STA 4273H.:
Statistical Machine Learning

Russ Salakhutdinov

Department of Statistics and Computer Science
rsalakhu@utstat.toronto.edu

http://www.cs.toronto.edu/~rsalakhu/

Lecture 4



Recap

 In our previous classes, we looked at:

- Statistical Decision Theory

- Linear Regression Models

- Linear Basis Function Models

- Regularized Linear Regression Models
- Bias-Variance Decomposition

* We will now look at the Bayesian framework and Bayesian Linear
Regression Models.



Bayesian Approach

* We formulate our knowledge about the world probabilistically:
- We define the model that expresses our knowledge qualitatively
(e.g. independence assumptions, forms of distributions).
- Our model will have some unknown parameters.

- We capture our assumptions, or prior beliefs, about unknown
parameters (e.g. range of plausible values) by specifying the prior
distribution over those parameters before seeing the data.

* \We observe the data.

* We compute the posterior probability distribution for the
parameters, given observed data.

* We use this posterior distribution to:

- Make predictions by averaging over the posterior distribution
- Examine/Account for uncertainly in the parameter values.
- Make decisions by minimizing expected posterior loss.

(See Radford Neal’s NIPS tutorial on “"Bayesian Methods for Machine Learning”)



Posterior Distribution

» The posterior distribution for the model parameters can be found by
combining the prior with the likelihood for the parameters given the data.

e This is accomplished using Bayes’ Rule:

P(data | parameters) P (parameters)

P(parameters | data) =

P(data)
Probability of Prior probability of
observed data \ / weight vector w
given w
S(w(D) — POWIP(W)
o P(D)
Marginal likelihood
Posterior probability (normalizing constant):

of weight vector W

given training data D P(D) = /p(D|W)P(W)dW

This integral can be high-dimensional and is
often difficult to compute.



The Rules of Probability

Sum Rule: p(X)=> p(X)Y)

Product Rule:
p(X,Y) =p(Y|X)p(X)




Predictive Distribution

* We can also state Bayes’ rule in words:

posterior o< likelithood X prior.

» We can make predictions for a new data point x°, given the training
dataset by integrating over the posterior distribution:

p(x*|D) = / p(x* [w, D)p(w|D)dw = E puip) [p(x*|w, )]

which is sometimes called predictive distribution.

* Note that computing predictive distribution requires knowledge of the
posterior distribution:

p(Dlw)P(w)

p(w|D) = P(D)

,  where P(D) = /p(D|W)P(W)dW

which is usually intractable.



Modeling Challenges

e The first challenge is in specifying suitable model and suitable prior
distributions. This can be challenging particularly when dealing with
high-dimensional problems we see in machine learning.

- A suitable model should admit all the possibilities that are
thought to be at all likely.

- A suitable prior should avoid giving zero or very small
probabilities to possible events, but should also avoid spreading
out the probability over all possibilities.

* \We may need to properly model dependencies between parameters
in order to avoid having a prior that is too spread out.

e One strategy is to introduce latent variables into the model and
hyperparameters into the prior.

» Both of these represent the ways of modeling dependencies in a
tractable way.



Computational Challenges

The other big challenge is computing the posterior distribution. There
are several main approaches:

» Analytical integration: If we use “conjugate” priors, the posterior
distribution can be computed analytically. Only works for simple models
and is usually too much to hope for.

e Gaussian (Laplace) approximation: Approximate the posterior
distribution with a Gaussian. Works well when there is a lot of data
compared to the model complexity (as posterior is close to Gaussian).

* Monte Carlo integration: Once we have a sample from the posterior
distribution, we can do many things. The dominant current approach is
Markov Chain Monte Carlo (MCMC) -- simulate a Markov chain that
converges to the posterior distribution. It can be applied to a wide variety
of problems.

 Variational approximation: A cleverer way to approximate the
posterior. It often works much faster compared to MCMC. But often not
as general as MCMC.



Bayesian Linear Regression

» Given observed inputs X = {x1, X3, ...,xn}, and corresponding target
values t = [tq, o, .. tN]T we can write down the likelihood function:

p(t]X, w, 8) = HNt|w xn), B7),

where ¢(x) = (¢o(x), $1(%), ..., dar—1(x))’ represent our basis functions.

» The corresponding conjugate prior is given by a Gaussian
distribution:

p(w) = N(w|myg, Sp).

e As both the likelihood and the prior terms are Gaussians, the
posterior distribution will also be Gaussian.

e |f the posterior distributions p(0|x) are in the same family as the prior
probability distribution p(8), the prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for the likelihood.



