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Mixture Models

* We will look at the mixture models, including Gaussian mixture models.

e The key idea is to introduce latent variables, which allows complicated
distributions to be formed from simpler distributions.

» We will see that mixture models can be interpreted in terms of having
discrete latent variables (in a directed graphical model).

e Later in class, we will also look at the continuous latent variables.



K-Means Clustering

e Let us first look at the following problem: Identify clusters, or groups, of
data points in a multidimensional space.

« We observe the dataset {x1,...,xx} consisting of N D-dimensional
observations

* We would like to partition the data into K clusters, where K is given.

» We next introduce D-dimensional vectors, prototypes, u,,k=1,..., K.
» We can think of u, as representing cluster centers.

« Our goal: 21 @
- Find an assignment of data points to clusters. -
- Sum of squared distances of each data O] o0 og
point to its closest prototype is at the X
minimum. , - 3




K-Means Clustering

» For each data point x,, we introduce a binary vector r,, of length K (1-of-K
encoding), which indicates which of the K clusters the data point x,, is
assigned to.

» Define objective (distortion measure):

N K
J = ernkan - Nk||2-

n=1 k=1
* |t represents the sum of squares of the distances of each data point to its
assigned prototype ;.

21 (a)

e Our goal it find the values of r,, and the X
cluster centers p, so as to minimize the
objective J.




lterative Algorithm

 Define iterative procedure to minimize:

N K
J = ernkan — Nk||2-

n=1 k=1 i
Hard assignments of

* Given p,, minimize J with respect to r,, (E-step): ~ points to clusters.

/

S 1 if k = argmin; |[x, — p,||”
"k 0 otherwise

which simply says assign n'" data point x,, to its closest cluster center.

e Given r,,, minimize J with respect to ., (M-step):

py, = 2n "k X Number of point
— . umper or points

assigned to cluster k.

Set u, equal to the mean of all the data points assigned to cluster k.

e Guaranteed convergence to local minimum (not global minimum).



Example

e Example of using K-means (K=2) on OId Faithful dataset.




Convergence

* Plot of the cost function after each E-step (blue points) and M-step (red
points)

Qo ' | . The algorithm has converged
after 3 iterations.
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» K-means can be generalized by introducing a more general dissimilarity

measure. N K
J = Z ZrnkK(Xnaﬂ]g>-
n=1 k=1



Image Segmentation

e Another application of K-means algorithm.

 Partition an image into regions corresponding, for example, to object parts.
e Each pixel in an image is a point in 3-D space, corresponding to R,G,B
channels.

Original image

e For a given value of K, the algorithm represent an image using K colors.

» Another application is image compression.



Image Compression

» For each data point, we store only the identity k of the assigned cluster.
 \We also store the values of the cluster centers p,.

e Provided K <« N, we require significantly less data.

(Original image K3 K=10
7 ' | ' « The original image
has 240 x 180 =
43,200 pixels.

e Each pixel contains
{R,G,B} values, each of
which requires 8 bits.

e Requires 43,200 x 24 = 1,036,800 bits to transmit directly.
» With K-means, we need to transmit K code-book vectors p, -- 24K bits.

 For each pixel we need to transmit log,K bits (as there are K vectors).
e Compressed image requires 43,248 (K=2), 86,472 (K=3), and 173,040 (K=10)
bits, which amounts to compression rations of 4.2%, 8.3%, and 16.7%.



Mixture of Gaussians

* We will look at mixture of Gaussians in terms of discrete latent variables.

e The Gaussian mixture can be written as a linear superposition of
Gaussians:

p(x) = 3 mN (x|, Brc).

* Introduce K-dimensional binary random | g
i i : s
variable z having a 1-of-K representation: g

2 € {0,1}, zk: 2 = 1. - |

» We will specify the distribution over z in terms
of mixing coefficients:

plar=1)=mp, 0<m <1, Y m=1.
k



Mixture of Gaussians

* Because z uses 1-of-K encoding, we have:

K
— 2k
=[] =
k=1

* We can now specify the conditional distribution'

p(x|z = 1) = N(x|py, Zi), or p(x|z) = H N (x|, Zg)*
k=1

* We have therefore specified the joint distribution:
p(x,z) = p(x|z)p(z).
* The marginal distribution over x is given by:

— Zp(z)p(x\z) = Zﬂk/\/(x‘ﬂka ).

k=1
e The marginal distribution over x is given by a Gaussian mixture.



Mixture of Gaussians

* The marginal distribution: o
Zp p(x|z) = Zm@/\/‘(x\uk,zk).
k=1

* If we have several observations x,,...,Xy, it follows that
for every observed data point x,,, there is a corresponding
latent variable z,,.

