nonnegative
values. Then for every a > 0,

P(X ≥ a) ≤ E[X]

a
.

Proof. Let us consider the following indicator random variable

I =

{
1 if X ≥ a
0 otherwise.

Therefore, we have I ≤ X
a for all X > 0. Taking the expectation w.r.t. X on both sides, we have

E[I] = P(X ≥ a) ≤ E[
X

a
] =

E[X]

a
.

Theorem 1.2. (Hoeffding’s Lemma [5]) Let X be a random variable such that X ∈ [a, b] and
E[X] = 0. Then for every λ > 0,

E[eλX ] ≤ eλ
2(b−a)2/8.

Proof. First, if we consider the case a = b = 0, then the statement is trivial. Since E[X] = 0, we
now only need to consider the case a < 0 and b > 0. Since f(x) = eλx is a convex function, for any
α ∈ (0, 1), f(αa+ (1− α)b) ≤ αf(a) + (1− α)f(b).

Therefore, for x ∈ [a, b], let α = b−x
b−a , then x = αa+ (1− α)b and we have

eλx ≤ b− x
b− a

eλa +
x− a
b− a

eλb.

Taking the expectation w.r.t. x on both sides.

E[eλx] ≤ E
[
b− x
b− a

]
eλa + E

[
x− a
b− a

]
eλb

=
b

b− a
eλa − a

b− a
eλb.

Let φ(t) = −θt+ ln(1− θ + θet), for θ = −a
b−a > 0. Then

eφ(λ(b−a)) = e−θ(λ(b−a))(1− θ + θeλ(b−a))

= eλa(1− θ + θeλ(b−a))

= eλa(
b

b− a
− a

b− a
eλ(b−a))

=
b

b− a
eλa − a

b− a
eλb

= E[eλx]

Note that φ(0) = 0, φ′(0) = 0, and for all t

φ′′(t) =
(1− θ)θet

(1− θ + θet)
2 ≤ 1/4.

By Taylor’s theorem, for any t > 0, there exists t′ ∈ [0, t] such that

φ(t) = φ(0) + tφ′(0) +
1

2
t2φ′′(t′) ≤ t2

8
.

Thus, setting t = λ(b− a), we have

E[eλx] = eφ(λ(b−a)) ≤ e
λ2(b−a)2

8 .
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Theorem 1.3. (Hoeffding’s Inequality [5]) For bounded random variables Xi ∈ [ai, bi] where
X1, · · · , Xn are independent and Sn =

∑n
i=1Xi, then

P (Sn − E[Sn] ≥ t) ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
,

P (E[Sn]− Sn ≥ t) ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
.

Proof. We prove the one side as below. The other side follows immediately. For any λ > 0, we have

P (Sn − E[Sn] ≥ t) = P
(
eλ(Sn−E[Sn]) ≥ eλt

)
≤

E
[
eλ(Sn−E[Sn])

]
eλt

(Markov’s Inequality in Theorem 1.1)

≤ e
∑n
i λ

2(2(bi−ai))2/8

eλt
(Hoeffding’s Lemma in Theorem 1.2)

= e(
∑n
i λ

2(bi−ai)2/2−λt).

In the last inequality, we apply Hoeffding’s Lemma (Theorem 1.2) to each Xi − E[Xi] individually
since E [Xi − E[Xi]] = 0 and Xi − E[Xi] ∈ [ai − bi, bi − ai].
Since the above inequality holds for all λ > 0, we can find the tightest bound as

P (Sn − E[Sn] ≥ t) ≤ inf
λ>0

(
e(

∑n
i λ

2(bi−ai)2/2−λt)
)

= exp

(
−2t2∑n

i=1(bi − ai)2

)
,

where the optimal λ∗ = 4t∑n
i=1(bi−ai)2 .

Before we show the proof of the McDiarmid’s inequality, we first show the Azuma-Hoeffding
inequality for martingales. The proof is omitted here and could be found in, e.g., [10].

