# STA 4273H: Statistical Machine Learning

#### Russ Salakhutdinov

Department of Statistics and Computer Science rsalakhu@utstat.toronto.edu

http://www.cs.toronto.edu/~rsalakhu/

Lecture 4

### Recap

- In our previous classes, we looked at:
  - Statistical Decision Theory
  - Linear Regression Models
  - Linear Basis Function Models
  - Regularized Linear Regression Models
  - Bias-Variance Decomposition
- We will now look at the Bayesian framework and Bayesian Linear Regression Models.

### Bayesian Approach

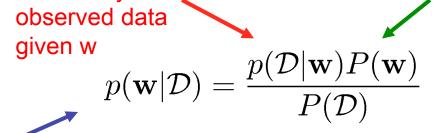
- We formulate our knowledge about the world probabilistically:
  - We define the model that expresses our knowledge qualitatively (e.g. independence assumptions, forms of distributions).
  - Our model will have some unknown parameters.
  - We capture our assumptions, or prior beliefs, about unknown parameters (e.g. range of plausible values) by specifying the prior distribution over those parameters before seeing the data.
- We observe the data.
- We compute the posterior probability distribution for the parameters, given observed data.
- We use this posterior distribution to:
  - Make predictions by averaging over the posterior distribution
  - Examine/Account for uncertainly in the parameter values.
  - Make decisions by minimizing expected posterior loss.

#### Posterior Distribution

- The posterior distribution for the model parameters can be found by combining the prior with the likelihood for the parameters given the data.
- This is accomplished using Bayes' Rule:

Probability of

$$P(\text{parameters} \mid \text{data}) = \frac{P(\text{data} \mid \text{parameters})P(\text{parameters})}{P(\text{data})}$$



Prior probability of weight vector w

Posterior probability of weight vector W given training data D

Marginal likelihood (normalizing constant):

$$P(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{w})P(\mathbf{w})d\mathbf{w}$$

This integral can be high-dimensional and is often difficult to compute.

### The Rules of Probability

Sum Rule:

$$p(X) = \sum_{Y} p(X, Y)$$

**Product Rule:** 

$$p(X,Y) = p(Y|X)p(X)$$

#### **Predictive Distribution**

• We can also state Bayes' rule in words:

posterior 
$$\propto$$
 likelihood  $\times$  prior.

 We can make predictions for a new data point x\*, given the training dataset by integrating over the posterior distribution:

$$p(\mathbf{x}^*|\mathcal{D}) = \int p(\mathbf{x}^*|\mathbf{w}, \mathcal{D}) p(\mathbf{w}|\mathcal{D}) d\mathbf{w} = \mathbb{E}_{P(\mathbf{w}|\mathcal{D})} [p(\mathbf{x}^*|\mathbf{w}, \mathcal{D})],$$

which is sometimes called predictive distribution.

 Note that computing predictive distribution requires knowledge of the posterior distribution:

$$p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w})P(\mathbf{w})}{P(\mathcal{D})}, \quad \text{where} \ \ P(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{w})P(\mathbf{w})\mathrm{d}\mathbf{w}$$
 which is usually intractable.

### Modeling Challenges

- The first challenge is in specifying suitable model and suitable prior distributions. This can be challenging particularly when dealing with high-dimensional problems we see in machine learning.
  - A suitable model should admit all the possibilities that are thought to be at all likely.
  - A suitable prior should avoid giving zero or very small probabilities to possible events, but should also avoid spreading out the probability over all possibilities.
- We may need to properly model dependencies between parameters in order to avoid having a prior that is too spread out.
- One strategy is to introduce latent variables into the model and hyperparameters into the prior.
- Both of these represent the ways of modeling dependencies in a tractable way.

### Computational Challenges

The other big challenge is computing the posterior distribution. There are several main approaches:

- Analytical integration: If we use "conjugate" priors, the posterior distribution can be computed analytically. Only works for simple models and is usually too much to hope for.
- Gaussian (Laplace) approximation: Approximate the posterior distribution with a Gaussian. Works well when there is a lot of data compared to the model complexity (as posterior is close to Gaussian).
- Monte Carlo integration: Once we have a sample from the posterior distribution, we can do many things. The dominant current approach is Markov Chain Monte Carlo (MCMC) -- simulate a Markov chain that converges to the posterior distribution. It can be applied to a wide variety of problems.
- Variational approximation: A cleverer way to approximate the posterior. It often works much faster compared to MCMC. But often not as general as MCMC.

• Given observed inputs  $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$ , and corresponding target values  $\mathbf{t} = [t_1, t_2, ..., t_N]^T$ , we can write down the likelihood function:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}),$$

where  $\phi(\mathbf{x}) = (\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), ..., \phi_{M-1}(\mathbf{x}))^T$  represent our basis functions.

