STA 4273H:
Statistical Machine Learning

Russ Salakhutdinov

Department of Statistics
rsalakhu@utstat.toronto.edu

http://www.cs.toronto.edu/~rsalakhu/
Sidney Smith Hall, Room 6002

Lecture 2



Linear Least Squares

From last class: Minimize the sum of the squares of the errors between
the predictions y(x,,w) for each data point x, and the corresponding
real-valued targetst,.

10? ? %bata Loss function: sum-of-squared error
| ' function:
| N
” E(w) = Z x'w —t,)

DN | — [\Dlr—l

(Xw —t)T(Xw —t).

Source: Wikipedia



Linear Least Squares

If XTX is nonsingular, then the unigue solution is given by:

opljmal vector of
weights target values

10t o eData /
| = curve fit | /

wh = (XTX)" X1t

N

the design matrix has one
input vector per row

Source: Wikipedia

e At an arbitrary input xo, the prediction is y(xg, w) = xp w™.

e The entire model is characterized by d+1 parameters w’.



Example: Polynomial Curve Fitting

Consider observing aTtraining set consisting of N 1-dimensional observations:
x = (x1,%2,...,ZN)" , together with corresponding real-valued targets:

t = (t1,t2,...tN)".

Or

0 I
Goal: Fit the data using a polynomial function of the form:
M
y(x,w) = wo + wix + wox? + ... + wy M = ij:cj.
j=0
Note: the polynomial function is a nonlinear function of x, but it is a linear
function of the coefficients w — Linear Models.



Example: Polynomial Curve Fitting

* As for the least squares example: we can minimize the sum of the
squares of the errors between the predictions y(x,,w) for each data
point x,, and the corresponding target values t,.

'S

¢ Pin Loss function: sum-of-squared
? / error function:
/\y(:cn,w) 1 N

A B(w) = = 3 (y(an,w) — t)>

2 “
/ 1=1

:z:'n
e Similar to the linear least squares: Minimizing sum-of-squared error
function has a unique solution w”.




Probabilistic Perspective

e So far we saw that polynomial curve fitting can be expressed in terms
of error minimization. We now view it from probabilistic perspective.

e Suppose that our model arose from a statistical model:
t=y(x,w) + €,

where € is a random error having Gaussian distribution with zero
mean, and is independent of x.

’ Thus we have:

T bk W, B) = Nty (x, w), 571,

l

% Where 3 is a precision parameter,
p(t|zo, w, 3) corresponding to the inverse variance.

y(zog, w)

| will use probability distribution and
> probability density interchangeably. It
should be obvious from the context.

To Fr>



Maximum Likelihood

If the data are assumed to be independently and identically
distributed (i.i.d assumpt'ion) the likelihood function takes form:

p(tx, w, 8) = HN n|Y(%n, W), B71H).

It is often convenient to maximize the log of the likelihood function:

Inp(tf, W, B) = — 2 3 (Yl W) — £)° + 5 10— > In(2r).
N Y,
Y
BE(w)

e Maximizing log-likelihood with respect to w (under the assumption of a
Gaussian noise) is equivalent to minimizing the sum-of-squared error
function.

e Determine WML by maximizing log-likelihood. Then maximizing

w.r.t. O:
& :—z Y(%Xn, WatL) — tn)°-

BML




Predictive Distribution

Once we determined the parameters w and (3, we can make prediction
for new values of x:

p(tx, Warr, Bur) = N(tly(x, warr), Bar)-

1 F <. .0
tf\
0F e 1
o/
o
-]

0

Later we will consider Bayesian linear regression.



Bernoulli Distribution

e Consider a single binary random variable x & {O, 1}. For example, x
can describe the outcome of flipping a coin:

Coin flipping: heads = 1, tails = 0.
* The probability of x=1 will be denoted by the parameter u, so that:
ple=1p)=p 0<p<l.

e The probability distribution, known as Bernoulli distribution, can be
written as:

Bern(z|p) = p®(1—p)'~*
Elz] = pu
varfz] = pu(l—p)



Parameter Estimation

* Suppose we observed a dataset D = {:Cl, e xN}

* We can construct the likelihood function, which is a function of u.

N
p(Dlp) = H panlp) = || w1 —p)t=
n=1

e Equivalently, we can maximize the log of the likelihood function:
N
Inp(D|p) = Zlnp T |pt) = Z{xnlnu—i—(l—xn)ln(l—u)}
n=1

* Note that the likelihood function depends on the N observations x_ only

through the sum E len
—— sufficient

n Statistic



Parameter Estimation

* Suppose we observed a dataset D = {x1, ..., xn}
N
Inp(D|p) = Zlnp T |pt) = Z{xnlnu—i—(l—xn)ln(l—u)}
n=1

e Setting the derivative of the log-likelihood function w.r.t i to zero, we
obtain:

2|3

MML:%Z%@:

n=1

where m is the number of heads.