 Let us look at the conditional p(z|x), responsibilities, which
we will need for doing inference:

p(zr = 1)p(x|zp = 1)

Y(zk) = plzr = 1|x) = =% =
N D=1 p(z; = Dp(x|z; = 1)

responsibility that . WkN(X‘PJk:a )

component k takes for - ZK (X‘ )

explaining the data x j=1"T “’J’

» \We will view 7, as prior probability that z,=1, and ~(z,) is the
corresponding posterior once we have observed the data.



Example

* 500 points drawn from a mixture of 3 Gaussians.

0.5} 1 0.5¢ 1 0.5¢

0 of 0
0 0.5 1 0 0.5 1 0 0.5 1
Samples from the joint  Samples from the Same samples where
distribution p(x,z). marginal distribution p(x). colors represent the

value of responsibilities.



Maximum Likelihood

» Suppose we observe a dataset {x,,...,Xy}, and we model the data using
mixture of Gaussians.

* We represent the dataset as an N by D matrix X.

» The corresponding latent variables will be represented and an N by K
matrix Z.

rzn .
e The log-likelihood takes form: T —
N K
1 X ) = :
ﬂp( ‘7‘-7#’7 ) z_:lln];ﬂ-kj\/(x‘“'kazk> X,
Model parameters X L

Graphical model for a Gaussian mixture
model for a set of i.i.d. data point {x,}, and
corresponding latent variables {z}.



Maximum Likelihood

* The log-likelihood:

Inp(X|m, p, X Yln?mg/\/' (x|, k).
n=1

« Differentiating with respect to u, and setting to zero:

ﬂ-kN Xn‘tu'kvzk> —1
> (X, — . —
ZZ W] Xn\ﬁbj,zg K( Iy ™
J
~
Y(2Znk) Soft assignment

~ a
= Nik Zv(znk)xn, Nj = ZV(an

\.

N

v

» We can interpret N, as effective number of points assigned to cluster k.

* The mean p, is given by the mean of all the data points weighted by the
posterior y(z,, ) that component k was responsible for generating x..



Maximum Likelihood

* The log-likelihood:

N K
In p(X|mr, p, ) = S: In S: TN (x|, Xk ).
k=1

n=1

» Differentiating with respect to X, and setting to zero:

N L,
1
2k = N, Z Y (Znk) (%0 — ) (X0 — i) T
n=1
* Note that the data points are weighted by the X,
posterior probabilities. "
» Maximizing log-likelihood with respect to mixing |
proportions: N,
Tk — W

» Mixing proportion for the ki component is given by the average
responsibility which that component takes for explaining the data.



Maximum Likelihood

* The log-likelihood:

N K
In p(X|mr, p, ) = S: In S: TN (x|, Xk ).
k=1

n=1

* Note that the maximum likelihood does not have a closed form solution.

e Parameter updates depend on responsibilities (Z,, b
Y(Z.), Which themselves depend on those Te——
parameters:
7TkN X ,Ek
V(2nk) = p(enk = 1|x) = —% (Xn b ) .
> i1 TN (Xnlpj,25)
- lterative Solution: 1 N

E-step: Update responsibilities v(z,,, ).
M-step: Update model parameters 7, u,, X/, for k=1,...,K.



EM algorithm

* Initialize the means p,, covariances 2/, and mixing proportions .

e E-step: Evaluate responsibilities using current parameter values:

7TkN X ,Ek

k) = Pl = 1) = kOl Z)
ijl ﬂ-jN(anl*l’ja EJ)

* M-step: Re-estimate model parameters using the current responsibilities:

new 1
M= > A(znk)%n, Ne =Y 7(znk),
1 N
Y= E Z V(Ynk ) (Xn — B ) (Xn — Nk)Ta
n=1
new Nk
7T/€ — W

» Evaluate the log-likelihood and check for convergence.



Mixture of Gaussians: Example

e |llustration of the EM algorithm (much slower convergence
compared to K-means)
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An Alternative View of EM

e The goal of EM is to find maximum likelihood solutions for models with
latent variables.

» We represent the observed dataset as an N by D matrix X.
 Latent variables will be represented and an N by K matrix Z.

* The set of all model parameters is denoted by 6.

* The log-likelihood takes form:

fzn =
Inp(X|0) = In [Zp(X,Z|9)]. ™e
Z
e Note: even if the joint distribution belongs to Xy
exponential family, the marginal typically does not! ¢ — 3
« We will call: M

{X,Z} as complete dataset.
{X} asincomplete dataset.



An Alternative View of EM

* |[n practice, we are not given a complete dataset {X,Z}, but only
incomplete dataset {X]}.

e Our knowledge about the latent variables is given only by the posterior
distribution p(Z|X,6).