• The corresponding conjugate prior is given by a Gaussian distribution:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$

- As both the likelihood and the prior terms are Gaussians, the posterior distribution will also be Gaussian.
- If the posterior distributions  $p(\theta|x)$  are in the same family as the prior probability distribution  $p(\theta)$ , the prior and posterior are then called **conjugate distributions**, and the prior is called a **conjugate prior** for the likelihood.

Combining the prior together with the likelihood term:

$$p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \mathbf{w}, \beta) \propto \left[\prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})\right] \mathcal{N}(\mathbf{w}|\mathbf{m_0}, \mathbf{S_0}).$$

 The posterior (with a bit of manipulation) takes the following Gaussian form:

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\mathbf{m}_N = \mathbf{S}_N \left( \mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \right)$$
  
 $\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$ 

• The posterior mean can be expresses in terms of the least-squares estimator and the prior mean:

$$\mathbf{m}_N = \mathbf{S}_N \bigg( \mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w}_{ML} \bigg). \qquad \mathbf{w}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}.$$

• As we increase our prior precision (decrease prior variance), we place greater weight on the prior mean relative the data.

• Consider a zero mean isotropic Gaussian prior, which is govern by a single precision parameter  $\alpha$ :

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

for which the posterior is Gaussian with:

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$
  
 $\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$ 

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}.$$

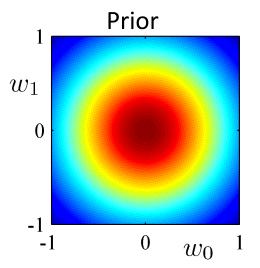
- If we consider an infinitely broad prior,  $\alpha \to 0$ , the mean  $\mathbf{m_N}$  of the posterior distribution reduces to maximum likelihood value  $\mathbf{w_{ML}}$ .
- The log of the posterior distribution is given by the sum of the loglikelihood and the log of the prior:

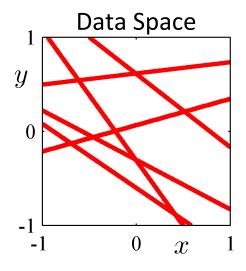
$$\ln p(\mathbf{w}|\mathcal{D}) = -\frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n))^2 - \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + \text{const.}$$

• Maximizing this posterior with respect to **w** is equivalent to minimizing the sum-of-squares error function with a quadratic regulation term  $\lambda = \alpha / \beta$ .

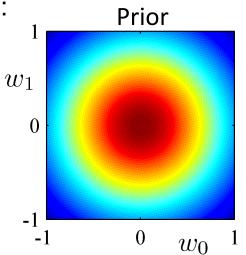
- Consider a linear model of the form:  $y(x, \mathbf{w}) = w_0 + w_1 x$ .
- The training data is generated from the function  $f(x, \mathbf{a}) = a_0 + a_1 x$  with  $a_0 = 0.3; a_1 = 0.5$ , by first choosing  $\mathbf{x}_{\mathsf{n}}$  uniformly from [-1;1], evaluating  $f(x, \mathbf{a})$ , and adding a small Gaussian noise.
- Goal: recover the values of  $a_0, a_1$  from such data.

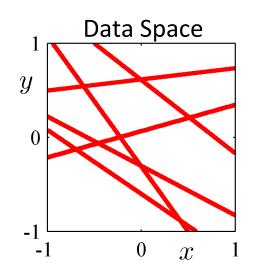
#### 0 data points are observed:



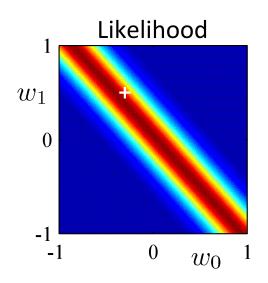


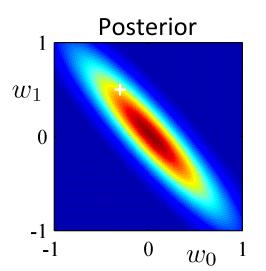
0 data points are observed:

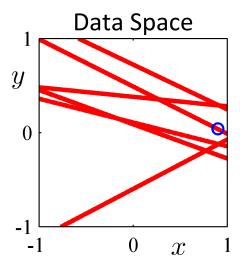


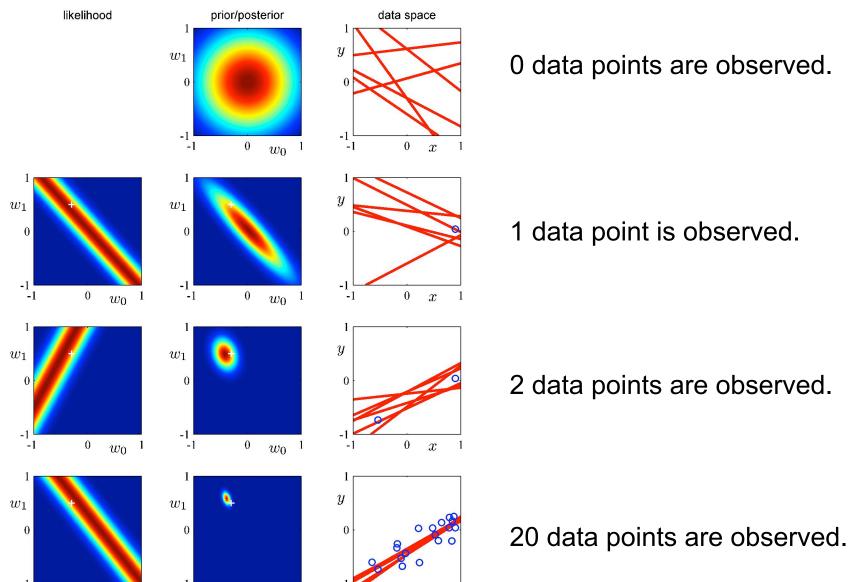


1 data point is observed:









 $w_0$  1

#### **Predictive Distribution**

• We can make predictions for a new input vector **x** by integrating over the posterior distribution:

$$p(t|\mathbf{t}, \mathbf{x}, \mathbf{X}, \alpha, \beta) = \int p(t|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha, \beta) d\mathbf{w}$$
  
=  $\mathcal{N}(t|\mathbf{m}_N^T \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x})),$ 

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \phi(\mathbf{x})^\mathrm{T} \mathbf{S}_N \phi(\mathbf{x}).$$
 Noise in the uncertainly target values associated with

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$
$$\mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$$

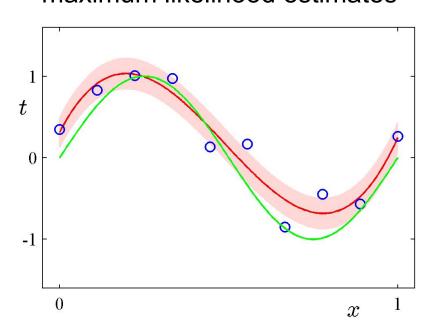
- In the limit, as  $N \to \infty$ , the second term goes to zero.
- The variance of the predictive distribution arises only from the additive noise governed by parameter  $\beta$ .

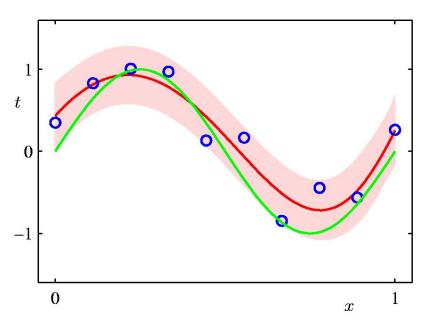
parameter values.

### Predictive Distribution: Bayes vs. ML

Predictive distribution based on maximum likelihood estimates

Bayesian predictive distribution



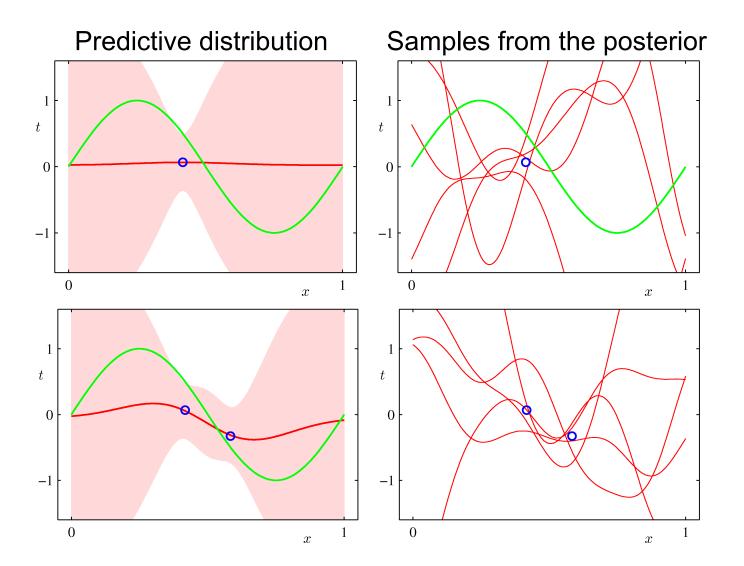


$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right) \quad p(t|x, \mathbf{t}, \mathbf{X}) = \mathcal{N}\left(t|\mathbf{m}_{N}^{T} \boldsymbol{\phi}(x), \sigma_{N}^{2}(x)\right)$$

$$p(t|x, \mathbf{t}, \mathbf{X}) = \mathcal{N}(t|\mathbf{m}_N^T \boldsymbol{\phi}(x), \sigma_N^2(x))$$

