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Continuous Latent Variable Models

e Often there are some unknown underlying causes of the data.

e So far we have looked at models with discrete latent variables, such as
mixture of Gaussians.

e Sometimes, it is more appropriate to think in terms of continuous
factors which control the data we observe.

» Motivation: for many datasets, data points lie close to a manifold of
much lower dimensionality compared to that of the original data space.

 Training continuous latent variable models often called dimensionality
reduction, since there are typically many fewer latent dimensions.

e Examples: Principal Components Analysis, Factor Analysis,
Independent Components Analysis



Intrinsic Latent Dimensions

 What are the intrinsic latent dimensions in these two datasets?
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 How can we find these latent dimensions from this high-dimensional
data.



Intrinsic Latent Dimensions

* |In this dataset, there is only 3 degrees of freedom of variability,
corresponding to vertical and horizontal translations, and the rotations.

IEENENE!

 Each image undergoes a random displacement and rotation within
some larger image field.

e The resulting images have 100 x 100 = 10,000 pixels.



Generative View

e Each data example generated by first selecting a point from a
distribution in the latent space, then generating a point from the
conditional distribution in the input space

/
e Simplest latent variable models: Assume Gaussian
distribution for both latent and observed variables.

e This leads to probabilistic formulation of the Principal
Component Analysis and Factor Analysis. X

* We will first look at standard PCA, and then consider its probabilistic
formation.

e Advantages of probabilistic formulation: use of EM for parameter
estimation, mixture of PCAs, Bayesian PCA.



Principal Component Analysis

e Used for data compression, visualization, feature extraction, dimensionality
reduction.

* The goal is find M principal components %) /
underlying D-dimensional data Xn

- select the top M eigenvectors of S (data \/ \'

| . S
covariance matrix): {uy, ..., uns }. /

- project each input vector x into this subspace, >/\o
€.Jd. 2n1 = Xgul.
e Full projection into M dimensions » Two views/derivations:
takes form: - Maximize variance (scatter of green
i u, ] points).

xpxy| = [z1- -z - Minimize error (red-green distance
T .
RJVa per data point).




Maximum Variance Formulation

» Consider a dataset {x,,...,X\}, X, € RP. Our goal is to project data onto a

space having dimensionality M < D.

e Consider the projection into M=1 dimensional space.

 Define the direction of this space using a
D-dimensional unit vector u,, so that uf u; = 1.

» Objective: maximize the variance of the projected
data with respect to u,.

1 T T 212 T
~ g {ui x, —u;x}* =uj Suy
n=1

where sample mean and data covariance is given by:

% = —ZXn

N ‘=
1 X T
S = NZ (xn, — X)(xXn — X)




Maximum Variance Formulation

* Maximize the variance of the projected data:
N
T T2 T
~ Z{u1 X, —ui X}* = uj Suy X e
n=1 i /

* Must constrain ||u,|| = 1. Using Langrage \/\
multiplier, maximize: / Xp,
N/

ul'Su; + A\(1 —ufuy) /

« Setting the derivative with respect to u, to zero: >

Su1 = )\1111.
* Hence u, must be an eigenvector of S.

* The maximum variance of the projected data is given by:
ulTSul = )\1.

e Optimal u, is principal component (eigenvector with maximal eigenvalue).



Minimum Error Formulation

e Introduce a complete orthonormal set of D-dimensional basis vectors:
{ui,...,up}:

T — 5.,
U' uj i 57/].

o~

» Without loss of generality, we can write:

D

_ § : _ T

— ApiUi, Qpi — X, Ug.
1=1 \

Rotation of the coordinate system to a
new system defined by u,.

e Our goal is to represent data points by the projection into M-dimensional
subspace (plus some distortion):

» Represent M-dim linear subspace by the first M of the basis vectors:
M

X, szuz+ Z b;u;.

=1 1=M-+1



Minimum Error Formulation

e Represent M-dim linear subspace by the first M of the basis vectors:

M D
in = E Zni W —+ bzuz
1=1 =M1

where z; depend on the particular data point and b,

are constants.