Theorem 7.1. (Azuma-Hoeffding Inequality [1, 5]) Let X0, · · · , Xn be a martingale such that

Bk ≤ Xk −Xk−1 ≤ Bk + dk

for some constants dk and some random variables Bk that may be functions of X0, · · · , Xk−1. Then
for all t ≥ 0 and any λ > 0,

P (Xt −X0 ≥ λ) ≤ exp

(
−2λ2∑t
k=1 d

2
k

)
,

P (X0 −Xt ≥ λ) ≤ exp

(
−2λ2∑t
k=1 d

2
k

)
.

Theorem 1.4. (McDiarmid’s Inequality [9]) Consider independent random variablesX1, · · · , Xn ∈
X and a mapping φ : Xn → R. If for all i ∈ {1, · · · , n} and for all x1, · · · , xn, x′i ∈ X , the
function φ satisfies

|φ (x1, · · · , xi−1, xi, xi+1, · · ·xn)− φ (x1, · · · , xi−1, x
′
i, xi+1, · · ·xn) | ≤ ci

then

P (φ (X1, · · · , Xn)− E[φ (X1, · · · , Xn)] ≥ t) ≤ exp

(
−2t2∑n
i=1 c

2
i

)
,

P (E[φ (X1, · · · , Xn)]− φ (X1, · · · , Xn) ≥ t) ≤ exp

(
−2t2∑n
i=1 c

2
i

)
.
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Proof. Let Zi = E [φ|X1, · · · , Xi] for 1 ≤ i ≤ n. Hence Zn = φ(X1, · · · , Xn).

Then the sequence of Z1, · · · , Zn is a Doob martingale w.r.t. X1, · · · , Xn since for 1 ≤ i ≤ n− 1

E [Zi+1|X1, · · ·Xi] = E [E [φ|X1, · · · , Xi+1] |X1, · · ·Xi]

= E[φ|X1, · · ·Xi]

= Zi.

Here we slightly abuse the notation by omitting the input arguments of φ when the context is clear.
The second line uses the property of the conditional expectation E[V |W ] = E[E[V |U,W ]|W ].

The martingale difference is Zi − Zi−1 = E [φ|X1, · · · , Xk]− E [φ|X1, · · · , Xk−1].

It is clear that

Zi − Zi−1 ≥ Li = inf
y
E [φ|X1, · · · , Xi = y]− E [φ|X1, · · · , Xi−1]

Zi − Zi−1 ≤ Ui = sup
y

E [φ|X1, · · · , Xi = y]− E [φ|X1, · · · , Xi−1] .

If we can show that Ui − Li ≤ ci, then we can apply the Azuma-Hoeffding inequality (Theorem 7.1)
to obtain the final result. Note that

Zi − Zi−1 ≤ Ui − Li
= sup

x
E [φ|X1, · · · , Xi = x]− inf

y
E [φ|X1, · · · , Xi = y]

= sup
x,y

E [φ(X1, · · · , Xi = x, · · · , Xn)− φ(X1, · · · , Xi = y, · · · , Xn)|X1, · · · , Xi−1] .

For any pair of values x, y, we have

E [φ(X1, · · · , Xi = x, · · · , Xn)− φ(X1, · · · , Xi = y, · · · , Xn)|X1, · · · , Xi−1]

=

∫
· · ·
∫

Xi+1,··· ,Xn

P(Xi+1, · · · , Xn|X1, · · · , Xi−1) (φ(X1, · · · , Xi = x, · · · , Xn)− φ(X1, · · · , Xi = y, · · · , Xn))

=

∫
· · ·
∫

Xi+1,··· ,Xn

P(Xi+1, · · · , Xn) (φ(X1, · · · , Xi = x, · · · , Xn)− φ(X1, · · · , Xi = y, · · · , Xn))

≤
∫
· · ·
∫

Xi+1,··· ,Xn

P(Xi+1, · · · , Xn)ci

= ci,

where we use the fact thatX1, · · · , Xn are independent random variables and the bounded difference
assumption.

Therefore, we have Zi − Zi−1 ≤ ci which allows us to apply the Azuma-Hoeffding inequality.
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