
BACKPROPAGATION
THROUGH THE VOID

Optimizing Control Variates for Black-Box
Gradient Estimation

27 Nov 2017, University of Cambridge
Speaker: Geoffrey Roeder, University of Toronto

OPTIMIZING EXPECTATIONS

• Variational inference: Evidence Lower Bound

• Reinforcement learning: Expected Reward Function

• Hard attention mechanism

• How to choose the parameters to maximize this
expectation?

L(✓) = Ep(b|✓)f(b)

✓

GRADIENT-BASED
OPTIMIZATION

• Reverse-mode automatic differentiation (backpropagation)
computes exact gradients of deterministic, differentiable
objectives

• Reparameterization trick (Williams, 1992; Kingma & Welling
2014; Rezende 2014): using backprop, gives unbiased, low-
variance estimates of gradients of expectations

• This has allows effective stochastic optimization of large
probabilistic continuous latent-variable models

GRADIENT-BASED
OPTIMIZATION: LIMITATIONS

• There many relevant objective functions in ML to which
backpropagation cannot be applied

• In RL, in fact, the reward function is unknown: a black box
from the perspective of an agent

• Discrete latent variable models: discrete sampling creates
discontinuities, giving the objective function zero gradient
w.r.t. its parameters

GRADIENT-BASED
OPTIMIZATION: LIMITATIONS

• But, gradients are appealing: in high dimensions, provides
information on how to adjust each parameter individually

• Moreover, stochastic optimization is essential for scalability

• However, are only guaranteed to converge to a fixed point
of an objective if a gradient estimator is unbiased

How can we build unbiased stochastic estimators of ?@

@✓
L(✓)

SCORE-FUNCTION ESTIMATOR
(“REINFORCE”, WILLIAMS 1992)

SCORE-FUNCTION ESTIMATOR
(“REINFORCE”, WILLIAMS 1992)

• We can estimate this quantity with Monte Carlo integration:

• High variance: convergence to good solution challenging

@

@✓
Ep(b|✓)f(b) =

Z
@

@✓
p(b|✓)f(b)d✓

= Ep(b|✓)

f(b)

@

@✓
log p(b|✓)

�

SCORE-FUNCTION ESTIMATOR
(“REINFORCE”, WILLIAMS 1992)

• Log-derivative trick allows us to rewrite gradient of expectation as expectation of
gradient (under weak regularity conditions)

• We can estimate this quantity with Monte Carlo integration:

• High variance: convergence to good solution challenging

@

@✓
Ep(b|✓)f(b) =

Z
@

@✓
p(b|✓)f(b)d✓

= Ep(b|✓)

f(b)

@

@✓
log p(b|✓)

�

SCORE-FUNCTION ESTIMATOR
(“REINFORCE”, WILLIAMS 1992)

• Log-derivative trick allows us to rewrite gradient of expectation as expectation of
gradient (under weak regularity conditions)

• Yields unbiased, but high variance estimator

ĝSF = f(b)
@

@✓
log p(b|✓)

@

@✓
Ep(b|✓)f(b) =

Z
@

@✓
p(b|✓)f(b)d✓

= Ep(b|✓)

f(b)

@

@✓
log p(b|✓)

�

REPARAMETERIZATION TRICK

• Requires function to be known and differentiable

• Requires distribution to be
reparameterizable through a transformation

• Unbiased; lower variance empirically

gREP [f(b)] =
@

@✓
f(b) =

@f

@T
@T
@✓

, b = T (✓, ✏), ✏ ⇠ p(✏)

p(b|✓)
T (✓, ✏)

CONCRETE REPARAMETERIZATION
(MADDISON ET AL. 2016)

• Works well with careful
hyper parameter choices

• Lower variance than score-
function estimator due to
reparameterization

• Biased estimator

• Temperature parameter

• Requires to be known and
differentiable

• Requires to be
reparamaterizable

gCON [f(b)] =
@

@✓
f(b) =

@f

@��(z)

@��(z)

@✓
, z = T (✓, ✏), ✏ ⇠ p(✏)

�

f

p(b|✓)

REBAR
(TUCKER ET AL. 2017)

• Improves over concrete distribution (rebar is stronger than concrete)

• Uses continuous relaxation of discrete random variables (concrete)
to build unbiased, lower-variance gradient estimator

• Using the reparameterization from the Concrete distribution,
construct a control variate for the score-function estimator

• Show how tune additional parameters of the estimator (e.g.,
temperature) online�

Digression: control variates for Monte Carlo estimators

CONTROL VARIATES:
DIGRESSION

• New estimator is equal in expectation to old estimator (bias is
unchanged)

• Variance is reduced when |corr(c, g)| > 0

• We exploit the difference between the function c and its known
mean during optimization to “correct” the value of the estimator

ĝnew(b) = ĝ(b)� ⌘
�
c(b)� Ep(b)[c(b)]

�

⌘? = �Cov[ĝ, c]

Var[ĝ]

CONTROL VARIATES:
FREE-FORM

• If we choose a neural network as our parameterized differentiable
function, then the above formulation can be simplified to the above

• The scaling constant will be absorbed into the weights of the
network, and optimality is determined by training

• How should we update the weights of the free-form control variate?

ĝnew(b) = ĝ(b)� c�(b) + Ep(b) [c�(b)]

What is essential for a control variate?

LEARNING FREE-FORM CONTROL
VARIATE: LOSS FUNCTION

• For unbiased estimator, we can form a Monte-Carlo estimate for
the variance of the estimator overall

• We use this as the training signal for the parameters of the
control variate, adapting the parameters during training

@

@�
Var[ĝ] =

@

@�
E[ĝ2]� @

@�
E[ĝ]2

=
@

@�
E[ĝ2] = E[2ĝ @ĝ

@�
]

GENERALIZING REBAR

• Start with score function (SF) estimator of gradient of

• Introduce a parametrized differentiable function

• Use SF estimator of as a control variate, subtracting its mean estimated through the
lower-variance reparameterization estimator

• This generalizes Tucker et al. 2017 to free-form control variates: no longer require
continuous relaxations

b = T (✓, ✏), ✏ ⇠ p(✏)

ĝLAX = gSF [f]� gSF [c�] + gREP [c�]

= [f(b)� c�(b)]
@

@✓
log p(b|✓) + @

@✓
c�(b),

c�

f

c�

RELAX: EXTENSION TO
DISCRETE RANDOM VARIABLES

• When b is discrete, we introduce a related distribution and a function H
where

• We use a conditional reparameterization scheme developed by Tucker et al.
2017 for REBAR

• This estimator is unbiased for all choices of

ĝRELAX = [f(b)� c�(z̃)]
@

@✓
log p(b|✓) + @

@✓
c�(z)�

@

@✓
c�(z̃),

z ⇠ p(z|✓), b = H(z), z̃ ⇠ p(z|b, ✓)

H(z) = b ⇠ p(b|✓)

c�

RELAX: EXTENSION TO
DISCRETE RANDOM VARIABLES

• When b is discrete, we introduce a related distribution and a function H
where

• We use a conditional reparameterization scheme developed by Tucker et al.
2017 for REBAR

• This estimator is unbiased for all choices of

ĝRELAX = [f(b)� c�(z̃)]
@

@✓
log p(b|✓) + @

@✓
c�(z)�

@

@✓
c�(z̃),

z ⇠ p(z|✓), b = H(z), z̃ ⇠ p(z|b, ✓)

H(z) = b ⇠ p(b|✓)

c�

EXPERIMENTAL RESULTS

SIMPLE EXAMPLE
Ep(b|✓)

⇥
(t� b)2

⇤

• Validated idea with simple function above

• Used to validate REBAR estimator, fixing t=0.45

• We chose t = 0.499

b ⇠ Ber(✓)

SIMPLE EXAMPLE
Ep(b|✓)

⇥
(t� b)2

⇤

• (Right) RELAX finds a reasonable solution, REINFORCE and REBAR oscillate

• (Left) Variance is considerably reduced in our estimator

A MORE INTERESTING
APPLICATION

• Discrete Variational Autoencoder

• Latent state: 2 layers of 200 Bernoulli variables

• Discrete sampling renders reparameterization estimator
unusable

log p(x) � L(✓) = E
q(b|x) [log p(x|b) + log p(b)� log q(b|x)]

c�(z) = f(�(z)) + r⇢(z)

MNIST RESULTS

OMNIGLOT RESULTS

QUANTITATIVE RESULTS

MNIST Omniglot

-E
LB

O

Figure 3: Training curves for the VAE Experiments with the 1 layer linear model. The horizontal
dashed line indicates the lowest validation error obtained by REBAR.

in REBAR. In all experiments, the learned control variate improved the training performance, over
the state-of-the-art baseline of REBAR. In both linear models, we achieved improved validation
performance as well increased convergence speed. We believe the decrease in validation performance
for the nonlinear models was due to overfitting caused by improved optimization of an under-
regularized model. We leave exploring this phenomenon to further work.