Binomial Distribution

e We can also work out the distribution of the number m of observations
of x=1 (e.g. the number of heads).

e The probability of observing m heads given N coin flips and a
parameter p is given by:

p(m heads|N, u) =

N

Bin(m|N. ) = ()

)um(l -

 The mean and variance can be easily derived as:

N
E[m] = ) mBin(m|N, p) = Ny
m;
var[m] = Y (m — E[m])* Bin(m|N, ) = Nu(1 — p)

m=0



Example

e Histogram plot of the Binomial distribution as a function of m for N=10
and = 0.25.

0.3

0.2
Bin(m|10, 0.25)

0.1




Beta Distribution

* We can define a distribution over p € |0, 1] (e.g. it can be used a prior
over the parameter u of the Bernoulli distribution).

Beta(ula,b) = ((a)+<b)) ua=(1 — p)b1
Bl = a-+b
ab
var|p| =

(a+b)?(a+b+1)

where the gamma function is defined as:
o0
['(x) = / u*te v du.
0

and ensures that the Beta distribution is normalized.



Beta Distribution

3
a=0.1 a=1
b=0.1 b=1
2-
1
L 0 1
0.5 " 1 0.5
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b=3 b=14
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1-
1 0 L
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Multinomial Variables

e Consider a random variable that can take on one of K possible mutually
exclusive states (e.g. roll of a dice).

e We will use so-called 1-of-K encoding scheme.

e If a random variable can take on K=6 states, and a particular
observation of the variable corresponds to the state x;=1, then x will be
resented as:

1-of-K coding scheme: x = (0,0,1,0,0, O)T

* If we denote the probability of x,=1 by the parameter p,, then the
distribution over x is defined as:

p(x|p) = H Pyt Vk:pg >0 and Z'u’f —



Multinomial Variables

* Multinomial distribution can be viewed as a generalization of Bernoulli
distribution to more than two outcomes.

p(x|p) = Hu

e |t is easy to see that the distribution is normalized:

and
Elx|p| = Zp (x|p)x = (p1,. .., o) =



Maximum Likelihood Estimation

* Suppose we observed a dataset D = {Xl, e XN}

* We can construct the likelihood function, which is a function of u.

e Note that the likelihood function depends on the N data points only
though the following K quantities:

mip — ank, k = 1,...,K.

n
which represents the number of observations of x,=1.

e These are called the sufficient statistics for this distribution.



Maximum Likelihood Estimation

n=1 k=1 k=1 k=1

* To find a maximum likelihood solution for 1, we need to maximize the
log-likelihood taking into account the constraint that Sopg =1

e Forming the Lagrangian:

K K
kalnuk + A (Z,uk — 1>
k=1 k=1

m
= mn =T A= N

which is the fraction of observations for which x,=1.



Multinomial Distribution

e We can construct the joint distribution of the quantities {m,,m,,...,m,}
given the parameters 1 and the total number N of observations:

N K
Mult(my, ma,...,mg|p, N) = (m1m2...mK>HuZLk
k=1
Elmg] = Nug
varfmg] = Npk(l — k)
covimymy| = —Npjuk

e The normalization coefficient is the number of ways of partitioning N
objects into K groups of size m;,m,,...,m,.

ka = N.
k

* Note that



Dirichlet Distribution

* Consider a distribution over p,;, subject to constraints:

K
VEk : >0 and =1
12, M ;uk

e The Dirichlet distribution is defined as:

D(ao) 17 axt
T(ov1)---T(ak) kl;[l/‘k

K
oo — E (893
k=1

where a,,...,a; are the parameters of the
distribution, and I{x) is the gamma function.

Dir(p|a) =

H3

e The Dirichlet distribution is confined to a simplex as a consequence of
the constraints.



Dirichlet Distribution

* Plots of the Dirichlet distribution over three variables.




A

Gaussian Univariate Distribution

n the case of a single variable x, the Gaussian distribution takes form:

N (|, 0?) 1

N (z|p,07) =
A

(ro2) 2 {_%(x B ”)2}

which is governed by two parameters:

- 1 (mean)

+ —- — o2 (variance)

* The Gaussian distribution satisfies:
N (|, 02) > 0

/OO N (z|u,0%) doz =1

— OO



Multivariate Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

N, B) = o e {3 - )T x|

CBQ‘
which is governed by two parameters:

@ —  is a D-dimensional mean vector.