N

» Objective: minimize distortion with respect to u;, z;, e
and b.. 1 N , /
. . Znj — X:',Z;uj'
* Minimizing with respect to z;, b;: T
b; = X uj;
J J
e Hence, the objective reduces to:
1 N D D
T ST \2 T
J:Ny: y: (x;u; — X u;)* = Z u; Su;.
n=1i=M+1 i=M+1



Minimum Error Formulation

e Minimize distortion with respect to u;: constraint minimization problem:

1 N D
J=5 D ke —%al?= ) ufSu.
n=1 1=M-+1

e The general solution is obtained by choosing u; to
be eigenvectors of the covariance matrix:

Sui = )\7111Z
D

Xn

N
\//
/

//'u1
N

Ne

« The distortion is then given by: J = Z Aj.
i=M+1

v

* The objective is minimized when the remaining D-M components are the

eigenvectors of S with lowest eigenvalues — same result.

* We will later see a generalization: deep autoencoders.



Applications of PCA

e Run PCA on 2429 19x19 grayscale images (CBCL database)
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e Data compression: We can get good reconstructions with only 3 components.

» Pre-processing: We can apply a standard classifier to latent representation --
PCA with 3 components obtains 79% accuracy on face/non-face discrimination in
test data vs. 76.8% for mixture of Gaussians with 84 components.

e Data visualization: by projecting the data onto the first two principal
components.



Learned Basis

e Run PCA on 2429 19x19 grayscale images (CBCL database)
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PCA vs. Fisher’'s LDA

» A comparison of PCA with Fisher’s LDA for linear dimensionality reduction.
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» PCA chooses direction of maximum variance (magenta curve) leading to
strong class overlap (unsupervised).

» LDA takes into account the class labels (supervised), leading to a
projection into the green curve.



PCA for High-Dimensional Data

 In some applications of PCA, the number of data points is smaller than the
dimensionality of the data space, i.e. N<D.

* In so far, we need to find the eigenvectors of the D x D data covariance
matrix S, which scales as O(D3).

 Direct application of PCA will often be computationally infeasible.

e Solution: Let X be the N x D centered data matrix. The corresponding
eigenvector equation becomes:

1 T
X" Xu u

e Pre-multiply by X:

1
NXXT(XuZ-) = )\ (Xuy).



PCA for High-Dimensional Data

* Define v, = Xu;, and hence we have:

1
N XXTVi = )\ivi .

 This is an eigenvector equation for the N x N matrix

e It has the same N-1 eigenvalues as the original data covariance matrix S
(which itself has an additional D-N+1 zero eigenvalues).

« Computational cost scales as O(N?3) rather than O(D3).

» To determine eigenvectors, we multiply by XT:

1

(—XTX> (XTv;) = i XTv;.

N

« Hence XT v, is an eigenvector of S with eigenvalue \..

* These eigenvectors may not be normalized.



Probabilistic PCA

e Probabilistic, generative view of data.
» Key advantages of probabilistic PCA (PPCA):

- It represents a constrained form of the Gaussian distribution.

- We can derive EM algorithm for PCA which is computationally efficient.
- PPCA allows us to deal with missing values in the data set.

- We can formulate mixture of PPCAs in a principled way.

- PPCA forms the basis for a Bayesian PCA, in which the dimensionality of
the principal subspace can be determined from the data.

- The existence of a likelihood function allows direct comparisons with
other probabilistic density models

- PPCA can be used to model class conditional densities and hence it can
be applied to classification problems.



Probabilistic PCA

e Key assumptions:

- underlying latent M-dim variable z has a r )
Gaussian distribution.

2
g
- linear relationship between M-dim latent z \

and D-dim observed x variables.

- isotropic Gaussian noise in observed

dimensions £ X, W
A\ NJ
p(z) = N(z[0,I)
p(x|z) = N(x|Wz+ p,o°T)

* Hence the mean of x is a linear function of z governed by the D x M matrix W
and the D-dim vector .

* We will see that the columns of W span the principal subspace of the data
space (Columns of W are the principal components, o2 is sensor noise).



Generative View of PPCA

e Generative view of the PPCA for a 2-d data space and 1-d latent space:

Density contours for the
marginal distribution p(x).

e Draw a value of the latent variable from its prior distribution:
2~ p(2)

e Draw a value for x from from an isotropic Gaussian distribution:

T~ p(x|2) = N(x|w2z + p,o%1).



