
Efficient Learning of Deep Boltzmann Machines

Ruslan Salakhutdinov Hugo Larochelle
Brain and Cognitive Sciences and CSAIL,

Massachusetts Institute of Technology
rsalakhu@mit.edu

Department of Computer Science,
University of Toronto

larocheh@cs.toronto.edu

Abstract

We present a new approximate inference algo-
rithm for Deep Boltzmann Machines (DBM’s),
a generative model with many layers of hid-
den variables. The algorithm learns a separate
“recognition” model that is used to quickly ini-
tialize, in a single bottom-up pass, the values of
the latent variables in all hidden layers. We show
that using such a recognition model, followed
by a combined top-down and bottom-up pass,
it is possible to efficiently learn a good genera-
tive model of high-dimensional highly-structured
sensory input. We show that the additional com-
putations required by incorporating a top-down
feedback plays a critical role in the performance
of a DBM, both as a generative and discrimina-
tive model. Moreover, inference is only at most
three times slower compared to the approximate
inference in a Deep Belief Network (DBN), mak-
ing large-scale learning of DBM’s practical. Fi-
nally, we demonstrate that the DBM’s trained
using the proposed approximate inference al-
gorithm perform well compared to DBN’s and
SVM’s on the MNIST handwritten digit, OCR
English letters, and NORB visual object recogni-
tion tasks.

1 Introduction

Discovering high-level representations from high-
dimensional sensory data lies at the core of solving many
AI related tasks, including object recognition, speech
perception and language understanding. Theoretical and
biological arguments strongly suggest that building such
systems requires deep architectures that involve many
layers of nonlinear processing (Bengio, 2009).

Appearing in Proceedings of the13th International Conference
on Artificial Intelligence and Statistics (AISTATS) 2010, Chia La-
guna Resort, Sardinia, Italy. Volume 9 of JMLR: W&CP 9. Copy-
right 2010 by the authors.

Many existing machine learning algorithms use “shallow”
architectures, including neural networks with only one hid-
den layer, kernel regression, support vector machines, and
many others. Theoretical results show that the internal rep-
resentations learned by such systems are incapable of ef-
ficiently extracting some types of complex structure from
rich sensory input (Bengio & LeCun, 2007). Training these
systems also requires large amounts of labeled training
data. By contrast, object recognition in the visual cortex
uses many layers of nonlinear processing and requires very
little labeled input (Lee et al., 1998). Therefore developing
new and efficient learning algorithms for models with deep
architectures that can also make efficient use of a large sup-
ply of unlabeled sensory input is of crucial importance.

One approach to this problem is to learn a multilayer gener-
ative model for the input data distribution. By learning such
a model on the available data, which need not be labeled,
we are effectively elucidating the structure of the data and
discovering several layers of representation characterizing
the input. However, learning deep generative models is a
hard problem, because performing inference and evaluat-
ing marginal probabilities under such models is difficult.

Fortunately, in a recent breakthrough, Hinton et al. (2006)
introduced a fast unsupervised learning algorithm for mul-
tilayer generative models called Deep Belief Networks
(DBN’s). A key feature of this algorithm is its greedy layer-
by-layer training procedure which sequentially and effi-
ciently trains the hidden layers of a deep, hierarchical prob-
abilistic model. The new learning algorithm has been suc-
cessfully used in many application domains (Hinton et al.,
2006; Ranzato et al., 2007; Torralba et al., 2008; Lee et al.,
2009; Nair & Hinton, 2010) primarily because of the fol-
lowing three key characteristics. First, the greedy layer-by-
layer learning algorithm can find a good set of model pa-
rameters fairly quickly, even for models that contain many
layers of nonlinearities and millions of parameters. Second,
the learning algorithm can make efficient use of very large
sets of unlabeled data, and so the model can be pretrained
in a completely unsupervised fashion. Finally, there is an
efficient way of performing approximate inference to com-
pute the values of the latent variables in the deepest layer,
given some input.

