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My research is in quantum complexity theory, especially the complexity of transformations be-
tween quantum states. These are operations that classical computers fundamentally cannot perform,
since the input and/or output may be a superposition of many different bit-strings. In contrast,
traditionally quantum complexity theorists have studied the resources required to compute Boolean
functions (which are a special type of transformation between quantum states) on quantum com-
puters, as compared with the resources required to do so on classical computers.

Some motivating examples are as follows. Feynman’s [Fey82] original impetus for the idea of
quantum computers was to simulate the Hamiltonian evolution of physical systems. The goal in
Gibbs state preparation [Con+23] is to output the equilibrium state of such a system at a given tem-
perature. Quantum input states may come directly from nature rather than from human-generated
data, for example in quantum state tomography [BCG13] or when decoding Hawking radiation from
black holes [HH13]. A recent line of work [Kre21; LMW24; BHHP24; MH24] (surveyed in Quanta
Magazine [Bru24]) suggests that it may be possible to base cryptography on transformations be-
tween quantum states, without relying on traditional cryptographic assumptions about Boolean
functions. Even when the end goal is to compute a Boolean function, commonly used subroutines
of quantum algorithms include state transformations such as Linear Combinations of Unitaries
(LCU) [BCK15; CW12] and quantum error-correction [LB13].

Traditionally quantum state transformations have been studied on an ad hoc basis; my PhD
thesis [Ros23] and recent work of other authors [Aar16; BEMPQY23] were among the first to
propose a unified complexity theory for these types of problems. Below I discuss several directions
of my research within this theme. Citations to my own papers are in boldface font.

1 The unitary synthesis problem

Aaronson and Kuperberg [AK07] asked whether questions about the complexity of quantum state
transformations reduce to (generally better understood) questions about the complexity of Boolean
functions. More formally, does it hold that for all physically realizable transformations U between
quantum states, there exists a Boolean function f such that the task of (approximately) implement-
ing U efficiently reduces to that of computing f? This question was named the “unitary synthesis
problem” by Aaronson [Aar16] and also has implications in quantum cryptography [LMW24].

I gave the best known (albeit still exponential-complexity) algorithm for the unitary synthesis
problem, along with a matching lower bound on the complexity for a restricted class of algorithms
that generalizes the approach underlying my above upper bound [Ros21b]. The only other known
lower bound says that at least two sequential quantum queries to f are necessary, unless the input
or output of f is exponentially long [LMW24]. Additionally, for problems with classical input and
quantum output, I gave a computationally efficient algorithm using just one quantum query to a
Boolean function [Ros24]; previous algorithms required either polynomially many queries [Aar16]
or exponential circuit size to perform the non-query operations [INNRY22].
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Open problems I’m also interested in variants of the unitary synthesis problem that might be
easier to resolve. For example, one may ask whether a specific transformation U (such as those
used by Aaronson [Aar16; Aar21] to motivate the unitary synthesis problem) efficiently reduces
to some Boolean function. One result of this nature is due to Irani, Natarajan, Nirkhe, Rao, and
Yuen [INNRY22], who gave an efficient construction of QMA witness states using one query to a
PP oracle, and asked whether the PP oracle can be replaced with a QMA oracle.

2 Quantum circuit complexity

The field of circuit complexity seeks to prove lower bounds on the size of any Boolean circuit
that computes a given function. This is notoriously difficult (indeed, it might prove P ̸= NP) so
researchers instead seek lower bounds in weaker circuit classes such as circuits with low depth (i.e.
with few layers of gates). Low-depth circuits model fast parallel computation, and this is especially
important when the computation is quantum because quantum states decohere over time.

Concretely, AC0 is a low-depth Boolean circuit class and QAC0 is its quantum analogue [GHMP02].
AC0 circuits famously require exponential size to compute the parity function [H̊as86], but it is not
even obvious that arbitrarily large QAC0 circuits can compute parity: the reason QAC0 circuits can-
not directly simulate AC0 circuits is that Boolean circuits can copy the input bits and the outputs
of gates for free whereas quantum circuits cannot. In fact, making copies of a bit is equivalent to
computing parity up to a low-complexity QAC0 reduction [GHMP02], which further motivates the
question of whether parity is in QAC0.