Marginal Data Density

* The joint p(z,x), the marginal data distribution p(x) and the posterior
distribution p(z|x) are also Gaussian.

e Marginal data density (also known as predictive distribution):

p(x) = [, p(z)p(x|z)dz = N (x|p, WWT + o°T)

e Can derive by this result directly by computing mean and covariance given
that it is Gaussian:

FElx] = Elp+Wz+¢€ =pu+ WE][z] + El¢]
C = Cov[x] =
= El(u+Wz+e—p)(p+Wz+e—p)']
= E[(Wz+ ) (Wz + ¢)T]

WW1L + 521



Redundancy in Parameterization

e The marginal distribution is governed by parameters W, p, o2

= |, p(2)p(x|z)dz = N (x|p, WWT 4 0°T)

* Redundancy in parameterization: rotation of the latent space coordinates.

 Let R be an orthogonal matrix, then define a new matrix:

W = WR, RR” =1
e Then
WWT = WRRTWT = wwT7.

* There is a whole family of matrices all of which give rise to the same
marginal distribution.

* Rotations within the latent space.



Joint Density for PPCA

e Joint density for PPCA, where x is D-dim and z is M-dim is given:

oF - ]

where cross covariance term forms:

Cov[z,x] = E[(z—0)(x— )] = Elz(u+ Wz +e— )]
E[z(Wz 4 )] = W7

* When evaluating marginal distribution, we need to invert a D x D matrix C,
which can be expensive.

» Reduce O(D?) to O(M3) by applying matrix inversion lemma:

Cl=0c"1-0""WWIW +2I)"tWT



Posterior Distribution for PPCA

e Inference in PPCA amounts to computing posterior distribution over latent

variables:
p(zx) = N(zlm,V) ” \
m = M_le(X o I’l’)?
V=0"M"",

poo——

M=W'W + ¢I.

o

» Mean of inferred z is projection of centered x:
linear operation.

» Posterior variance does not depend on the input x at all.

* Remember:
C=WW7' + 021
Cl=01- W(WTW + 021) Iw?

M matrix

Zny,

n




Constrained Covariance

e Marginal density for PPCA has the following form:

Zp
p(x|0) = N(x|p, WW' +5°T) ;2
Y
where 6 ={W,u, o2). Covariance C \

e The covariance is low-rank outer product of

two long skinny matrices plus a constant H e—
diagonal matrix: Xn
WT
Cov[x] — (W —+ Ji

e Hence PPCA is a constrained Gaussian model.

» We can fit model parameters using maximum likelihood.



Maximum Likelihood

* Model parameters can be determined using maximum likelihood (by
integrating our latent variables):

L(6;X) = logp(X]|0) =) logp(xn|6)
N 1 _
— —Elog IC| — EZ(X" —u)C 1(Xn B M)T
N 1 ~1 T
= 5 log |C| — §TT[C Z(Xn — p)(xp — p)" ] +-const

» Maximizing with respect to the mean: up;r, = X.

* We then have:

N 1
log p(X|0) = —5 log |C| — §T7“ [C'S] + const.

e Maximizing with respect to W and o2 can be solved directly.



Maximum Likelihood

e Objective:
N

1
log p(X|0) = 5 log |C| — §Tr [C™'S] + const.

» C is model covariance; S is sample data covariance.

* In other words, we are trying to make the constrained model covariance as
close as possible to the observed covariance, where “close” means the
trace of the ratio.

1
e Sufficient statistics: mean x = N Z X, and sample covariance S.



Maximum Likelihood

e Objective:
N

1
log p(X|0) = 5 log |C| — §T7“ [C™'S] + const.

e Maximizing with respect to W:

WML — UM(LM — 0'21)1/2R,

where
« Uy isaD x M matrix whose columns are given by the M principal
eigenvectors of the data covariance matrix S.
 Lyisthe M x M diagonal matrix containing M largest eigenvalues.
 Ris an arbitrary M x M orthogonal matrix.

* If the eigenvectors have been arranged in the order of decreasing values of the
corresponding eigenvalues, then the columns of W define the principal subspace
of standard PCA.



Maximum Likelihood

e Objective:
N

1
log p(X|0) = 5 log |C| — §T7’ [C™'S] + const.

e Maximizing with respect to o2:

which is the average variance associated with the discarded dimensions.