Efficient Learning of Deep Boltzmann Machines

h
3

h
2

h
1

v

W
3

W
2

W
1

Deep Belief Network Deep Boltzmann Machine

Figure 1: Left: Deep Belief Network: the top two layers form
an undirected bipartite graph called a Restricted Boltzmann Ma-
chine, and the remaining layers form a sigmoid belief net with
directed, top-down connections.Right: Deep Boltzmann Ma-
chine: All connections between layers are undirected but with no
within-layer connections.

A critical disadvantage of this greedy algorithm however
is that it is based on a very approximate inference proce-
dure, limited to a single bottom-up pass. One consequence
of ignoring top-down influences on the inference process
is that the model can fail to adequately account for uncer-
tainty when interpreting ambiguous sensory inputs. More-
over, the existing greedy procedure is clearly suboptimal:
it learns one layer of features at a time and never re-adjusts
its lower-level parameters. Although global fine-tuning us-
ing the contrastive wake-sleep algorithm has been used by
Hinton et al. (2006), it is very slow and inefficient.

Recently, Salakhutdinov and Hinton (2009) introduced a
new learning algorithm for a different type of hierarchi-
cal probabilistic model, called Deep Boltzmann Machine
(DBM). Unlike Deep Belief Networks, a DBM is a type
of Markov random field, where all connections between
layers are undirected. Deep Boltzmann Machines are in-
teresting for several reasons. First, it retains much of the
desiderata found in Deep Belief Networks: it discovers sev-
eral layers of increasingly complex representations of the
input, it comes with an efficient layer-by-layer pretraining
procedure, it can be trained on unlabeled data and can be
fine-tuned for a specific task using the (possibly limited)
labeled data. Second, unlike existing models with deep ar-
chitectures, including DBN’s and deep convolutional neu-
ral networks (Bengio & LeCun, 2007), the approximate
inference procedure for DBM’sincorporates a top-down
feedback in addition to the usual bottom-up pass, allow-
ing Deep Boltzmann Machines to better incorporate uncer-
tainty about ambiguous inputs. Third, and perhaps more
importantly, parameters of all layers can beoptimized
jointly by following the approximate gradient of a varia-
tional lower-bound on the likelihood function. This greatly
facilitates learning better generative models.

However, a crucial disadvantage of Deep Boltzmann Ma-
chines is that approximate inference, which is based on the
mean-field approach, is considerably (between 25 and 50

times) slower compared to a single bottom-up pass as in
Deep Belief Networks. This makes the joint optimization
of DBM parameters impractical for large datasets. It also
reduces the appeal of using DBM’s for extracting useful
feature representations, since the expensive mean-field in-
ference must be performed for every new test input.

In this paper, we introduce a new approximate inference
algorithm that effectively “learns to do inference”. The al-
gorithm uses a separate “recognition” model to initialize
the values of the latent variables in all layers using a single
bottom-up pass. Using this recognition model, followed
by a single top-down plus bottom-up pass, allows us to
learn good generative models. Compared to Deep Belief
Networks, inference is at most three times slower, which
makes large-scale learning of Deep Boltzmann Machines
practical. More importantly, we show that incorporating a
top-down pass allows us to learn considerably better gener-
ative and discriminative models.

2 Deep Boltzmann Machines (DBM’s)

A Deep Boltzmann Machine is a network of symmetrically
coupled stochastic binary units. It contains a set of visible
unitsv ∈ {0, 1}D, and a sequence of layers of hidden units
h

1 ∈ {0, 1}F1, h
2 ∈ {0, 1}F2,..., hL ∈ {0, 1}FL. There

are connections only between hidden units in adjacent lay-
ers, as well as between the visible units and the hidden units
in the first hidden layer.