Bayesian Linear Regression

« Combining the prior together with the likelihood term:
p(w]t, X, w, ) o [HN ol $(,),571) | NV (wlmo, So)

» The posterior (with a bit of manipulation) takes the following
Gaussian form:

p(wlt) = N(w|mn, Sy)
where

my = Sy (551m0 n 6<I>Tt>

Sy, = S;l+pete

» The posterior mean can be expresses in terms of the least-squares
estimator and the prior mean:

mpy = Sy (Salmo -+ 5(I)T(I)WML> : WL = ((I)T(I)>_1(I)Tt.

» As we increase our prior precision (decrease prior variance), we place
greater weight on the prior mean relative the data.



Bayesian Linear Regression

» Consider a zero mean isotropic Gaussian prior, which is govern by a

single precision parameter «:

p(w) = N(w|0,a 1)
for which the posterior is Gaussian with:
my = ﬂSN@Tt
Sy, = ol+p32'®

wyr = (7 ®) @'t

* If we consider an infinitely broad prior, « — 0, the mean my, of the
posterior distribution reduces to maximum likelihood value wy, .

» The log of the posterior distribution is given by the sum of the log-
likelihood and the log of the prior:

Inp(w|D) = Z tp — W ¢Xn)) ——W T'w + const.

« Maximizing this posterior Wlth respect to w is equivalent to minimizing the
sum-of-squares error function with a quadratic regulation term A = o/ (.




Bayesian Linear Regression

 Consider a linear model of the form: y(z,w) = wg + wy .

» The training data is generated from the function f(z,a) = ap + a1
with ap = 0.3; a1 = 0.5, by first choosing x,, uniformly from [-1;1],
evaluating f(x, a), and adding a small Gaussian noise.

» Goal: recover the values of ag,a1 from such data.

0 data points are observed:
Data Space




Bayesian Linear Regression

0 data points are observed:

Data Space

1

w1

1 data point is observed:

Likelihood Data Space




Linear Regression

likelihood data space
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Predictive Distribution

» We can make predictions for a new input vector x by integrating over
the posterior distribution:

p(t]t, x, X, o, B) = / p(tx, w, B)p(wlt, X, a, f)dw
— N (tm%é(x), 0% (%)),

where
1 — T
ox(x) = 5+ B(x) TSN G(x) my = PSwet
/ \ Sy = o+ 3P d.
Noise in the Uncertainly
target values associated with

parameter values.

* In the limit, as N — oo, the second term goes to zero.
» The variance of the predictive distribution arises only from the additive
noise governed by parameter £.



Predictive Distribution: Bayes vs. ML

Predictive distribution based on _ o o
maximum likelihood estimates Bayesian predictive distribution
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Predictive Distribution

Sinusoidal dataset, 9 Gaussian basis functions.

Predictive distribution Samples from the posterior
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Predictive Distribution

Sinusoidal dataset, 9 Gaussian basis functions.

_Predictive distribution  Samples from the posterior




Gamma-Gaussian Conjugate Prior

» So far we have assumed that the noise parameter 3 is known.

* If both w and (3 are treated as unknown, then we can introduce a
conjugate prior distribution that will be given by the Gaussian-Gamma
distribution:

p(w, B) = N(w|myo, 8~ "S¢)Gam(8]ao, bo),

where the Gamma distribution is given by:

Gam(S|a,b) = ﬁbaﬁa_l exp(—bp), ['(a) = /0 u® e vdu.

» The posterior distribution takes the same functional form as the prior:

p(t‘X,W, ,6) = N(WlmN, 5_1SN)Gam(5\aN, bN>



Equivalent Kernel

» The predictive mean can be written as:

y(x,my) = myo(x) = Pe(x)"SyP 't
N my = 6SN(I)Tt
= ) Bo(x)"Sno(xn)tn Sy = ol +[e"d.
n=1" ’
N ﬁ
= Zk(x,xn)tn.
— Equivalent kernel

or smoother
matrix.

» The mean of the predictive distribution at a time x can be written as a
linear combination of the training set target values.

» Such regression functions are called linear smoothers.



Equivalent Kernel

* The weight of t, depends on distance between x and x,,; nearby x,, carry

more weight. Gaussian kernel

&
k(x, %)\~ — — . |
k(x,%X;) -vAv-v —
k(x, xk),\//\v _ —_—
Xk X X

 The kernel as a covariance function:
covly(x),y(x')] = cov[p(x) ' w,w' P(x')]
= ¢(x)'Syd(x') = 7 k(x,X).

* \We can avoid the use of basis functions and define the kernel function
directly, leading to Gaussian Processes.