EM for PPCA

e Instead of solving directly, we can use EM. The EM can be scaled to very
large high-dimensional datasets.

* The complete-data log-likelihood takes form:

log p(X, Z|p, W,0?%) = > [log p(xy,|2r) + log p(z,,)]

e E-step: compute expectation of complete log likelihood ~ .
with respect to posterior of latent variables z, using

2
g
current parameters. \

« We need to derive E|z,,], E[z,z. ] with respect to

the true posterior: p(z | X). Hoo—— — W

e M-step: maximize with respect to parameters W and o>. g Ny

 Appealing property: EM avoids direct O(ND?) construction of covariance matrix!

* Instead EM involves sums over data cases: O(NDM). It can also be
implemented online, without storing data.



Zero Noise Limit

* We can derive standard PCA as a limit of probabilistic PCA as the noise
term goes to zero: o> — 0.

e ML parameters are the same.

e Inferring the distribution over latent variables is easier: The posterior mean
reduces to:

lim (WIW +oI) "Wl (x — p) = (WIW)'WT (x — p),

g2—0

which represents an orthogonal projection of the data point onto the latent
space — standard PCA.

» Posterior covariance goes to zero:



EM for PPCA

e EM algorithm for PCA.
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Bayesian PCA

* |t is easy to take a Bayesian viewpoint and place priors over model
parameters.

& D

* One option is to employ the evidence “ «

2
approximation (empirical Bayes) framework. ? \

* We can define an independent Gaussian prior
over each column of W.

Ho——
» Each such Gaussian has an independent Xn
variance: M . - /
p(Wla) = H (;—;) exp [— §OAiW;’TWi]a

1=

where w; is the it" column of W.

» The values of o, are re-estimated during training by maximizing the marginal
likelihood:
p(Xja,1,0%) = [ PXIW, 1,02)p(W]a)dW,



Example of Bayesian PCA

e Hinton diagram of the matrix W: each element of W is depicted as a square
(white for positive and black for negative).

PPCA Bayesian PCA

» The synthetic dataset contains 300 points in D=10 space with the intrinsic
dimensionality set to D=3.

e Bayesian PCA discovers appropriate dimensionality.



Factor Analysis

e Linear Gaussian latent variable model that is closely related to PPCA.
e Key assumptions:
- underlying latent M-dim variable z has a Gaussian distribution

- linear relationship between M-dim latent z and D-dim observed x
variables.

- diagonal Gaussian noise in observed dimensions.
p(z) N(z[0,I)
p(x]z) = N(x|Wz+ p, ©)

e Wis aD x M factor loading matrix.
* ¥is a M x M diagonal matrix (or axis-aligned).

» The only difference between PPCA and FA is that in Factor Analysis the
conditional distribution of the observed variable x has diagonal rather than
isotropic covariance.



Factor Analysis: Distributions

* As in PPCA, the joint p(z,x), the marginal data distribution p(x) and the
posterior p(z|x) are also Gaussian.

» Marginal distribution (predictive distribution):

= [, p(z)p(x|z)dz = N (x|, WW' + )

* The joint distribution:



Factor Analysis: Optimization

e Parameters are coupled, which makes it impossible to solve for ML parameters
directly, unlike in probabilistic PCA.

e Because FA is a latent variable model, we can use EM, or other nonlinear
optimization

e E-step: compute posterior p(z|x): Use matrix inversion to convert D x D matrix
inversions to M x M.

» M-step: take derivatives of the expected complete log likelihood with respect to
parameters.

e Bayesian treatment of the factor analysis can be obtained by a straightforward
extension of standard FA (as we did for PPCA).



FAvs. PCA

e intuition: Gaussians are hyperellipsoids.

 Mean == center of football.
Eigenvectors of covariance matrix == axes of football.
Eigenvalues == lengths of axes.

 In FA our football is an axis aligned cigar.
In PCA our football is a sphere of radius o2.

i

PCA

el

=
—
N
NI




Rotation Invariance in PCA

* In PPCA the rotation of the data is unimportant: we can multiply the data x by a
rotation matrix Q without changing anything:

po— Qu
W «— QW
VU «— Vv

 However, the scale is important.

e PCA looks for directions of large variance,
so it will chase big noise directions.