I proved the only known upper bound for this question, specifically that exponentially large QAC0

circuits can (approximately) compute parity. Additionally I proved that this upper bound is optimal
for a certain subclass of QAC0 that generalizes the circuit from my upper bound, and that QAC0

circuits require at least linear size and depth at least 3 to approximate parity [Ros21a]. The relation
to the theme of this document is that the above proofs all go through an equivalence between parity
and the task of constructing a certain quantum state that I introduced. My results complement
a line of previous and subsequent work on QAC0 lower bounds for parity [GHMP02; FFGHZ06;
Ber11; PFGT20; NPVY24], culminating in a slightly superlinear size lower bound [ADOY24].

Shannon [Sha49] and Lupanov [Lup58] proved that most functions from n bits to 1 bit require
Boolean circuit size roughly 2n/n, which motivates the search for explicit functions with this prop-
erty. I [Ros21b; Ros23; Ros24] and others (see e.g. refs. [Kni95; NC10; STYYZ23; CDSSBZ22;
ZLY22; GDASC23; YZ23; GKW24]) proved quantum analogues of this result, for different circuit
models and complexity measures and types (classical or quantum) of the input and output.

Open problems I’d be happy to prove new QAC0 lower bounds for any task. I’m also interested
in low-depth quantum circuit classes beyond QAC0. For example, QAC0 circuits with parity gates
can compute majority [HŠ05; TT16] and vice versa [GM24], but can they simulate the rest of
QNC1 (or at least NC1)? Does QNC1 equal BQP/poly? On the easier side—potentially suited to an
undergraduate—there are still some open problems regarding quantum Shannon–Lupanov bounds.

3 Interactive state synthesis

The complexity class IP (for “interactive proof”) is the multi-round analogue of NP, capturing
languages which can be verified by a multi-round exchange of messages between a randomized
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polynomial-time verifier and an unbounded-complexity prover. The famous IP = PSPACE theo-
rem [LFKN92; Sha92] implies that interactive proofs are quite powerful, since PSPACE is widely
believed to include problems outside of P and even outside of NP. An analogous statement QIP =
PSPACE [JJUW11] holds when the verifier is quantum, even with just three messages [Wat03].

Henry Yuen and I proposed a model of quantum interactive proofs where the goal is to produce
a quantum state rather than compute a Boolean function. Here the verifier accepts or rejects, and
when accepting also outputs a quantum state; if the prover is honest then the verifier should accept,
and regardless of whether the prover is honest the output state conditioned on accepting should be
(approximately) correct. We proved that statePSPACE ⊆ stateQIP, where these classes are defined
analogously to PSPACE and QIP respectively [RY22], and later I showed that six messages suffice
for this [Ros24]. Other authors proved the converse inclusion stateQIP ⊆ statePSPACE [MY23],
gave a zero-knowledge version of our protocol (with cryptographic applications) [BKS23; CMS23],
and studied the analogous class stateQMA with just one message [DGLM23].

Open problems The above results concern computational problems with classical input and
quantum output; can we generalize them to problems with quantum input? Henry Yuen and
I [RY22] and others [BEMPQY23] have already made some preliminary steps in this direction.
Also, the error in the above protocols is polynomially small; can it be made exponentially small?

4 Quantum channel testing

How many queries to a quantum state transformation M (called a channel) are necessary to test
whether it is equal to or far from some known channel N ? For example, due to the unreliability of
near-term quantum hardware, one may fear that a physical device designed to implementN actually
implements a completely different channel M. Previous work [FFGO23] studied this question with
respect to a worst-case distance between M and N (formally, the diamond norm distance) defined
by the maximum error over all possible input states. However, as I showed in joint work with
Hugo Aaronson, Sathyawageeswar Subramanian, Animesh Datta, and Tom Gur, worst-case error
is unnecessarily stringent for many applications and makes channel testing prohibitively difficult;
therefore we introduced an average-case distance between channels, generalizing previously studied
average-case distances between specific types of channels, and proved several results to begin the
study of channel testing and learning in this average-distance [RASDG24].

Open problems Can we give a complete answer to the question posed at the beginning of the
previous paragraph, as a function of N ? (Or at least, for some physically motivated channels
N for which the works mentioned above didn’t already answer this question?) Such “instance
optimality” results are already known for the special case of quantum state testing with unentangled
measurements [CLO22; CLHL22]. With entangled measurements, optimal bounds for quantum
state testing are proved using Schur-Weyl duality [OW21], and I’m interested in generalizing this
approach to channel testing. I’m also interested in proving any nontrivial bound on the quantum
circuit complexity of the measurement associated with Schur-Weyl duality, with the hope of making
the associated state testing algorithms more physically realistic. Finally, does an analogue of the
quantum fault-tolerance theorem hold for this average-case distance between channels (instead of
diamond norm distance)?
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