» Because we cannot use the complete data log-likelihood, we can
consider expected complete-data log-likelihood:

Q(6,6°%) = > p(ZIX,6°") Inp(X, Z|6).
Z

* In the E-step, we use the current parameters 6°¢ to compute the
posterior over the latent variables p(Z|X,6°/).

» We use this posterior to compute expected complete log-likelihood.

 In the M-step, we find the revised parameter estimate 6" by
maximizing the expected complete log-likelihood:

<« lractable
g = arg max Q(h,6°%).



The General EM algorithm

e Given a joint distribution p(Z,X|#) over observed and latent variables
governed by parameters 6, the goal is to maximize the likelihood function
p(X|6) with respect to 6.

e |nitialize parameters 69/,
» E-step: Compute posterior over latent variables: p(Z|X,6°).
e M-step: Find the new estimate of parameters 67cv:

g = arg max Q(h,6°%).

Q(0,6°") = " p(Z|X,6°) Inp(X, Z|6).
Z

where

e Check for convergence of either log-likelihood or the parameter values.

Otherwise: . _
gnev <« 9°'¢,  and iterate.



Gaussian Mixtures Revisited

* We now consider the application of the latent variable view of EM the
case of Gaussian mixture model.

* Recall: N K
1np(X‘ﬂ-a 152 2) — Z 1HZ WkN(X‘u’kzv Ek)
k=1

n=1

f =
Zin Zn

{X} --incomplete dataset. {X,Z} -- complete dataset.



Maximizing Complete Data

e Consider the problem of maximizing the likelihood for the complete

data: N K .
[T 1T e 00|
n=1 k=1

N

K
Inp(X,Z|m, pu, 3) = S: [S: Znk N T + Zpk In N (x|, Zk)} .
k=1

(X, Z|7, p, %)

n=1
— J
~" —

Sum of K independent
contributions, one for each
mixture component.

e Maximizing with respect to mixing proportions a N —
yields: 1 |
n—

- : -- complete dataset.
* And similarly for the means and covariances. P



Posterior Over Latent Variables

e Remember:

HN X|Mk72k , H?T

k=1
e The posterior over latent variables takes form:

N K
p(ZX 7o) o [T T] [wwxmk,zw]
n=1 k=1

<k

e Note that the posterior factorizes over n points,
so that under the posterior distribution {z} are
independent.




Expected Complete Log-Likelihood

» The expected value of indicator variable z,, under the posterior

distribution is: L
>, 2nk L1 [N (xn |y, 25)]
Zzn Hj [WjN(Xn‘va EJ')}ZM

TN (Xp |y, 23k
— K ( | z ) — V(an>
D im1 TN (Xn s, X5)

* This represent the responsibility of component k for data point x,.

E[an] =

* The complete-data log-likelihood:
N K

Inp(X,Z|m, pu, X)) = Z Z Znk llnﬁk + In NV (x5, | p Ek)] .
n=1 k=1
e The expected complete data log-likelihood is:

N K
Ez|lnp(X, Z|m, p,X)| = Z ZV(ZnH llnwk + In N (%, |y Ek)] :
k=1

n=1



Expected Complete Log-Likelihood

 The expected complete data Iog-likelihood IS:

Ez|lnp(X, Z|mw, p, )] :ZZ Znk {lnwk—l—ln/\/(xnmk,ﬁk) .

* Maximizing the respect to model parameters we obtain:

pr = Zv Znk)Xn, Nk = Zv Znk);




Relationship to K-Means

e Consider a Gaussian mixture model in which covariances are shared

and are given by el.

1 1
Pl D) = e | — oo lx— ]

e Consider EM algorithm for a mixture of K Gaussians, in which we treat ¢
as a fixed constant. The posterior responsibilities take form:

() = —E exp(—||xn — pi|*/2€)
n - K .
2 =1 ™5 exXp(—|[xn — p;[2/2¢€)

e Consider the limit ¢ — 0. ,
« In the denominator, the term for which ||x, — p,||” is smallest will go

to zero most slowly. Hence ~(z,,) — I where

[ 1 ifk =argmin; ||x, — p;]|”
"™k =N 0 otherwise



Relationship to K-Means

e Consider EM algorithm for a mixture of K Gaussians, in which we treat
e as a fixed constant. The posterior responsibilities take form:

i exp(—|[xn — pyl[*/2€)
= :
2 =1 ™5 exXp(—|[xn — p;[2/2¢€)

e Finally, in the limit ¢ — 0O, the expected complete log-likelihood
becomes:

V(an> —

N K
1
Ez|lnp(X, Z|mw, p, X = 3 Z Zrnkan — pg||? + const.
n=1 k=1

e Hence in the limit, maximizing the expected complete log-likelihood is
equivalent to minimizing the distortion measure J for the K-means
algorithm.



