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Parametric Distributions

* We want model the probability distribution p(x|@) of a random
variable x given a finite set of observations: {x1,...,xn}

Need to determine @ given {x1,...,xy}

 We will also assume that the data points are i.i.d

e We will focus on the maximum likelihood estimation 0*

| 7N -
0f \//A p(t‘wiMLaﬁML) :N(t‘y(X,WML>,,BML)

e Remember curve fitting example.




Linear Basis Function Models

e Remember, the simplest linear model for regression:
d

Y(X, W) = wg + w11 + Wwels + ... + wqq = wo + g W;Tj,
j=1
where x = (1, T2, ..., :cd)Ta d-dimensional input vector (covariates).

Key property: linear function of the parameters wo, wq, ..., wq .

e However, it is also a linear function of input variables.
Instead consider:

M-—1
y(x, W) = wogo(X) + w161 (%) + ... + way—1dp-1(%) = Y wid;(x
7=0

where ¢;(x) are known as basis functions.

* Typically ¢p(x) = 1 so that w, acts as a bias (or intercept).

* In the simplest case, we use linear bases functions: ¢;(x) = z;.

* Using nonlinear basis allows the functions y(x, w) to be nonlinear functions of
the input space.



Linear Basis Function Models

Polynomial basis functions:

¢;(x) = 2.
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Basis functions are global: small

changes in x affect all basis functions.

Gaussian basis functions:

¢j(z) = exp (— CE_W)Q) -

252
1

0.75|
Q.5 |

0.251]

Basis functions are local: small changes in x
only affect nearby basis functions.
p;and s control location and scale (width).



Linear Basis Function Models

Sigmoidal basis functions

) , where o(a) =

14 exp(—a)

Basis functions are local: small changes
in x only affect nearby basis functions.
p;and s control location and scale
(slope).
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* Decision boundaries will be linear in the feature space ¢, but would
correspond to nonlinear boundaries in the original input space x.

* Classes that are linearly separable in the feature space ¢(x) need not
be linearly separable in the original input space.



Linear Basis Function Models

Corresponding feature space using

Original input space ) : :
two Gaussian basis functions
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» We define two Gaussian basis functions with centers shown by green the crosses,
and with contours shown by the green circles.

* Linear decision boundary (right) is obtained using logistic regression, and
corresponds to nonlinear decision boundary in the input space (left, black curve).



Maximum Likelihood

* As before, assume observations from deterministic function with additive
Gaussian noise:

t =y(x,w) +e,

which we can write as:

p(tlx, w,B) = N(tly(x, w), 7).

* Given observed inputs X = {x1, X2, ..., X}, and corresponding target
values t = [t1,to, ..., tN]T under i.i.d assumption, we can write down the
likelihood function:

N

p(t|X,W,5> — HN(tn|WT¢(Xn>75>7

1=1

where ¢(X> — (¢O(X>7 b1 (X>7 e ¢M—1(X>>T-



Maximum Likelihood
Taking the logarithm, we obtain'

Inp(t|X,w, ) = Zln/\/ (tn|W! P(xp), B)

-5 nz::l (tn — WTqb(Xn)) 4+ glnﬁ — gln(Qﬂ).

J

Y
sum-of-squares error function

Differentiating and setting to zero yields:

N
Vw Inp(tlw, 5) = Z {tn — WT¢(Xn>} qb(xn)T =0



Maximum Likelihood

Differentiating and setting to zero yields:
N
Vw Inp(t|w, 5) = 0 Z {tn - WTqb(Xn)} qb(xn)T = 0.
n=1

Solving for w, we get:

, ! \ The Moore-
—1 Penrose pseudo-
WML = ((I)T(I)> Pt inverse, ' .
where ® is known as the design matrix:
( ¢o(x1)  ¢1(x1) -+ dm—1(x1) \
Po(x2)

d1(x2) -+ dm—1(x2)

\ dolxn) di(xn) - duro1(xn)



Geometry of Least Squares

e Consider an N-dimensional space, so
that t = [t1,t,...,tn]" isavectorin
that space.

e Each basis function ¢;(x,,), evaluated
at the N data points, can be represented
as a vector in the same space.

e [f M is less than N, then the M basis
function ¢;(xy,), will span a linear
subspace S of dimensionality M.

e Define: y = ®wuL.

do(x1) | ¢1(x1) -+  Om—1(x1)

* The sum-of-squares error is equal to do(x2) | d1(x2) -+ drr_1(x2)
the squared Euclidean distance P = :
between y and t (up to a factor of 1/2).