Dataset Model Concrete NVIL MuProp REBAR RELAX

Nonlinear �102.2 �101.5 -101.1 -81.01 -78.13
MNIST linear 1 layer -111.3 �112.5 �111.7 -111.6 -111.20

linear 2 layer -99.62 �99.6 �99.07 -98.22 -98.00
Nonlinear �110.4 �109.58 -108.72 -56.76 -56.12

Omniglot linear 1 layer -117.23 �117.44 �117.09 -116.63 -116.57
linear 2 layer -109.95 �109.98 �109.55 -108.71 -108.54

Table 1: Best obtained training objective for discrete variational autoencoders.

To obtain training curves we created our own implementation of REBAR, which gave identical or
slightly improved performance compared to the implementation of Tucker et al. (2017).

While we obtained a modest improvement in training and validation scores (tables 1 and 3), the
most notable improvement provided by RELAX is in its rate of convergence. Training curves for
all models can be seen in figure 3 and in appendix D. In table 4 we compare the number of training
epochs that are required to match the best validation score of REBAR. In both linear models, RELAX
provides an increase in rate of convergence.

6.3 REINFORCEMENT LEARNING

We apply our gradient estimator to a few simple reinforcement learning environments with discrete
and continuous actions. We use the RELAX and LAX estimators for discrete and continuous actions,
respectively. We compare with the advantage actor-critic algorithm (A2C) (Sutton et al., 2000) as a
baseline. Full details of our experiments can be found in Appendix E.

In the discrete action setting, we test our approach on the Cart Pole and Lunar Lander environments
as provided by the OpenAI gym (Brockman et al., 2016). In the continuous action setting, we test
on the MuJoCo-simulated (Todorov et al., 2012) environments Inverted Pendulum and Inverted
Double Pendulum also found in the OpenAI gym. In all tested environments we observe improved
performance and sample efficiency using our method. The results of our experiments can be seen in
figure 4, and table 2.

OVERFITTING 1 LAYER:
MNIST (LEFT), OMNIGLOT (RIGHT)

REINFORCEMENT LEARNING
• Policy gradient methods effective for finding policy

parameters (A2C, A3C, ACKTR)

• Goal:

• Need estimate of

• True reward function unknown (black-box, from
environment)

argmax✓ E⌧⇠⇡(⌧ |✓) [R(⌧)]

@

@✓
E⌧⇠⇡(⌧ |✓) [R(⌧)]

ADVANTAGE ACTOR CRITIC
(SUTTON, 2000)

• is an estimate of the value function

• This is exactly the REINFORCE estimator using an estimate of
the value function as a control variate

• Why not use action in control variate?

• Dependence on action would add bias

ĝA2C =

1X

t=1

@

@✓
log ⇡(at|st, ✓)

" 1X

t0=t

rt0 � c�(st)

#
, at ⇠ ⇡(at|st, ✓)

c�

EXTENDING LAX TO RL

• Allows for action-dependence in control variate

• Remains unbiased estimator

• Similar extension possible for discrete action spaces, see paper
Appendix C.2

gRL
LAX =

1X

t=1

@

@✓
log ⇡(at|st; ✓)

" 1X

t0=t

rt0 � c�(at, st)

#
+

@

@✓
c�(at, st)

at = at(✏t, st, ✓), ✏t ⇠ p(✏t)

RL BENCHMARK RESULTS
Cart-pole Lunar lander Inverted pendulum Inverted double pendulum

R
ew

ar
d

Lo
g-

Va
ria

nc
e

Figure 4: Top row: Reward curves. Bottom row: Variance of policy gradients (log scale). In each
curve, the center line indicates the mean reward over 5 random seeds. The opaque bars in the top
row indicate the 25th and 75th percentiles. The opaque bars in the bottom row indicate 1 standard
deviation. After every 10th training episode 100 episodes were run and the sample log-variance is
reported averaged over all policy parameters.

Model Cart-pole Lunar lander Inverted pendulum Inverted double pendulum

A2C 1152± 90 162374± 17241 9916± 235 78260± 1877

LAX/RELAX 472± 114 68712± 20668 6237± 45 60967± 1669

Table 2: Mean episodes to solve tasks. Definitions of solving each task can be found in appendix E.

We found that our estimator produced policy gradients with drastically reduced variance (see figure 4)
allowing for larger learning rates to be used while maintaining stable training. In both discrete
environments our estimator achieved great than a 2-times speedup in convergence over the baseline.

