
Efficient Quantum State Synthesis with One
Query

Gregory Rosenthal
University of {Cambridge, Warwick}

SODA 2024

Computation reduces to decision problems

I f : {0, 1}n → {0, 1}m is m decision problems.
I Or one quantum query to g : {0, 1}n × {0, 1}m → {0, 1},

g(x , r) = 〈f (x), r〉F2 [BV97].
I Search, sampling, etc. reduce to functions.
I This talk: what about constructing quantum states?

State synthesis

I Goal: algorithm A making quantum queries to a boolean
function, such that ∀|ψ〉 : ∃f : Af maps |0〉 to ≈ |ψ〉.

Clean solution |ψ〉|0〉 😊

Non-clean solution |ψ〉
∣∣garbageψ

〉
🙂

State synthesis algorithms

Exponential time (trivial)

I Query the description of |ψ〉, then construct it.
I For a clean construction, uncompute the description with a

second query.

Polynomial time [Z98,KM01,GR02,A16]

1. Write |ψ〉 = α0|0〉|ψ0〉+ α1|1〉|ψ1〉.
2. Query α0, α1 to finite precision.
3. Construct α0|0〉+ α1|1〉.
4. Controlled on b ∈ {0, 1}, recursively construct |ψb〉.
5. Uncompute α0, α1.
I Problem: for some applications we want O(1) queries.

Polynomial space, O(1) queries [INNRY22]

I ∃ nonuniform poly(n)-qubit circuit Cn of size 2poly(n) making 1
(resp. 2) queries:

I ∀ n-qubit states |ψ〉:
I ∃ f :
I C f

n non-cleanly (resp. cleanly) constructs |ψ〉 to within error
1/poly(n) (resp. 2−poly(n)).

Polynomial time, O(1) queries

I ∃ uniform poly(n)-size circuit Cn making 1 (resp. 4) queries:
I ∀ n-qubit states |ψ〉:
I ∃ f depending explicitly on |ψ〉:
I C f

n non-cleanly (resp. cleanly) constructs |ψ〉 to within error
2−poly(n).

Comparison of state synthesis algorithms

Algorithm Queries Size Space Error Uniform Clean

Trivial 1 exp exp 1/exp yes no
2 yes

[A16] poly poly poly 1/exp yes yes

[INNRY22] 1 exp poly 1/poly no no
2 1/exp yes

This paper 1 poly poly 1/exp yes no
4 yes

Proof sketch

Constant-error solution [INNRY22]

I ∀|ψ〉 : ∃ Clifford C :
∣∣∣〈ψ| · C ∑

x∈{0,1}n ±2−n/2|x 〉
∣∣∣ ≥ Ω(1).

I Intuition: Cliffords are a 2-design and Haar random states
have high `1 norm.

I Query maps x ∈ {0, 1}n to sign bit and description of C .

Linear Combinations of Unitaries (LCU) [CW12]

I Assume query access to unitaries Uj .
I Let M =

∑
j cjUj .

I Can implement |ψ〉 7→ M|ψ〉/‖M|ψ〉‖ with success probability(
‖M|ψ〉‖/

∑
j |cj |

)2
.

Solution with constant success probability

I |ψ〉 ≈
∑poly(n)

j=0 αβj |φj 〉 where |φj 〉 is a “Clifford times phase
state” and 0 < α, β < 1 are universal constants.

I Do LCU.

Boosting the success probability

I Parallel repetition and merge queries =⇒ 1 query, non-clean.
I Amplitude amplification =⇒ O(1) queries, clean.
I Hybrid approach =⇒ 4 queries, clean.

stateQIP(6) = statePSPACE

Interactive proof for a language L

x

Accept or Reject

I Completeness: x ∈ L =⇒ ∃ prover s.t. Verifier accepts.
I Soundness: x /∈ L =⇒ ∀ provers, Verifier rejects w.h.p.

How powerful are interactive proofs?