Consider a Deep Boltzmann Machine with three hidden
layers1 (i.e. L = 3), as shown in Fig. 1, right panel. The
energy of the state{v,h} is defined as:

E(v,h; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2 − h
2⊤

W
3
h

3,

whereh = {h1,h2,h3} are the set of hidden units, and
θ = {W1,W2,W3} are the model parameters, represent-
ing visible-to-hidden and hidden-to-hidden symmetric in-
teraction terms2. The probability that the model assigns to
a visible vectorv is:

P (v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h1,h2,h3; θ)).

The derivative of the log-likelihood with respect to param-
eter vectorW 1 takes the following form:

∂ log P (v; θ)

∂W 1
= EPdata

[vh
1⊤]− EPmodel

[vh
1⊤], (1)

where EPdata
[·] denotes an expectation with respect

to the completed data distributionPdata(h,v; θ) =
P (h|v; θ)Pdata(v), with Pdata(v) = 1

N

∑

n δ(v − vn)

1We use three hidden layers in our presentation for simplicity.
Extensions to models with more than three layers is trivial.

2We omit the bias terms for clarity of presentation.

Ruslan Salakhutdinov, Hugo Larochelle

representing the empirical distribution, and EPmodel
[·] is

an expectation with respect to the distribution defined by
the model. The derivatives with respect to parametersW 2

andW 3 take similar forms but instead involve the cross-
productsh1

h
2⊤ andh

2
h

3⊤ respectively.

Exact maximum likelihood learning in this model is in-
tractable. The exact computation of the data-dependent ex-
pectation takes time that is exponential in the number of
hidden units, whereas the exact computation of the model’s
expectation takes time that is exponential in the number of
hidden and visible units.

2.1 Approximate Maximum Likelihood Learning

The original learning algorithm for general Boltzmann ma-
chines used randomly initialized Markov chains in order
to approximate both expectations needed to approximate
gradients of the likelihood function (Hinton & Sejnowski,
1983). However, this learning procedure is too slow to be
practical. To alleviate this problem, (Salakhutdinov (2008);
Salakhutdinov and Hinton (2009)) proposed a variational
approach, where mean-field inference is used to estimate
data-dependent expectations and an MCMC based stochas-
tic approximation procedure is used to approximate the
model’s expected sufficient statistics.

Consider any approximating distributionQ(h|v; µ) for the
posteriorP (h|v; θ). The log-likelihood of our DBM model
then has the following variational lower bound:

log P (v; θ) ≥
∑

h

Q(h|v; µ) log P (v,h; θ) +H(Q),

whereH(·) is the entropy functional. The bound becomes
tight if and only if Q(h|v; µ) = P (h|v; θ). Following a
naive mean-field approach, we choose the following fully
factorized approximating distribution over the three setsof
hidden units:

QMF (h|v; µ) =

F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

q(h1
j)q(h

2
k)q(h3

m), (2)

whereµ = {µ1, µ2, µ3} are the mean-field parameters
with q(hl

i = 1) = µl
i for l = 1, 2, 3. In this case the lower

bound on the log-probability of the data takes a particularly
simple form:

log P (v; θ) ≥ v
⊤W 1

µ
1 + µ

1⊤W 2
µ

2 + µ
2⊤W 3

µ
2

− logZ(θ) +H(Q). (3)

Learning proceeds as follows. For each training example,
we find the value ofµ that maximizes this lower bound,
for the current value ofθ. This optimum must satisfy the

following mean-field fixed-point equations:

µ1
j ← σ

(D
∑

i=1

W 1
ijvi +

F2
∑

k=1

W 2
jkµ2

k

)

, (4)

µ2
k ← σ

(F1
∑

j=1

W 2
jkµ1

j +

F3
∑

m=1

W 3
kmµ3

m

)

, (5)

µ3
m ← σ

(F2
∑

k=1

W 3
kmµ2

k

)

. (6)

To solve these fixed-point equations, we simply cycle
through layers, updating the mean-field parameters within
a single layer in parallel3.