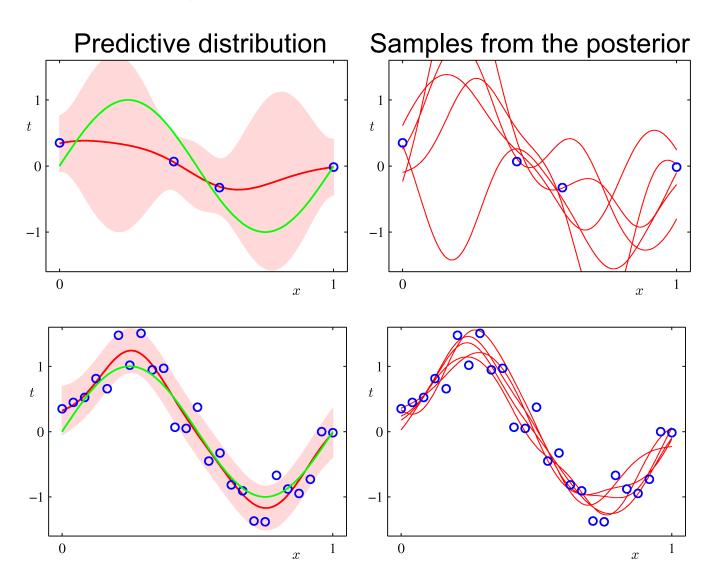
### **Predictive Distribution**

Sinusoidal dataset, 9 Gaussian basis functions.



### **Predictive Distribution**

Sinusoidal dataset, 9 Gaussian basis functions.



### Gamma-Gaussian Conjugate Prior

- So far we have assumed that the noise parameter  $\beta$  is known.
- If both **w** and  $\beta$  are treated as unknown, then we can introduce a conjugate prior distribution that will be given by the Gaussian-Gamma distribution:

$$p(\mathbf{w}, \beta) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \beta^{-1}\mathbf{S}_0)\operatorname{Gam}(\beta|a_0, b_0),$$

where the Gamma distribution is given by:

$$\operatorname{Gam}(\beta|a,b) = \frac{1}{\Gamma(a)} b^a \beta^{a-1} \exp(-b\beta), \qquad \Gamma(a) = \int_0^\infty u^{a-1} e^{-u} du.$$

The posterior distribution takes the same functional form as the prior:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \beta^{-1}\mathbf{S}_N)\operatorname{Gam}(\beta|a_N, b_N).$$

### **Equivalent Kernel**

• The predictive mean can be written as:

$$y(\mathbf{x}, \mathbf{m}_N) = \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$

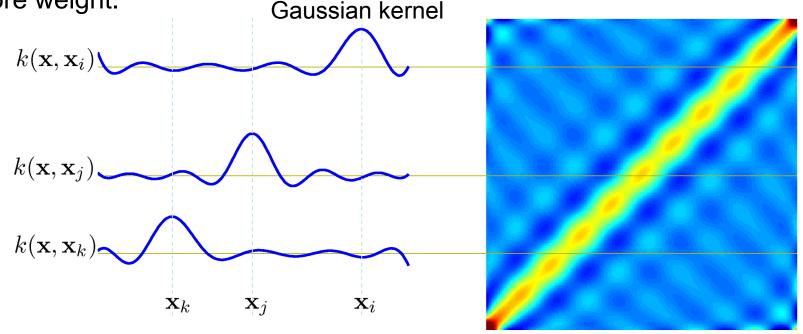
$$= \sum_{n=1}^N \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}_n) t_n$$

$$= \sum_{n=1}^N k(\mathbf{x}, \mathbf{x}_n) t_n.$$
Equivalent kernel or smoother matrix.

- The mean of the predictive distribution at a time **x** can be written as a linear combination of the training set target values.
- Such regression functions are called linear smoothers.

### **Equivalent Kernel**

• The weight of  $t_n$  depends on distance between x and  $x_n$ ; nearby  $x_n$  carry more weight.