</50(;<N) ¢1(;<N) ¢M—1.(XN)

The solution corresponds to the orthogonal projection of t onto the subspace S.




Sequential Learning

* The training data examples are presented one at a time, and the model
parameter are updated after each such presentation (online learning):

wt) W o B

/ Vs ™~

weights after learning vector of derivativgs of the squared
seeing training rate error w.r.t. the weights on the
case t+1 training case presented at time ¢.

* For the case of sum-of-squares error function, we obtain:
T
W(t+1) — W(t) — 1N (tn — W(t) qb(xn)) ¢<Xn>

e Stochastic gradient descent: if the training examples are picked at random
(dominant technique when learning with very large datasets).

e Care must be taken when choosing learning rate to ensure convergence.



Regularized Least Squares

e Let us consider the following error function:
A is called the

ED (W) -+ )\EW (W) regularization

coefficient.

Data term + Regularization term

e Using sum-of-squares error function with a quadratic penalization
term, we obtain:

1 ZN A
5 £ — W ¢ XTL>}2 + 2WTW
S : Ridge
which is minimized by setting: regression

/
w = ()\I + <I>T<I>) T aTt,

The solution adds a positive constant to the diagonal of ®T &, This makes the
problem nonsingular, even if ®T & is not of full rank (e.g. when the number
of training examples is less than the number of basis functions).



Effect of Regularization

e The overall error function is the sum
of two parabolic bowls. W2 g

e The combined minimum lies on the
line between the minimum of the

squared error and the origin. @
e The regularizer shrinks model

parameters to zero.




Other Regularizers

Using a more general regularizer, we get:

—Z{t — Wi (xa)} + Z\’wglq

Lasso Quadratic




The Lasso

* Penalize the absolute value of the weights:

1 > A
w!° — aregmin [5 Z (tn — W d(xn))” + 5 Z \w3|]

W

n=1 7=1

e For sufficiently large A, some of the coefficients will be driven to
exactly zero, leading to a sparse model.

* The above formulation is equivalent to:

N M—1
1
wlasso — argvf’nin 5 E (tn — WTqb(Xn))Q, subject to E w;| < T
n=1 7=1
G _J
Y

unregularized sum-of-squares error

* The two approaches are related using Lagrange multiplies.

* The Lasso solution is a quadratic programming problem: can be
solved efficiently.



Lasso vs. Quadratic Penalty

Lasso tends to generate sparser solutions compared to a quadratic
regualrizer (sometimes called L, and L, regularizers).

W2, W2 a
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Statistical Decision Theory

* We now develop a small amount of theory that provides a
framework for developing many of the models we consider.

e Suppose we have a real-valued input vector x and a corresponding
target (output) value t with joint probability distribution: p(x, t).

e Our goal is predict target t given a new value for x:
- for regression: t is a real-valued continuous target.
- for classification: t a categorical variable representing class labels.

The joint probability distribution p(x,?) provides a complete
summary of uncertainties associated with these random variables.

Determining p(x,t) from training data is known as the inference
problem.



Example: Classification

Medical diagnosis: Based on the X-ray image, we would like determine
whether the patient has cancer or not.

* The input vector x is the set of pixel intensities, and the output variable t will
represent the presence of cancer, class C;, or absence of cancer, class C,.
/ C,: Cancer present

L
l' \ C,: Cancer absent
| oL

X -- set of pixel intensities

L ]

5

* Choose t to be binary: t=0 correspond to class C;, and t=1 corresponds to C,.

Inference Problem: Determine the joint distribution p(x, Cx) or equivalently
p(x,t). However, in the end, we must make a decision of whether to give

treatment to the patient or not.



Example: Classification

Informally: Given a new X-ray image, our goal is to decide which of the two
classes that image should be assigned to.

e We could compute conditional probabilities of the two classes, given the input
image:

posterior probability of probability of observed  prior probability
C, given observed data. data given C, for class C,
\ p(x, Cy p(x|Cx)p(Ck
GRS v i i
k=1 Pk Bayes’ Rule

* |[f our goal to minimize the probability of assigning x to the wrong class, then
we should choose the class having the highest posterior probability.