Scale Invariance in FA

* In FA, the data can be re-scaled without changing anything.
e Multiply x; by a:

N
2

* However, rotation in data space is important.

» FA looks for directions of large correlation
in the data, so it will not model large
variance noise.




Model Identifiability

e Factors in FA are non-identifiable: not guaranteed to find same set of
parameters — not just local minimum but invariance.

» Rotate W by any unitary Q and model stays the same — W only appears in
model as outer product WWT

(WQ)(WQ)"' = WW'.

» This means that there is no “one best” setting of the parameters. An infinite
number of parameters all give the ML score.

» Degeneracy makes unique interpretation of learned factors impossible.



Mixture of Dimensionality Reducers

» The next logical step is to consider a model that has two kinds latent variables:
one discrete cluster, and one vector of continuous causes.

e Such models simultaneously do clustering, and within each cluster,
dimensionality reduction.

» Example: Mixture of Factor Analyzers:

p(z) = N(z|0,I), p(k)=mg, ﬁ
\

p(x|z, k,0) = N (x|u), + Wiz, V),

p(x|0) = Z/ p(x|z, k,0)dz %
— Zﬂ'k/\/ X|[,Lk,WkaT—|—\If)- %ﬂ
k

which is constrained mixture of Gaussians.

e Fitting is done via EM algorithm.



Autoencoders

* Neural networks can also be used for nonlinear dimensionality reduction.

 This is achieved by having the same number of outputs as inputs. These
models are called autoencoders.

» Consider a multilayer perceptron that has D inputs, D outputs, and M hidden
units, with M<D.

e |t is useful if we can squeeze the
information through some kind of bottleneck.

- If we use a linear network this is very similar
to Principal Components Analysis.




Autoencoders and PCA

e Given an input x, its corresponding reconstruction is given by:
M D
2 1
Yr(X, W) = Zw,(gj)a (Z wj(z)xz> , k=1,..,D.

* We can determine the network parameters zD .
w by minimizing the reconstruction error:

N
1
E(w) = 2 E |y(xn, W) — XnHQ- inputs
n=1

e If the hidden and output layers are linear,

it will learn hidden units that are a linear 1
function of the data and minimize the

squared error.

* The M hidden units will span the same space as the first m principal
components. The weight vectors may not be orthogonal.



Deep Autoencoders

* We can put extra nonlinear hidden layers between the input and the bottleneck
and between the bottleneck and the output.

 This gives nonlinear generalization
of PCA.

e |t should be very good for non-linear
dimensionality reduction.

* The network can be trained by the
minimization of the reconstruction
error function.

e Much harder to train.



Geometrical Interpretation

o Geometrical interpretation of the mappings performed by the network with 2
hidden layers for the case of D=3 and M=2 units in the middle layer.
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« The mapping F, defines a nonlinear projection of points in the original D-space
into the M-dimensional subspace.

e The mapping F, maps from an M-dimensional space into D-dimensional
space .



Deep Autoencoders

* We can consider very deep autoencoders.

» There is an efficient way to learn these deep
autoencoders

i
.
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* By row: Real data, Deep autoencoder with a

bottleneck of 30 linear units, and 30-d PCA.




Deep Autoencoders

* We can consider very deep autoencoders.
e Similar model for MNIST handwritten digits:

Real data

30-d deep autoencoder

30-d logistic PCA
30-d PCA

e Deep auto produces much better reconstructions.



Class Structure of the Data

» Do the 30-D codes found by the deep autoencoder preserve the class
structure of the data?

» Take the 30-D activity patterns in the code layer and display them in 2-D
using a new form of non-linear multi-dimensional scaling (UNI-SNE).

» Will the learning find the natural classes?



Class Structure of the Data

» Do the 30-D codes found by the deep autoencoder preserve the class

structure

25
=0

15

of the data?

entirely
- unsupervised
except for the




Learning 2-D topic Space

» Latent Semantics Analysis (LSA) uses SVD to get a low-rank approximation
of the log of term-frequency matrix:

log(1 + M(doc,w)) ~USV
U=|doc| xd,S=dxd,V=dx|w|.

Autoencoder 2-D Topic Space
LSA 2-D Topic Space
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Reuters dataset

e Autoencoder: 2000-500-250-125-2

Autoencoder 2-D Topic Space LSA 2-D Topic Space
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