— J/isa D by D covariance matrix.

and | 2’| denotes the determinant of X

* Note that the covariance matrix is a symmetric positive definite
matrix.



Central Limit Theorem

e The distribution of the sum of N i.i.d. random variables becomes
increasingly Gaussian as N grows.

e Consider N variables, each of which has a uniform distribution over the
interval [0,1].

e Let us look at the distribution over the mean:

r1+ X9+ .... + TN
N :

e As N increases, the distribution tends towards a Gaussian distribution.




Geometry of the Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

Nl 3) = s s oo { —5 - )= x|

e Let us analyze the functional dependence of the Gaussian on x through
the quadratic form:

A? = (x — )" S (x — p)

e Here A is known as Mahalanobis distance.

1ok
2 * The Gaussian distribution will be constant on

@ surfaces in x-space for which A is constant.




Geometry of the Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

Nl 3) = s s oo { —5 - )= x|

e Consider the eigenvalue equation for the covariance matrix:

>u; = \u;, where 1=1,....D.

e The covariance can be expressed in terms of its eigenvectors:

D
3 = Z )\iuiuT
=1

* The inverse of the covariance:

=
P Pbwet)



Geometry of the Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

Nl 3) = s s oo { —5 - )= x|

* Remember:

D
A =(x—p)'S7 (x—p) m=1= ; A%uiu;-T

e Hence:

i

yi = u; (x — p)

-y

* We can interpret {y,} as a new coordinate system defined by the
orthonormal vectors u, that are shifted and rotated .

>/|@



T2

Geometry of the Gaussian Distribution

N(X‘Mv 3) =

\1/2

Dy2
2 _\" Y%
M2

Y2

T

Y; = 4,

Y1

1 1 1 e
(27T)D/2 |2|1/2 eXp{—g(X—LO ) (X_l*l')}

(x — )

X1

e Red curve: surface of
constant probability density

e The axis are defined by the
eigenvectors u, of the
covariance matrix with
corresponding eigenvalues.



Moments of the Gaussian Distribution

e The expectation of x under the Gaussian distribution:

E|x]

1

( 1 Te—1
(2m)D/ ygyl/z/exp< _§(X_”) 2 (X—u)}xdx

—

1
)P/
1 1 (1 7
(27)D/2 |2[1/2 /eXP 5% 2 }(z+u)dz
N J

Y

The term in z in the factor (z+pu)
will vanish by symmetry.

Elx|] = p



Moments of the Gaussian Distribution

* The second order moments of the Gaussian distribution:

Elxx'] = pp’ + 2

e The covariance is given by:

cov|x| =K [(X — Elx])(x ]E[x])T} =3

Ex| =p

e Because the parameter matrix 2/ governs the covariance of x under the
Gaussian distribution, it is called the covariance matrix.



Moments of the Gaussian Distribution

e Contours of constant probability density:

5172‘ .’172‘ .’172‘
T & 1
» » »
(a) (b) (<)
Covariance Diagonal, axis- Spherical
matrix is of aligned covariance (proportional to
general form. matrix. identity) covariance

matrix.



Partitioned Gaussian Distribution

* Consider a D-dimensional Gaussian distribution: p(x) = N (x|u, X)

* Let us partition x into two disjoint subsets x, and x,:

X M zDaa zDa,b
() () (5 %)

* In many situations, it will be more convenient to work with the
precision matrix (inverse of the covariance matrix):

_ Aaa  Aap
A=%"" A= (foe e
(Aba Abb)

* Note that A _, is not given by the inverse of .



Conditional Distribution

e |t turns out that the conditional distribution is also a Gaussian
distribution:

p(Xa\Xb> — N<Xa|“'a,|b7 Ea\b)

Covariance does not

Sap = Mgy = e — Zav Sy, Sha
oy = 2alb {Agatty — Aan(Xp — pp) }

N Ac:czlAab (Xp — 1)
= o+ ZapZy, (X6 — 1)

\

Linear function
of x,.



Marginal Distribution

e |t turns out that the marginal distribution is also a Gaussian distribution:

p(Xa) — /p<Xa7Xb)de
= N<Xa|ﬂaa2aa)

e For a marginal distribution, the mean and covariance are most simply
expressed in terms of partitioned covariance matrix.

