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Subgraph Isomorphism Problem

I Does X have a subgraph isomorphic to G?
I Parameterize by fixing G.

(a) X (b) G
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Colored Subgraph Isomorphism Problem
Does X have a subgraph H such that the given coloring is an
isomorphism from H to G?

(a) X

�

�

�

�(b) G

Subgraph isomorphism efficiently reduces to colored subgraph
isomorphism [Alon–Yuster–Zwick’95].
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Previous Results

Time Complexity
I O(ntw(G)+1) upper bound [AYZ’95]
I nΩ(tw(G)/ log tw(G)) lower bound assuming ETH [Marx’10]

I “Substantially different techniques” required to close the gap
when G is a 3-regular expander [Alon–Marx’11].

AC0 Circuit Size
I O(ntw(G)+1) upper bound [Amano’10]
I nκ(G)−o(1) average-case lower bound [LRR’17]
I κ(G) is Ω(tw(G)/ log tw(G)) [LRR’17]

I For constant-degree expanders, κ(G) is Ω(tw(G)) [LRR’17].
I n2κ(G)+O(1) average-case upper bound [LRR’17]
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A Family of Input Distributions
I Vertices: V (G)× [n]
I Let β : E(G) → R≥0.
I Include each edge {(u, i), (v , j)} independently with

probability n−β({u,v}).

n−β({ , })

n−β({ , })

n−β({ , })

n−β({ , })

[Li–Razborov–Rossman’17]
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The Average-Case Problem
I Fail with probability o(1).
I “Lower Bound”: for some edge weighting
I “Upper Bound”: upper bounds for all edge weightings
I Input distribution is nontrivial if P(∃ G-colored subgraph) is

bounded away from 0 and 1.
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AC0 Circuits

I Constant-depth, unbounded fanin boolean circuits.
I The size of a circuit is the number of gates.

∨
∧ ∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨ ∨
x1 x2 x3 x1 x2 x4 x5 x3 x4

OG(1)
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Our Contributions

I The average-case [AC0, time] complexity is at most
nκ(G)+O(1).

I If G is a hypercube then κ(G) is Θ
(

tw(G)/
√
log tw(G)

)
.

I κ(G) is Ω(the exponent from Marx’s ETH-hardness result).
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Union Sequences

Sequences (H1, . . . ,Hk) of subgraphs of G such that
(a) Hk = G, and
(b) each H is either an edge or the union of two previous graphs

in the sequence.
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Average-Case Upper Bound

For a union sequence (H1, . . . ,Hk):
I For each successive H = A ∪ B, find all H-colored subgraphs

by considering all pairs of A-colored and B-colored subgraphs.
I Runtime is Õ(maxH E[# H-colored subgraphs]2) w.h.p.

Quadratic improvement with sort-merge-join
I Challenge: sorting is not in AC0 [Håstad’86].

nκ(G) is the maximum over nontrivial input distributions,
of the minimum over union sequences (H1, . . . ,Hk), of
maxH E[# H-colored subgraphs].
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κ(Qd) = O(2d/d)

Õ(nκ(G)) is the maximum over nontrivial input distribu-
tions, of the minimum over union sequences (H1, . . . ,Hk),
of maxH E[# H-colored subgraphs].

I Special Case: Edge density = n−2/d uniformly.
I General Case: Reduce to special case via averaging argument.
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Treewidth of the Hypercube

0000

0001
0010
0100
1000

0011
0101
0110
1001
1010
1100

0111
1011
1101
1110

1111

I tw(Qd) / 2
( d

d/2
)
= O(2d/

√
d).

I tw(Qd) is Θ(2d/
√

d) [Chandran–Kavitha’06].
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