Minimizing Misclassification Rate

z

Goal: Make as few misclassifications as
possible. We need a rule that assigns each
value of x to one of the available classes.

p(l’,Cg)

Divide the input space into regions R ;
(decision regions), such that all points in
R j are assigned to class C; .

L

R4 R
red+green regions: input blue region: input belongs
belongs to class C,, but is to class C,, but is assigned
assigned to C, \ to G, /
p(mistake) = p(x € Rq1,C2) + p(x € Ro,Cq)

= /Rlp(X,Cz)dXJr/ p(x,C1) dx.

Ro



Minimizing Misclassification Rate

]




Minimizing Misclassification Rate

X
o

p(I,Cl)

p($,62)




Minimizing Misclassification Rate

A

Zo z
p(LL',Cl) i
i p(l?,Cg)
< R e R >
p(mistake) = p(x € R1,C2) + p(x € R2,C1) = / p(x,Co)dx + / p(x,Cq)dx
Rl RQ

if p(x,C1) > p(x,C2) then we should assign x to class Cj.

Using p(x,Ck) = p(Cr|x)p(x) : To minimize the probability of making mistake, we
assign each x to the class for which the posterior probability p(Cr|x) is largest.



Expected Loss

e Introduce loss function: overall measure incurred in taking any available
decisions.
* Suppose that for x, the true class is C,, but we assign x to class j

— incur loss of Ly; (k,j element of a loss matrix).

Consider medical diagnosis example: example of a loss matrix:

Decision
cancer normal

cancer ( 0 1000 )

normal 1 0

Truth

Expected Loss:
BIL =33 [ Luplx.Ci) dx
ko5 YRy

Goal is to choose regions R ; as to minimize expected loss.



Reject Option

b pCilz) p(Ca|z)

0.0

reject region



Regression

Let x € R9 denote a real-valued input vector, and t € R denote a real-
valued random target (output) variable with joint distribution p(x, t).
* The decision step consists of finding an estimate y(x) of t for each input x.

e Similar to classification case, to quantify what it means to do well or
poorly on a task, we need to define a loss (error) function: L (¢, y(x)).

e The average, or expected, loss is given by:
B(E) = [ [ L(t.y60)(x axct

. Or
* |f we use squared loss, we obtain:

Bl = [ [ (¢ y0) plx x|

0



Squared Loss Function

* |f we use squared loss, we obtain:

y(zo)

B} = [ [ (¢ y60) plx. taxct

e Our goal is to choose y(x) so as minimize expected squared loss.

* The optimal solution (if we assume a completely flexible function) is the

conditional average:
yx) = [ tp(tx)dt = Bt

The regression function y(x) that

y(x) minimizes the expected squared loss is
given by the mean of the conditional
distribution p(¢|x).

p(t|zo)

Io i



Squared Loss Function

* |f we use squared loss, we obtain:

(y(x) —t)° = (y(x) — E[t|x] + E[t|x] —t)*
= (y(x) — E[t|x])” + 2(y(x) — E[t|x]) (E[t|x] — ) + (E[t|x] —t)".

e Plugging into expected loss:

/ {y(x) — Eltjx)} p(x) dx + / var [#]x] p(x) dx

J 1\ J
Y
expected loss is m|n|m|zed intrinsic variability of the
when y(x) = E[t|x]. target values.

Because it is independent noise, it
represents an irreducible minimum
value of expected loss.



Other Loss Function

* Simple generalization of the squared loss, called the Minkowski loss:

// (t—y “p(x, t)dxdt.

e The minimum of E[L]is given by:

- the conditional mean for g=2,
- the conditional median when g=1, and
- the conditional mode for g — 0.



Bias-Variance Decomposition

* Introducing regularization term can control overfitting, but how can
we determine a suitable value of the regularization coefficient.

* Let us examine expected squared loss function. Remember:

/{y x)}° p(x )dx+/ {h(x) — t}°p(x, t)dx dt

A\ _J
for which the optimal prediction is given Y
by the conditional expectation: intrinsic variability of the target
values: The minimum achievable
h(x) = E[t|x] = /tp(t|x) dt. value of expected loss

* If we model h(x) using a parametric function y(x, w), then from a
Bayesian perspective, the uncertainly in our model is expressed
through the posterior distribution over parameters w.