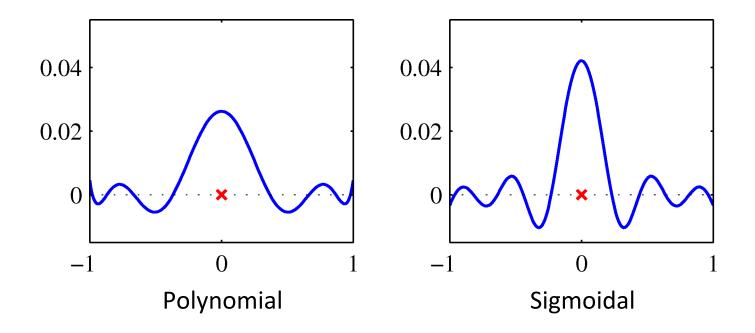
The kernel as a covariance function:

$$cov[y(\mathbf{x}), y(\mathbf{x}')] = cov[\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\mathbf{w}, \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}')]$$
$$= \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x}') = \beta^{-1}k(\mathbf{x}, \mathbf{x}').$$

• We can avoid the use of basis functions and define the kernel function directly, leading to *Gaussian Processes*.

#### Other Kernels

 Examples of kernels k(x,x') for x=0, plotted as a function corresponding to x'.



Note that these are localized functions of x'.

- The Bayesian view of model comparison involves the use of probabilities to represent uncertainty in the choice of the model.
- We would like to compare a set of L models  $\{\mathcal{M}_i\}$ , where i=1,2,...,L, using a training set D.
- We specify the prior distribution over the different models  $p(\mathcal{M}_i)$ .
- Given a training set D, we evaluate the posterior:

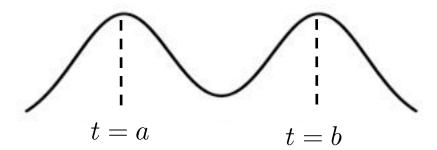
$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{M}_i)p(\mathcal{D}|\mathcal{M}_i).$$
Posterior Prior Model evidence or marginal likelihood

- For simplicity, we will assume that all model are a-priori equal.
- The model evidence expresses the preference shown by the data for different models.
- The ratio of two model evidences for two models is known as Bayes factor:  $\frac{p(\mathcal{D}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_j)}$

• Once we compute the posterior  $p(M_i|\mathcal{D})$ , we can compute the predictive (mixture) distribution:

$$p(t|\mathbf{x}, \mathcal{D}) = \sum_{i=1}^{L} p(t|\mathbf{x}, \mathcal{M}_i, \mathcal{D}) p(\mathcal{M}_i|\mathcal{D}).$$

- The overall predictive distribution is obtained by averaging the predictive distributions of individual models, weighted by the posterior probabilities.
- For example, if we have two models, and one predicts a narrow distribution around t=a while the other predicts a narrow distribution around t=b, then the overall predictions will be bimodal:



• A simpler approximation, known as model selection, is to use the model with the highest evidence.

Remember, the posterior is given by

$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{M}_i)p(\mathcal{D}|\mathcal{M}_i).$$

For a model governed by a set of parameters **w**, the model evidence can be computed as follows:

$$p(\mathcal{D}|\mathcal{M}_i) = \int p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i) p(\mathbf{w}|\mathcal{M}_i) d\mathbf{w}.$$

• Observe that the evidence is the normalizing term that appears in the denominator in Bayes' rule:

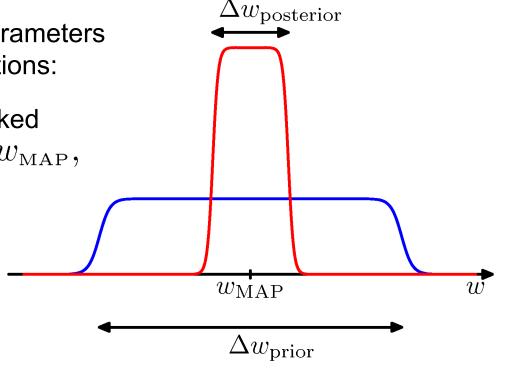
$$p(\mathbf{w}|\mathcal{D}, \mathcal{M}_i) = \frac{p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i)p(\mathbf{w}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_i)}$$

The model evidence is also often called marginal likelihood.

- We next get some insight into the model evidence by making simple approximations.
- For a give model with a single parameters parameter, w, consider approximations:
  - Assume that the posterior is picked around the most probable value  $w_{\rm MAP},$  with width  $\Delta w_{\rm posterior}$
  - Assume that the prior is flat with width  $\Delta w_{
    m prior}$

$$p(\mathcal{D}) = \int p(\mathcal{D}|w)p(w) dw$$

$$\simeq p(\mathcal{D}|w_{\text{MAP}}) \frac{\Delta w_{\text{posterior}}}{\Delta w_{\text{prior}}}$$



Taking the logarithms, we obtain:

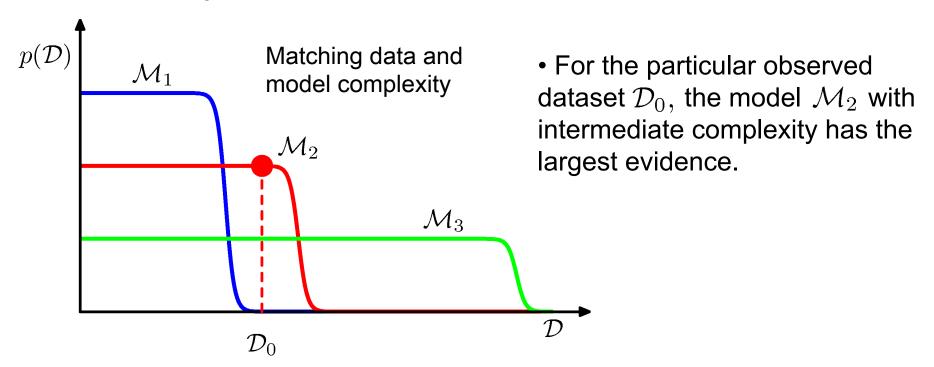
$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|w_{\mathrm{MAP}}) + \ln \left( rac{\Delta w_{\mathrm{posterior}}}{\Delta w_{\mathrm{prior}}} 
ight).$$
 Negative

• With M parameters, all assumed to have the same  $\Delta w_{
m posterior}/\Delta w_{
m prior}$  ratio:

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|\mathbf{w}_{\text{MAP}}) + M \ln \left(\frac{\Delta w_{\text{posterior}}}{\Delta w_{\text{prior}}}\right).$$

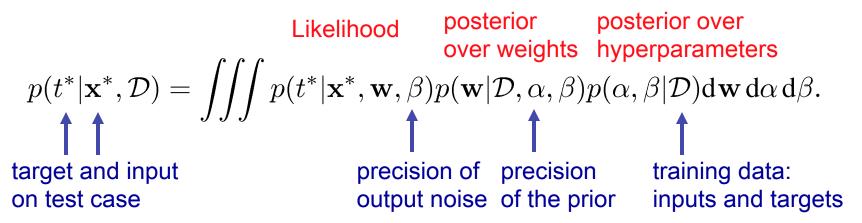
Negative and linear in M.

- As we increase the complexity of the model (increase the number of adaptive parameters M), the first term will increase, whereas the second term will decrease due to the dependence on M.
- The optimal model complexity: trade-off between these two competing terms.



- The simple model cannot fit the data well, whereas the more complex model spreads its predictive probability and so assigns relatively small probability to any one of them.
- The marginal likelihood is very sensitive to the prior used!
- Computing the marginal likelihood makes sense only if you are certain about the choice of the prior.

- In the fully Bayesian approach, we would also specify a prior distribution over the hyperparameters  $p(\alpha, \beta)$ .
- The fully Bayesian predictive distribution is then given by marginalizing over model parameters as well as hyperparameters:



- However, this integral is intractable (even when everything is Gaussian).
   Need to approximate.
- Note: the fully Bayesian approach is to integrate over the posterior distribution for  $\{\alpha, \beta, \mathbf{w}\}$ . This can be done by MCMC, which we will consider later. For now, we will use evidence approximation: much faster.

The fully Bayesian predictive distribution is given by:

$$p(t^*|\mathbf{x}^*, \mathcal{D}) = \iiint p(t^*|\mathbf{x}^*, \mathbf{w}, \beta) p(\mathbf{w}|\mathcal{D}, \alpha, \beta) p(\alpha, \beta|\mathcal{D}) d\mathbf{w} d\alpha d\beta.$$

• If we assume that the posterior over hyperparameters  $\alpha$  and  $\beta$  is sharply picked, we can approximate:

$$p(t^*|\mathbf{x}^*, \mathcal{D}) \approx p(t^*|\mathbf{x}^*\mathcal{D}, \hat{\alpha}, \hat{\beta}) = \int p(t^*|\mathbf{x}^*, \mathcal{D}, \hat{\beta}) p(\mathbf{w}|\mathcal{D}, \hat{\alpha}, \hat{\beta}) d\mathbf{w}.$$

where  $(\widehat{\alpha}, \widehat{\beta})$  is the mode of the posterior  $p(\alpha, \beta | \mathcal{D})$ .

- So we integrate out parameters but maximize over hyperparameters.
- This is known as empirical Bayes, Type II Maximum Likelihood, Evidence Approximation.

From Bayes' rule we obtain:

$$p(\alpha, \beta | \mathbf{t}, \mathbf{X}) \propto p(\mathbf{t} | \mathbf{X}, \alpha, \beta) p(\alpha, \beta).$$

- If we assume that the prior over hyperparameters  $p(\alpha, \beta)$  is flat, we get:  $p(\alpha, \beta | \mathbf{t}, \mathbf{X}) \propto p(\mathbf{t} | \mathbf{X}, \alpha, \beta).$
- The values  $(\widehat{\alpha}, \widehat{\beta})$  are obtained by maximizing the marginal likelihood  $p(\mathbf{t}|\mathbf{X}, \alpha, \beta)$ .
- This will allow us to determine the values of these hyperparameters from the training data.
- Recall that the ratio  $\alpha/\beta$  is analogous to the regularization parameter.

