Beating Treewidth for Average-Case Subgraph Isomorphism

Gregory Rosenthal

University of Toronto

IPEC 2019

Subgraph Isomorphism Problem

- Does X have a subgraph isomorphic to G?
- ► Parameterize by fixing *G*.

Subgraph Isomorphism Problem

- Does X have a subgraph isomorphic to G?
- ► Parameterize by fixing *G*.

Colored Subgraph Isomorphism Problem

Does X have a subgraph H such that the given coloring is an isomorphism from H to G?

Subgraph isomorphism efficiently reduces to colored subgraph isomorphism [Alon-Yuster-Zwick'95].

Colored Subgraph Isomorphism Problem

Does X have a subgraph H such that the given coloring is an isomorphism from H to G?

Subgraph isomorphism efficiently reduces to colored subgraph isomorphism [Alon-Yuster-Zwick'95].

- $O(n^{tw(G)+1})$ upper bound [AYZ'95]
- $n^{\Omega(tw(G)/\log tw(G))}$ lower bound assuming ETH [Marx'10]
 - "Substantially different techniques" required to close the gap when G is a 3-regular expander [Alon–Marx'11].

- $O(n^{tw(G)+1})$ upper bound [AYZ'95]
- $n^{\Omega(tw(G)/\log tw(G))}$ lower bound assuming ETH [Marx'10]
 - "Substantially different techniques" required to close the gap when G is a 3-regular expander [Alon-Marx'11].

A Family of Input Distributions

- ▶ Vertices: $V(G) \times [n]$
- Let $\beta : E(G) \to \mathbb{R}_{\geq 0}$.
- Include each edge {(u, i), (v, j)} independently with probability n^{−β({u,v})}.

[Li-Razborov-Rossman'17]

イロト イボト イヨト イヨト

The Average-Case Problem

- Fail with probability o(1).
- "Lower Bound": for some edge weighting
- "Upper Bound": upper bounds for all edge weightings
- Input distribution is *nontrivial* if P(∃ G-colored subgraph) is bounded away from 0 and 1.

[Li-Razborov-Rossman'17]

< ロ > < 同 > < 三 > < 三 >

AC^{0} Circuits

Constant-depth, unbounded fanin boolean circuits.

▶ The *size* of a circuit is the number of gates.

- $O(n^{tw(G)+1})$ upper bound [AYZ'95]
- $n^{\Omega(tw(G)/\log tw(G))}$ lower bound assuming ETH [Marx'10]
 - "Substantially different techniques" required to close the gap when G is a 3-regular expander [Alon–Marx'11].
- AC^{0} Circuit Size
 - $O(n^{tw(G)+1})$ upper bound [Amano'10]
 - ▶ $n^{\kappa(G)-o(1)}$ average-case lower bound [LRR'17]
 - $\kappa(G)$ is $\Omega(tw(G)/\log tw(G))$ [LRR'17]
 - For constant-degree expanders, $\kappa(G)$ is $\Omega(tw(G))$ [LRR'17].
 - ▶ $n^{2\kappa(G)+O(1)}$ average-case upper bound [LRR'17]

- $O(n^{tw(G)+1})$ upper bound [AYZ'95]
- $n^{\Omega(tw(G)/\log tw(G))}$ lower bound assuming ETH [Marx'10]
 - "Substantially different techniques" required to close the gap when G is a 3-regular expander [Alon–Marx'11].
- AC^{0} Circuit Size
 - $O(n^{tw(G)+1})$ upper bound [Amano'10]
 - ▶ $n^{\kappa(G)-o(1)}$ average-case lower bound [LRR'17]
 - $\kappa(G)$ is $\Omega(tw(G)/\log tw(G))$ [LRR'17]
 - For constant-degree expanders, $\kappa(G)$ is $\Omega(tw(G))$ [LRR'17].
 - ▶ $n^{2\kappa(G)+O(1)}$ average-case upper bound [LRR'17]

- $O(n^{tw(G)+1})$ upper bound [AYZ'95]
- $n^{\Omega(tw(G)/\log tw(G))}$ lower bound assuming ETH [Marx'10]
 - "Substantially different techniques" required to close the gap when G is a 3-regular expander [Alon–Marx'11].
- AC^{0} Circuit Size
 - $O(n^{tw(G)+1})$ upper bound [Amano'10]
 - ▶ $n^{\kappa(G)-o(1)}$ average-case lower bound [LRR'17]
 - $\kappa(G)$ is $\Omega(tw(G)/\log tw(G))$ [LRR'17]
 - For constant-degree expanders, $\kappa(G)$ is $\Omega(tw(G))$ [LRR'17].
 - ▶ $n^{2\kappa(G)+O(1)}$ average-case upper bound [LRR'17]

- The average-case [AC⁰, time] complexity is at most $n^{\kappa(G)+O(1)}$.
- ▶ If G is a hypercube then $\kappa(G)$ is $\Theta(tw(G)/\sqrt{\log tw(G)})$.
- $\kappa(G)$ is Ω (the exponent from Marx's ETH-hardness result).

- The average-case [AC⁰, time] complexity is at most $n^{\kappa(G)+O(1)}$.
- If G is a hypercube then $\kappa(G)$ is $\Theta(tw(G)/\sqrt{\log tw(G)})$.
- $\kappa(G)$ is $\Omega(\text{the exponent from Marx's ETH-hardness result}).$

- The average-case [AC⁰, time] complexity is at most $n^{\kappa(G)+O(1)}$.
- If G is a hypercube then $\kappa(G)$ is $\Theta\left(tw(G)/\sqrt{\log tw(G)}\right)$.
- $\kappa(G)$ is Ω (the exponent from Marx's ETH-hardness result).