X 3 Zaa 23ab
() o« () (5 %)



Conditional and Marginal Distributions

zp = 0.7 p(zalzy = 0.7)

0.5¢




Maximum Likelihood Estimation

* Suppose we observed i.i.d data X = {Xl, el XN}.

e We can construct the log-likelihood function, which is a function of
and 2/

N
ND N 1 _
Inp(X|p, X) = ———1n(27) — 5 In|¥] - 5 d (% — )= (%0 — )
n=1

e Note that the likelihood function depends on the N data points only
though the following sums:

Sufficient Statistics

N N
E X, g ang



Maximum Likelihood Estimation

e To find a maximum likelihood estimate of the mean, we set the
derivative of the log-likelihood function to zero:

i In p(X|p, 3

op

an
o

and solve to obtain:

Ky = % an-

n=1
e Similarly, we can find the ML estimate of J.:
)t

N
1
ML = N Z — ponn) (X — B,

n=1



Maximum Likelihood Estimation

e Evaluating the expectation of the ML estimates under the true

distribution, we obtain: Unbiased estimate
A/
E[MML] — [
N —1
E> = —.
2] N ™~ Biased estimate

* Note that the maximum likelihood estimate of J. is biased.

e We can correct the bias by defining a different estimator:

N
~ 1
=7 2 (Xn ) (Xn — ) -

n=1



Sequential Estimation

e Sequential estimation allows data points to be processed one at a time
and then discarded. Important for on-line applications.

e Let us consider the contribution of the Nt data point x.:

(N) 1 <
N
My, = NZX”’
n=1
1 . 1 N—1
= —X — Xn
N NN
n=1
1 N—1 (nv_1
= Ty e
N—1 1 N—1
- “§\4L )+_(X _Hl(\AL ))

I
|—> correction given Xy

S

> correction weight
> old estimate




Student’s t-Distribution

e Consider Student’s t-Distribution

p(eluab) = / Nz, 7~1)Gam(r|a, b) dr

— / (x|,u, (M)~ )Gam(n|u/2,u/2) dn “«--

O |

Tw/2+1/2) [ A\"? | A = p)? ey

F(V/Q) TV U |

= Stlalp A v) Infinite mixture i

where of Gaussians ~~ """ """ TToooC

A=a/b n=rb/a v = 2a.

Sometimes called Degrees of freedom

the precision
parameter.



Student’s t-Distribution

e Setting v = 1 recovers Cauchy distribution
e The limit v — oo corresponds to a Gaussian distribution.

| v =1 UV — 00

St(x|u, A, v) ‘ Cauchy N (x|u, A71)

0.5
0.4 ~ v =10
0.3} )
0.2}

0.1t




Student’s t-Distribution

* Robustness to outliners: Gaussian vs. t-Distribution.




Student’s t-Distribution

e The multivariate extension of the t-Distribution:

St A,v) = [ Nl (0) ) Gam(l/2,/2)

I(D/2+v/2) |A|Y? A_2 —D/2—v/2
I'(v/2) (wv)D/2 [1 + ]

1%
where A% = (x— p) A(x — p)

* Properties:

E|x] = p, ifv>1
cov[x| = w i 2>A_1, if v>2
mode[x| = u




Mixture of Gaussians

e When modeling real-world data, Gaussian assumption may not be
appropriate.

e Consider the following example: Old Faithful Dataset

100 ; ; ; ; 100
80 | %0 |
60 | 60 |
1 2 3 4 5 6 1 2 3 4 5
Single Gaussian Mixture of two

Gaussians



Mixture of Gaussians

e We can combine simple models into a complex model by defining a
superposition of K Gaussian densities of the form:

K
p(x) = mN (x|, Zk)  pla)y

k,’:]_ \ Y J
Component

Mixing coefficient

K
k : > — 1
\Y Tk 0 kz_:lﬂ'k var >

* Note that each Gaussian component has its own mean p, and
covariance ;. The parameters 7, are called mixing coefficients.

e Mote generally, mixture models can comprise linear combinations of
other distributions.



Mixture of Gaussians

e |llustration of a mixture of 3 Gaussians in a 2-dimensional space:

057

(a) Contours of constant density of each of the mixture components,
along with the mixing coefficients

K

(b) Contours of marginal probability density p(x) = Z TN (x|, Xk)
k=1

(c) A surface plot of the distribution p(x).



Maximum Likelihood Estimation

* Given a dataset D, we can determine model parameters p,. 2/;, m, by
maximizing the log-likelihood function:

lﬂp(X”ﬂ',[l,, Zln Zﬂ-kN Xn|“’k72k>
n=1

(& J
Y

Log of a sum: no closed form solution

e Solution: use standard, iterative, numeric optimization methods or the
Expectation Maximization algorithm.