Other Kernels

« Examples of kernels k(x,x’) for x=0, plotted as a function corresponding
to x'.

0.04 ¢ - 0.04 ¢
0.02 ¢ 0.02 ¢
0 0y
—1 O 1 -1 O 1
Polynomial Sigmoidal

* Note that these are localized functions of x'.



Bayesian Model Comparison

» The Bayesian view of model comparison involves the use of
probabilities to represent uncertainty in the choice of the model.

« We would like to compare a set of L models {M;}, where i = 1,2, ..., L,
using a training set D.

- We specify the prior distribution over the different models p(M;).

 Given a training set D, we evaluate the posterior:

p(M;|D) o< p(Mi)p(D|M;).

Posterior Prior Model evidence or
marginal likelihood

 For simplicity, we will assume that all model are a-priori equal.

» The model evidence expresses the preference shown by the data for
different models.

* The ratio of two model evidences for two p(D|M;)
models is known as Bayes factor: p(D\Mj)




Bayesian Model Comparison

» Once we compute the posterior p(M;|D), we can compute the
predictive (mixture) distribution:

L
i=1

* The overall predictive distribution is obtained by averaging the predictive

distributions of individual models, weighted by the posterior probabilities.

» For example, if we have two models,
and one predicts a narrow distribution
around t=a while the other predicts a
narrow distribution around t=b, then the
overall predictions will be bimodal: t=ua t=2»

» A simpler approximation, known as model selection, is to use the model
with the highest evidence.



Bayesian Model Comparison

« Remember, the posterior is given by
p(M;|D) o< p(M;)p(D|M).

For a model governed by a set of parameters w, the model evidence can
be computed as follows:

p(DIM;) = / p(Dlw, Mi)p(w|M;) dw

» Observe that the evidence is the normalizing term that appears in the
denominator in Bayes' rule:

p(w|D, M;) = p(D|w, M;)p(w|M,;)

p(D|M;)

T

» The model evidence is also often called marginal likelihood.




Bayesian Model Comparison

» We next get some insight into the model evidence by making simple
approximations.

. . ) AU)pos’cerior
» For a give model with a single parameters —>

parameter, w, consider approximations: f \

- Assume that the posterior is picked
around the most probable value Wy;ap,
Wlth Wldth AprSteriOr

- Assume that the prior is flat / j \ \
with width Awppior i "

p(D) = / p(D|w)p(w) duw ) Ao

AU)pos’cerior

Aprrior

~ p(D|wmap)



Bayesian Model Comparison

 Taking the logarithms, we obtain:

A osterior
Inp(D) ~ In p(D|wmap) + In ( Cpost > :
A'wprior
\.
Y
Negative
» With M parameters, all assumed to have the same Awpesterior/ AWprior
ratio: A
Inp(D) ~ Inp(D|wrap) + M In < prSterlor> :
A'wprior
N

Negative and linear in M.

* As we increase the complexity of the model (increase the number of
adaptive parameters M), the first term will increase, whereas the second
term will decrease due to the dependence on M.

» The optimal model complexity: trade-off between these two competing
terms.



Bayesian Model Comparison

Matching data and

;  For the particular observed
model complexity

dataset D,, the model M with
iIntermediate complexity has the
largest evidence.

M,

Mo

B _
£

>

Do D

* The simple model cannot fit the data well, whereas the more complex
model spreads its predictive probability and so assigns relatively small
probability to any one of them.

* The marginal likelihood is very sensitive to the prior used!

« Computing the marginal likelihood makes sense only if you are certain
about the choice of the prior.



Evidence Approximation

* In the fully Bayesian approach, we would also specify a prior distribution
over the hyperparameters p(a;, 3).

» The fully Bayesian predictive distribution is then given by
marginalizing over model parameters as well as hyperparameters:

Likelihood posterior posterior over
over weights hyperparameters

p(t*|x*, D) = ///p(t*\x*,w,ﬁ)p(wﬂ),a, B)p(a, B|D)dw dadp.

11 1 |

target and input precision of precision training data:
on test case output noise of the prior  inputs and targets

* However, this integral is intractable (even when everything is Gaussian).
Need to approximate.

* Note: the fully Bayesian approach is to integrate over the posterior
distribution for {«, 8, w}. This can be done by MCMC, which we will
consider later. For now, we will use evidence approximation: much faster.



Evidence Approximation

 The fully Bayesian predictive distribution is given by:
p(t'1x". D) = [ [ [ ot 1x w0 B)p(wiD. . Bp(a. B D)dwdads.