* We first look at the frequentist perspective.



Bias-Variance Decomposition

* From a frequentist perspective: we make a point estimate of w” based
on the data set D.

* We next interpret the uncertainly of this estimate through the
following thought experiment:

- Suppose we had a large number of datasets, each of size N,
where each dataset is drawn independently from p(x, t).

- For each dataset D, we can obtain a prediction function y(x; D).
- Different data sets will give different prediction functions.

- The performance of a particular learning algorithm is then
assessed by taking the average over the ensemble of data sets.

* Let us consider the expression:

{y(x: D) — h(x)}*.

* Note that this quantity depends on a particular dataset D.



Bias-Variance Decomposition

e Consider:

{y(x; D) — h(x)}*.

* Adding and subtracting the term Ep[y(x; D)], we obtain

)

{y(x; D) — h(x)}*
= {y(xD) — Eply(x; D)] + Ep[y(x; D)] — h(x)}
= {y(xD) —Eply(x;D)]}* + {Ep[y(x; D)] — h(x)}*
+2{y(x; D) = Eply(x; D)|I{Eply(x; D)| — h(x)}-

 Taking the expectation overD, the last term vanishes, so we get:

Ep [{y(x; D) — h(x)}?]
= {Eply(x;D)] — h(x)}* +Ep [{y(x; D) — Eply(x; D)}}*] .

J/

"

(bias)? variance



Bias-Variance Trade-off

expected loss = (bias)? 4 variance + noise

e I ™~

Average predictions over all Solutions for individual datasets Intrinsic variability
datasets differ from the vary around their averages -- hOwW  f the target
optimal regression function. sensitive is the function to the values.
particular choice of the dataset.
tins)? = [ {Eplyxi D)) - h(x)}p(x) dx

variance

/ Ep [{y(x; D) — Eply(x: D)]}2] p(x) dx

noise = /{h(X)—t}Qp(X,t>dth

* Trade-off between bias and variance with very flexible models (high
complexity) having low bias and high variance, and relative rigid models (low
complexity) having high bias and low variance.

* The model with the optimal predictive capabilities has to balance between bias
and variance.



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

e The datasets are indexed by I=1,...,L,

where L=100. L

e For each dataset, we fit a model with 24
Gaussian basis functions by minimizing
the regularized error function:

—Z{t —wWi(xn)} + Swiw

0 1

* Once the model is fit, we can make predictions y{!)(x) for each of the L

datasets.




Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

High variance Low variance

Average over
100 fits _

/ 1Y ' 0'/\/'

Low bias High bias



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

High variance

N * Note that averaging many solutions to the

’”%’@""/ \W _ complex model with M=25 data points represents a
very good fit to the regression function

0
N

I :;l/

e Averaging may be a beneficial procedure.

¢ Let us examine the bias-variance trade-off
quantitatively.

Low bias



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

* The average prediction is estimated as:

Z o Oias = [ {Eplylxs D)) — h()Yp(x) dx

variance = /IED [{y(x; D) — Ep[y(x; D)]}?] p(x) dx

1
(bias)? = n; [G(xn) = h(zn)]’
1 ol 1 2
variance = I - T ZZ:; [y(l)(xn) — @(xn)}

where the integral over x weighted by the distribution p(x) is approximated
by the finite sum over data points drawn from that distribution.



Bias-Variance Trade-off

0.15
(bias)”
0.12 variance
(bias)2 + variance
0.09 test error /
0.06
0.03
0
-3 -2 -1 0 1 2

In A

From these plots note that over-regularized model (large A) has high bias, and
under-regularized model (low A) has high variance.



Beating the Bias-Variance Trade-off

e We can reduce the variance by averaging over many models trained on
different datasets:

- In practice, we only have a single observed dataset. If we had many
independent training set, we would be better off combining them into
one large training dataset. With more data, we have less variance.

e Given a standard training set D of size N, we could generates new training
sets, N, by sampling examples from D uniformly and with replacement.

- This is called bagging and work quite well in practice.

e Given enough computation, we would be better off resorting to the
Bayesian framework (which we will discuss next):

- Combine the predictions of many models using the posterior
probability of each parameter vector as the combination weight.