Code for all experiments can be found at github.com/duvenaud/relax.

7 CONCLUSIONS AND FUTURE WORK

In this work we synthesized and generalized several standard approaches for constructing gradi-
ent estimators. We proposed a generic gradient estimator that can be applied to expectations of
known or black-box functions of discrete or continuous random variables, and adds little computa-
tional overhead. We also derived a simple extension to reinforcement learning in both discrete and
continuous-action domains.

Future applications of this method could include training models with hard attention or memory
indexing (Zaremba & Sutskever, 2015). One could also apply our estimators to continuous latent-
variable models whose likelihood is non-differentiable, such as a 3D rendering engine. There is
also room to explore other architecture choices for the control variate.In the reinforcement learning
setting, our method could be combined with other variance-reduction techniques such as generalized
advantage estimation (Kimura et al., 2000), or other optimization methods, such as KFAC (Wu et al.,
2017). One could also train our control variate off-policy, as in Q-prop (Gu et al., 2016).

ACKNOWLEDGEMENTS

We thank Dougal Maclaurin, Tian Qi Chen, Elliot Creager, and Bowen Xu for helpful discussions.
We also thank Christopher Prohm for pointing out an error in one of our derivations.

BERNOULLI REPARAM

APPENDICES

A THE RELAX ALGORITHM

We prove that ĝRELAX is unbiased. Following Tucker et al. (2017):

E [ĝRELAX] = (12)

E
p(b|✓)

⇥
f(b)� E

p(z|b,✓)[c�(z)]
⇤ @

@✓
log p(b|✓)� @

@✓
E
p(z|b,✓)[c�(z)]

�
+

@

@✓
E
p(z|✓)[c�(z)]

=

@

@✓
E
p(b|✓)

⇥
f(b)� E

p(z|b,✓) [c�(z)]
⇤
+

@

@✓
E
p(z|✓)[c�(z)]

=

@

@✓
E
p(b|✓)[f(b)]�

@

@✓
E
p(z|✓)[c�(z)] +

@

@✓
E
p(z|✓)[c�(z)] =

@

@✓
E
p(b|✓)[f(b)]

(13)

Algorithm 2 RELAX: Low-variance control variate optimization for black-box gradient estimation.
Require: f(·), log p(b|✓), reparameterized samplers b = H(z), z = S(✏, ✓) and z̃ = S(✏, ✓|b),

neural network c
�

(·)
while not converged do

✏
i

, e✏
i

⇠ p(✏) . Sample noise
z
i

 S(✏
i

, ✓) . Compute unconditional relaxed input
b
i

 H(z
i

) . Compute input
ez
i

 S(e✏
i

, ✓|b
i

) . Compute conditional relaxed input
g
✓

 [f(b
i

)� c
�

(ez
i

)]r
✓

log p+r
✓

c
�

(z
i

)�r
✓

c
�

(ez
i

) . Estimate gradient
g
�

 2g
✓

@g✓

@�

. Estimate gradient of variance of gradient
✓ ✓ + ↵1g✓ . Update parameters
� �+ ↵2g� . Update control variate

end while
return ✓

B CONDITIONAL RE-SAMPLING FOR DISCRETE RANDOM VARIABLES

When applying the RELAX estimator to a function of discrete random variables b ⇠ p(b|✓), we
require that there exists a distribution p(z|✓) and a deterministic mapping H(z) such that if z ⇠ p(z|✓)
then H(z) = b ⇠ p(b|✓). Treating both b and z as random, this procedure defines a probabalistic
model p(b, z|✓) = p(b|z)p(z|✓). The RELAX estimator requires reparameterized samples from
p(z|✓) and p(z|b, ✓). We describe how to sample from these distributions in the common cases of
p(b|✓) = Bernoulli(✓) and p(b|✓) = Categorical(✓).

Bernoulli When p(b|✓) is Bernoulli distribution we let H(z) = I(z > 0) and we sample from
p(z|✓) with

z = log

✓

1� ✓
+ log

u

1� u
, u ⇠ uniform[0, 1].

We can sample from p(z|b, ✓) with

v0 =

⇢
v · (1� ✓) b = 0

v · ✓ + (1� ✓) b = 1

z̃ = log

✓

1� ✓
+ log

v0

1� v0
, v ⇠ uniform[0, 1].

Categorical When p(b|✓) is a Categorical distribution where ✓
i

= p(b = i|✓), we let H(z) =

argmax(z) and we sample from p(z|✓) with

z = log ✓ � log(� log u), u ⇠ uniform[0, 1]k