The marginal likelihood is obtained by integrating out parameters:

$$p(\mathbf{t}|\mathbf{X}, \alpha, \beta) = \int p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w}|\alpha) d\mathbf{w}.$$
  $\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^T \mathbf{t}$  an write the evidence function in the form:  $\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi}.$ 

• We can write the evidence function in the form:

$$p(\mathbf{t}|\mathbf{X}, \alpha, \beta) = \left(\frac{\beta}{2\pi}\right)^{N/2} \left(\frac{\alpha}{2\pi}\right)^{M/2} \int \exp\left(-E(\mathbf{w})\right) d\mathbf{w},$$

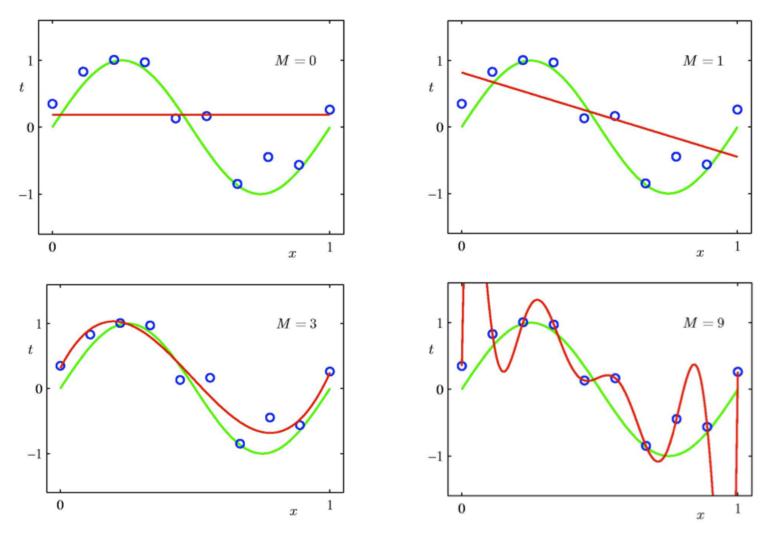
where

$$E(\mathbf{w}) = \beta E_{\mathcal{D}}(\mathbf{w}) + \alpha E_{W}(\mathbf{w}) = \frac{\beta}{2} ||\mathbf{t} - \mathbf{\Phi} \mathbf{w}||^{2} + \frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w}.$$

Using standard results for the Gaussian distribution, we obtain:

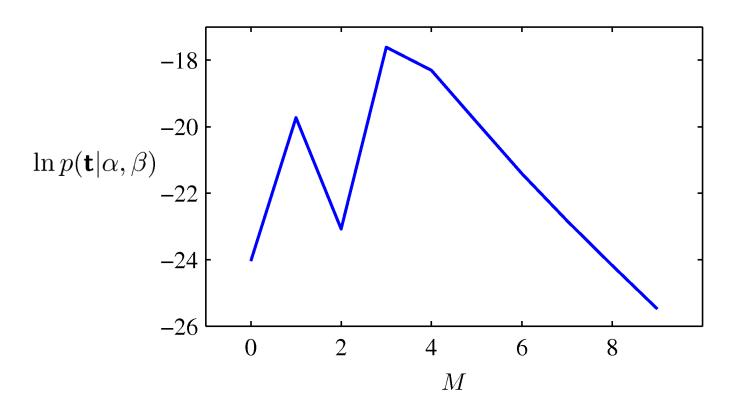
$$\ln p(\mathbf{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\mathbf{m}_N) + \frac{1}{2} \ln |\mathbf{S}_N| - \frac{N}{2} \ln(2\pi).$$

### Some Fits to the Data



For M=9, we have fitted the training data perfectly.

Using sinusoidal data, M<sup>th</sup> degree polynomial.



The evidence favours the model with M=3.

### Maximizing the Evidence

Remember:

$$\ln p(\mathbf{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\mathbf{m}_N) + \frac{1}{2} \ln |\mathbf{S}_N| - \frac{N}{2} \ln(2\pi).$$

• To maximize the evidence  $p(\mathbf{t}|\mathbf{X}, \alpha, \beta)$  with respect to  $\alpha$  and  $\beta$ , define the following eigenvector equation:

$$\left(\beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right) \mathbf{u}_i = \lambda_i \mathbf{u}_i.$$

• Therefore the matrix:

$$\mathbf{A} = \mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$

Precision matrix of the Gaussian posterior distribution

has eigenvalues  $\alpha + \lambda_i$ .