* If we assume that the posterior over hyperparameters o« and g is
sharply picked, we can approximate:

p(t*|x*, D) ~ p(t*|x* D, &, B) = / p(t*|x*, D, B)p(w|D, &, B)dw.
where (a, E) is the mode of the posterior p(a, 3|D).

» SO we integrate out parameters but maximize over hyperparameters.

 This is known as empirical Bayes, Type || Maximum Likelihood,
Evidence Approximation.



Evidence Approximation

* From Bayes’ rule we obtain:
ple, Blt, X) o p(t[X, a, B)p(a, B).
* If we assume that the prior over hyperparameters p(«, () is flat, we

get:
p(e, BJt, X) o< p(t|X, o, B).

* The values (&, B) are obtained by maximizing the marginal likelihood
p(t[X, o, B).

 This will allow us to determine the values of these hyperparameters
from the training data.

» Recall that the ratio o/3 is analogous to the regularization parameter.



Evidence Approximation

« The marginal likelihood is obtained by integrating out parameters:

p(t[X, o, B) = / p(t1X, w, B)p(wla)dw.  [mu = 3SedTt
Sy = al+pe'®.

* \We can write the evidence function in the form:

pe%00) = (2) ()" [ (- E)aw
where

E(w) = 8Ep(w) + aEw(w) = §||t —®wl|]? 1+ %WTW.

» Using standard results for the Gaussian distribution, we obtain:
N 1 N

M
Inp(tja, B) = > Ina + 5 Ing— E(my) + 5 In|Sn| — > In(27).



Some Fits to the Data

1t o0 M =0 1 1t 00 M =1

1 M=9
L

For M=9, we have fitted the training data perfectly.



Evidence Approximation

Using sinusoidal data, M degree polynomial.

The evidence favours the model with M=3.



Maximizing the Evidence

* Remember:

M N 1 N
Inp(tja, B) = > Ina + 5} Ing— E(my) + 3 In|Sn| — > In(27).

- To maximize the evidence p(t|X, a, 3) with respect to « and 3, define
the following eigenvector equation:

(ﬂ‘I)TfI)> u; = \;ju;. Precision matrix of the
Gaussian posterior
» Therefore the matrix: distribution

A=Sy =al+38'®
has eigenvalues a + \,.

* The derivative:

d 1
——In|A| = lnHoz—i—)\ da21na+x) Z(HM

1




Maximizing the Evidence

* Remember:

M N 1 N
Inp(tja, B) = > Ina + 5} Ing— E(my) + 3 In|Sn| — > In(27).
where
84

« Differentiating In p(t|a, 3), the stationary points with respect to «
satisfy: Vo1 . .

e — T _ — p—

2q 2 TNHIN TS Z ot

amimy =M —a Z ! =

where the quantity ~, effective number of parameters, can be defined as:

Ai




Maximizing the Evidence

» The stationary points with respect to o satisfy:

1 R
Oé—|—>\z B

amiymy = M —a g Y,
i

where the quantity ~, effective number of parameters, is defined as:

\s
Y= Z 3 A Note that the
AT eigenvalues need to be
computed only once.

* Iterate until convergence:

a=—— 7= Ai . my = [Sy®t
mym’ Aital 8l = oI+ 337
« Similarly: 1

1 al T 2
- tn_m qb(Xn)
ﬂ N_an::l{ N }



Effective Number of Parameters

» Consider the contours of the likelihood function and the prior.

W2 a
* The eigenvalue )\, measures the
curvature of the log-likelihood function.

> * The quantity v will lie 0 <~ < M.

* For \; > a, the corresponding
parameter w; will be close to its
maximum likelihood. The ratio:

>

w1 )\Z .

eigenvalue ), is less than \,. Y+ a will be close to one.
1

I
» Such parameters are called well determined, as their values are highly
constrained by the data.

* For \; < «, the corresponding parameters will be close to zero (pulled
by the prior), as will the ratio A; /(\; + «).

» We see that v measures the effective total number of well determined
parameters.



Quick Approximation

* Inthe limit N > M , v= M, and we consider to use the easy to compute
approximations:

B M
¢ = m%mN
1 1« T 2
B — ﬁZ{tn_qub(Xn)} .
n=1



Limitations

* M basis function along each dimension of a D-dimensional input
space requires MP basis functions: the curse of dimensionality.

» Fortunately, we can get away with fewer basis functions, by
choosing these using the training data (e.g. adaptive basis functions),
which we will see later.

» Second, the data vectors typically lie close to a nonlinear low-
dimensional manifold, whose intrinsic dimensionality is smaller than
that of the input space.