I IP = languages with interactive proofs.
I = PSPACE (i.e. polynomial space) [LFKN92,S92].
I = QIP (i.e. IP with a quantum verifier) [JJUW11].
I = QIP(3) (i.e. QIP with three messages) [W03].

Interactive proof for constructing a state ρ [RY22]

(Accept, ρ̃) or Reject

I Completeness: ∃ prover s.t. Verifier accepts.
I Soundness: ∀ provers s.t. w.p. ≥ 1/poly(n) Verifier accepts,
‖ρ̃− ρ‖tr ≤ 1/poly(n).

stateQIP = statePSPACE

I stateQIP = state sequences with interactive proofs.
I statePSPACE = quantum state analogue of PSPACE.
I statePSPACE ⊆ stateQIP [RY22]:

I Polynomial-time state synthesis [A16].
I Answer queries using IP=PSPACE in superposition.
I Additional steps to uncompute entangled garbage.

I stateQIP ⊆ statePSPACE [MY23].

statePSPACE ⊆ stateQIP(6)

I stateQIP(6) = six-message stateQIP.
I Follows from PSPACE ⊆ QIP(3) [W03] and polynomial-time,

one-query state synthesis.

x (in superposition)

QIP(3) = PSPACE
on input x

Uncompute |garbagex 〉

Barrier to QAC0
f lower bounds for

approximately constructing explicit states

Circuit lower bounds for explicit states

I Exponential-size lower bounds for exact constructions [JW23].
I Trivial QNC0 lower bounds for approximate constructions.
I Why can’t we prove nontrivial lower bounds for approximate

constructions?

Barrier [A16]

I Assume |ψ〉 cannot be (approximately) constructed by a
poly-size circuit.

I A← poly-time state synthesis algorithm [A16].
I f ← function such that Af constructs |ψ〉.
I f /∈ BQP/poly because otherwise Af would be a poly-size

circuit for constructing |ψ〉.
I This would be a huge breakthrough.

…But what about in weaker quantum circuit classes?

QAC0
f

I Polynomial-size, constant-depth with one-qubit gates and
unbounded-arity AND, OR and FANOUT gates.

I FANOUT
∣∣b, 0n−1

〉
= |bn〉 for b ∈ {0, 1}.

I Physically motivated [GKHMDBC21,GDCEBDSCG22].

Barrier to QAC0
f lower bounds for explicit states

I Clifford unitaries are in QAC0
f [∼AG04].

I =⇒ This paper’s state synthesis algorithm is in QAC0
f .

I =⇒ QAC0
f lower bounds for explicit states imply QAC0

f lower
bounds for explicit functions.

I TC0 ⊆ QAC0
f [HS05,TT16] and we don’t have TC0 lower

bounds for explicit functions.

Circuit complexity of approximately
constructing worst-case states

Upper and lower bounds for constructing worst-case states

I G ← universal gate set including AND, OR, NOT.
I Constructing worst-case n-qubit states to within error
ε ≥ 2−poly(n) requires G-circuit size Θ(2n log(1/ε)/n).

I Worst-case n-qubit states require circuit size Θ(2n) to exactly
construct with arbitrary O(1)-qubit gates [ZLY22,GDASC23,
STYYZ23,YZ23].

Proof sketch

Upper bound:
I This paper’s state synthesis algorithm.
I Simulate m-bit queries with O(2m/m)-size circuits [L58].
I Solovay-Kitaev theorem on the non-query operations.

Lower bound:
I Counting argument.

Open problems

Generalization to unitaries?

I The “unitary synthesis problem”: ∀U : ∃f : U efficiently
reduces to f [AK07,A16]?

I Õ
(
2n/2) queries & time suffices [R21].

I 1 query and o(2n) qubits does not suffice [LMW23].

Search-to-decision reduction for QMA?

I SAT has efficient search-to-decision reductions.
I Constructing ground states of local Hamiltonians efficiently

reduces to one quantum query to a PP oracle [INNRY22].
I What about to a QMA oracle?