• The derivative:

$$\frac{d}{d\alpha} \ln |\mathbf{A}| = \frac{d}{d\alpha} \ln \prod_{i} (\alpha + \lambda_{i}) = \frac{d}{d\alpha} \sum_{i} \ln(\alpha + \lambda_{i}) = \sum_{i} \frac{1}{\alpha + \lambda_{i}}.$$

### Maximizing the Evidence

Remember:

$$\ln p(\mathbf{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\mathbf{m}_N) + \frac{1}{2} \ln |\mathbf{S}_N| - \frac{N}{2} \ln(2\pi).$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2}||\mathbf{t} - \mathbf{\Phi}\mathbf{m}_N||^2 + \frac{\alpha}{2}\mathbf{m}_N^T\mathbf{m}_N.$$

• Differentiating  $\ln p(\mathbf{t}|\alpha,\beta)$ , the stationary points with respect to  $\alpha$  satisfy:

$$\frac{M}{2\alpha} - \frac{1}{2}\mathbf{m}_N^T \mathbf{m}_N - \frac{1}{2}\sum_i \frac{1}{\alpha + \lambda_i} = 0.$$

$$\alpha \mathbf{m}_N^T \mathbf{m}_N = M - \alpha \sum_i \frac{1}{\alpha + \lambda_i} = \gamma,$$

where the quantity  $\gamma$ , effective number of parameters, can be defined as:

$$\gamma = \sum_{i} \frac{\lambda_i}{\lambda_i + \alpha}.$$

### Maximizing the Evidence

• The stationary points with respect to  $\alpha$  satisfy:

$$\alpha \mathbf{m}_N^T \mathbf{m}_N = M - \alpha \sum_i \frac{1}{\alpha + \lambda_i} = \gamma,$$

where the quantity  $\gamma$ , effective number of parameters, is defined as:

$$\gamma = \sum_{i} \frac{\lambda_i}{\lambda_i + \alpha}.$$

Note that the eigenvalues need to be computed only once.

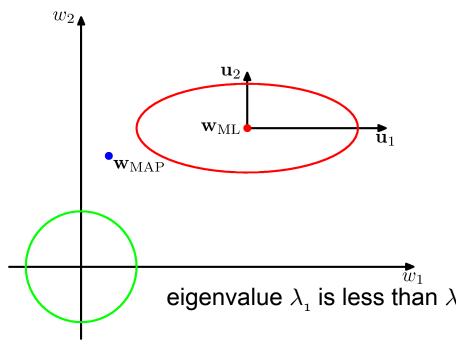
Iterate until convergence:

$$\alpha = \frac{\gamma}{\mathbf{m}_N^T \mathbf{m}}; \quad \gamma = \sum_i \frac{\lambda_i}{\lambda_i + \alpha}; \quad \mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^T \mathbf{t} \\ \mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^T \mathbf{\Phi}.$$

• Similarly: 
$$\frac{1}{\beta} = \frac{1}{N-\gamma} \sum_{n=1}^{N} \left\{ t_n - \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2$$

### Effective Number of Parameters

Consider the contours of the likelihood function and the prior.



- The eigenvalue  $\lambda_i$  measures the curvature of the log-likelihood function.
- The quantity  $\gamma$  will lie  $0 \le \gamma \le M$ .
- For  $\lambda_i \gg \alpha$ , the corresponding parameter  $\mathbf{w_i}$  will be close to its maximum likelihood. The ratio:

eigenvalue 
$$\lambda_1$$
 is less than  $\lambda_2$ .  $\frac{\lambda_i}{\lambda_i + \alpha}$  will be close to one.

- Such parameters are called well determined, as their values are highly constrained by the data.
- For  $\lambda_i \ll \alpha$ , the corresponding parameters will be close to zero (pulled by the prior), as will the ratio  $\lambda_i/(\lambda_i + \alpha)$ .
- We see that  $\gamma$  measures the effective total number of well determined parameters.

### **Quick Approximation**

• In the limit  $N\gg M$  ,  $\gamma$  = M, and we consider to use the easy to compute approximations:

$$\alpha = \frac{M}{\mathbf{m}_N^{\mathrm{T}} \mathbf{m}_N}$$

$$\frac{1}{\beta} = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n - \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2.$$

#### Limitations

- M basis function along each dimension of a D-dimensional input space requires M<sup>D</sup> basis functions: the curse of dimensionality.
- Fortunately, we can get away with fewer basis functions, by choosing these using the training data (e.g. adaptive basis functions), which we will see later.
- Second, the data vectors typically lie close to a nonlinear lowdimensional manifold, whose intrinsic dimensionality is smaller than that of the input space.