- The average-case [AC⁰, time] complexity is at most $n^{\kappa(G)+O(1)}$.
- If G is a hypercube then $\kappa(G)$ is $\Theta\left(tw(G)/\sqrt{\log tw(G)}\right)$.
- $\kappa(G)$ is Ω (the exponent from Marx's ETH-hardness result).

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

- (a) $H_k = G$, and
- (b) each H is either an edge or the union of two previous graphs in the sequence.

For a union sequence (H_1, \ldots, H_k) :

- For each successive H = A ∪ B, find all H-colored subgraphs by considering all pairs of A-colored and B-colored subgraphs.
- ▶ Runtime is $\tilde{O}(\max_{H} \mathbb{E}[\# H\text{-colored subgraphs}]^2)$ w.h.p.

Quadratic improvement with sort-merge-join

• Challenge: sorting is not in AC^0 [Håstad'86].

 $n^{\kappa(G)}$ is the maximum over nontrivial input distributions, of the minimum over union sequences (H_1, \ldots, H_k) , of $\max_H \mathbb{E}[\# H$ -colored subgraphs].

For a union sequence (H_1, \ldots, H_k) :

- For each successive H = A ∪ B, find all H-colored subgraphs by considering all pairs of A-colored and B-colored subgraphs.
- ▶ Runtime is $\tilde{O}(\max_{H} \mathbb{E}[\# H \text{-colored subgraphs}]^2)$ w.h.p.

Quadratic improvement with sort-merge-join

• Challenge: sorting is not in AC^0 [Håstad'86].

 $n^{\kappa(G)}$ is the maximum over nontrivial input distributions, of the minimum over union sequences (H_1, \ldots, H_k) , of $\max_H \mathbb{E}[\# H$ -colored subgraphs].

For a union sequence (H_1, \ldots, H_k) :

- For each successive H = A ∪ B, find all H-colored subgraphs by considering all pairs of A-colored and B-colored subgraphs.
- ▶ Runtime is $\tilde{O}(\max_{H} \mathbb{E}[\# H \text{-colored subgraphs}]^2)$ w.h.p.

Quadratic improvement with sort-merge-join

▶ Challenge: sorting is not in AC⁰ [Håstad'86].

 $n^{\kappa(G)}$ is the maximum over nontrivial input distributions, of the minimum over union sequences (H_1, \ldots, H_k) , of $\max_H \mathbb{E}[\# H$ -colored subgraphs].

For a union sequence (H_1, \ldots, H_k) :

- For each successive H = A ∪ B, find all H-colored subgraphs by considering all pairs of A-colored and B-colored subgraphs.
- ▶ Runtime is $\tilde{O}(\max_{H} \mathbb{E}[\# H \text{-colored subgraphs}]^2)$ w.h.p.

Quadratic improvement with sort-merge-join

▶ Challenge: sorting is not in AC⁰ [Håstad'86].

 $n^{\kappa(G)}$ is the maximum over nontrivial input distributions, of the minimum over union sequences (H_1, \ldots, H_k) , of $\max_H \mathbb{E}[\# H\text{-colored subgraphs}]$.

- The average-case [AC⁰, time] complexity is at most $n^{\kappa(G)+O(1)}$.
- If G is a hypercube then $\kappa(G)$ is $\Theta\left(tw(G)/\sqrt{\log tw(G)}\right)$.
- $\kappa(G)$ is Ω (the exponent from Marx's ETH-hardness result).

$\kappa(Q_d) = O(2^d/d)$

 $\tilde{O}(n^{\kappa(G)})$ is the maximum over nontrivial input distributions, of the minimum over union sequences (H_1, \ldots, H_k) , of max_H $\mathbb{E}[\#$ H-colored subgraphs].

- Special Case: Edge density = $n^{-2/d}$ uniformly.
- General Case: Reduce to special case via averaging argument.

$\kappa(Q_d) = O(2^d/d)$

 $\tilde{O}(n^{\kappa(G)})$ is the maximum over nontrivial input distributions, of the minimum over union sequences (H_1, \ldots, H_k) , of max_H $\mathbb{E}[\#$ H-colored subgraphs].

- Special Case: Edge density = $n^{-2/d}$ uniformly.
- General Case: Reduce to special case via averaging argument.

$\kappa(Q_d) = O(2^d/d)$

 $\tilde{O}(n^{\kappa(G)})$ is the maximum over nontrivial input distributions, of the minimum over union sequences (H_1, \ldots, H_k) , of max_H $\mathbb{E}[\#$ H-colored subgraphs].

- Special Case: Edge density = $n^{-2/d}$ uniformly.
- General Case: Reduce to special case via averaging argument.

Treewidth of the Hypercube

• $tw(Q_d) \lesssim 2\binom{d}{d/2} = O(2^d/\sqrt{d}).$

• $tw(Q_d)$ is $\Theta(2^d/\sqrt{d})$ [Chandran–Kavitha'06].

- The average-case [AC⁰, time] complexity is at most $n^{\kappa(G)+O(1)}$.
- If G is a hypercube then $\kappa(G)$ is $\Theta(tw(G)/\sqrt{\log tw(G)})$.
- $\kappa(G)$ is Ω (the exponent from Marx's ETH-hardness result).