The Exponential Family

e The exponential family of distributions over x is defined to be a set of
destructions for the form:

p(x|n) = h(x)g(n)exp {n u(x)}

where
— nis the vector of natural parameters

— u(x) is the vector of sufficient statistics

 The function g(n) can be interpreted the coefficient that ensures
that the distribution p(x|n) is normalized:

g(m) / h(x) exp {nTu(x)} dx = 1



Bernoulli Distribution
e The Bernoulli distribution is a member of the exponential family:

p(xzlp) = Bern(z|p) = p*(1 — p)'t=*

— exp{zlnu+ (1 —2)In(l — p)}
= (1 - p)exp {ln (ﬁ) :c}

e Comparing with the general form of the exponential family:
p(x|n) = h(x)g(n) exp {n"u(x)}

we see that

1
2 _ _
_ = O p— .
n=lIn (—1 M) and so p (n) T exp(—1)
\ J
N

Logistic sigmoid




Bernoulli Distribution
e The Bernoulli distribution is a member of the exponential family:

p(xzlp) = Bern(z|p) = p*(1 — p)'t=*

= exp{rhnyu+ (1 —2)In(l —u)}

= (1 - p)exp {ln (ﬁ) :c}

p(x|n) = h(x)g(n) exp {n" u(x)}
* The Bernoulli distribution can therefore be written as:

p(x|n) = o(—n) exp(nz)

where
u(z) = «x

h(x) = 1
gm) = 1—o0(n) =o(-n).



Multinomial Distribution

e The Multinomial distribution is a member of the exponential family:

p(x|p) = H py* = exp {Z zy In uk} = h(x)g(n) exp (" u(x))
k=1

where X = (xl,...,xM)T N = (771,---777M)T
and
NOTE: The parameters 7,
e = Inpy are not independent since
u(x) = x the corresponding p; must
satisf
h(x) = 1 you
> =1
gn) = 1. =1

* In some cases it will be convenient to remove the constraint by
expressing the distribution over the M-1 parameters.



Multinomial Distribution

e The Multinomial distribution is a member of the exponential family:

p(x|p) = H py" = exp {chk In uk} = h(x)g(n) exp (" u(x))
k=1

* This leads to:

Mk _ exp(nk)
Mk = In — and Mk = T .
(1 — > Mj) 1+ i— exp(n;)

* Here the parameters 7, are independent. Softmax function

* Note that:



Multinomial Distribution

e The Multinomial distribution is a member of the exponential family:

M
p(x|p) = H j"F = exp {chk In Nk} = h(x)g(n) exp (" u(x))
k=1
e The Multinomial distribution can therefore be written as:

p(x|p) = h(x)g(n) exp (n"' u(x))

where
n = (-, mm-1,0)"
ulx) = x
h(ix) = 1

gn) = <1+Zexp(nk)> -

k=1



Gaussian Distribution

* The Gaussian distribution can be written as:

1 1
p(x’lﬁ,02> — (2%02)1/2 exXp {—ﬁ(x — M)Q}
1 Lo p L
- (2wo2)1/2 b {_ﬁx T2t T et }
—  h(z)g(n) exp {n"u(x)}
where



ML for the Exponential Family
e Remember the Exponential Family:
p(x|n) = h(x)g(n) exp {n" u(x)}

* From the definition of the normalizer g(n):
g(n) / h(x) exp {nTu(X>} dx =1

* We can take a derivative w.r.t n:

V() / h(x) exp {nTu(x)} dx + g(n) / h(x) exp {nTu(x)} u(x) dx = 0

A\ J A\
Y Y

1/g9(n) Elu(x)]

* Thus
~Ving(n) = Elu(x)|



ML for the Exponential Family

e Remember the Exponential Family:
p(x|n) = h(x)g(n) exp {n" u(x)}

e We can take a derivative w.r.t n:

Vo(n) / h(x) exp {nTu(x)} dx + g(n) / A(x) exp {7 u(x)} u(x) dx = 0

(G J (G
Y Y

1/g9(n) Elu(x)]

* Thus
~Ving(n) = Elu(x)|

e Note that the covariance of u(x) can be expressed in terms of the
second derivative of g(n), and similarly for the higher moments.



ML for the Exponential Family

* Suppose we observed i.i.d data X = {Xl, el XN}.

e We can construct the log-likelihood function, which is a function of
the natural parameter 7.

p(x|n) = h(x)g(n) exp {n" u(x)}

N
p(X]|n) = (H h(xn, ) N exp {nT Z u(xn)} .
e Therefore we have
1 N
~Ving(ny) = + Z
N n—=1

~
Sufficient Statistic

J