Given the variational parametersµ, the model parametersθ
are then updated to maximize the variational bound using a
stochastic approximation procedure (SAP). Learning with
SAP is straightforward. Letθt andxt = {vt,h

1
t ,h

2
t ,h

3
t}

be the current parameters and the state. Thenxt and θt

are updated sequentially as follows. We sample a new state
xt+1 givenxt from the transition operatorTθt

(xt+1←xt)
that leavesP (·; θt) invariant. For DBM’s we use Gibbs
sampling. A new parameterθt+1 is then obtained by mak-
ing a gradient step, where the intractable model’s expecta-
tion EPmodel

[·] in the gradient is replaced by a point esti-
mate at samplext+1. In practice, we typically maintain a
set ofM sample particlesXt = {xt,1,,xt,M}, and use
an average over those particles. This MCMC based approx-
imation procedure provides asymptotic convergence guar-
antees and belongs to the general class of Robbins–Monro
approximation algorithms (for details see Younes (1989)).

For approximate maximum likelihood learning of DBM’s,
we could apply the above learning procedure alone, but it
is rather slow. Instead, we also use a greedy layer-wise
pretraining strategy to initialize the model parameters to
good values, which we briefly review next.

2.2 Greedy Pretraining of DBM’s

The greedy layer-by-layer pretraining algorithm relies
on learning a stack of Restricted Boltzmann Machines
(RBM’s) with a small modification. The key intuition is
that for the lower-level RBM to compensate for the lack
of top-down input intoh1, the input must be doubled as
shown in Fig. 2 (left panel), with the copies of the visible-
to-hidden connections tied. Conversely, for the top-level
RBM to compensate for the lack of bottom-up input into
h

2, the number of hidden units is doubled. For the inter-
mediate layers, the RBM weights are simply doubled. The
stack of RBM’s can then be trained in a greedy layer-by-
layer fashion using the Contrastive Divergence algorithm
(Hinton et al., 2006). When these three modules are com-
posed to form a single model, the layer copies are removed

3Implementing the mean-field requires no extra work beyond
implementing the Gibbs sampler.

Efficient Learning of Deep Boltzmann Machines

RBM

RBM

RBM

v v

W
1

W
1

h
1

h
1

h
2

h
2

h
3

h
3

2W
2

W
3

W
3

W
1

W
2

W
3

2R
1

2R
2

R
3

Pretraining

Deep Boltzmann Machine

Figure 2:Left: Pretraining a DBM with three hidden layers con-
sists of learning a stack of RBM’s that are then composed to create
a Deep Boltzmann Machine.Right: Resulting Deep Boltzmann
Machine, where the parameters{R1, R2, R3} define the recogni-
tion model.

and the total inputs coming into the first and second hidden
layers are halved. For the intermediate RBM, the weights
are halved in both directions. The algorithm is summa-
rized in Algorithm 1. Greedily pretraining the weights of
a DBM initializes the weights to reasonable values, which
facilitates the subsequent joint learning of all layers.

3 Accelerating Inference for DBM’s

As previously mentioned, the main issue with the joint
maximum likelihood learning described in Section 2.1 is
that it requires solving the mean-field fixed-point equations
for each update of the DBM parameters. This inference
procedure is very expensive when compared to a single
bottom-up inference used in a DBN4. Accelerating infer-
ence in a DBM is hence crucial for making learning on
large datasets practical.

One view of the problem is that there is a complicated
function f : v 7→ µ (the mapping between the input
and the result of mean-field inference) for which we need
a fast and accurate approximation. Following a standard
machine learning approach to function approximation, we
could simply collect examples of pairs{vn, µn} and train a
fast “recognition” model to be good at predictingµn given
the correspondingvn. Unfortunately, this does not quite
solve our problem for two reasons. First, obtaining the
pairs(vn, µn) is an expensive operation in itself, which re-
quires running the costly mean-field procedure we are try-

4In our implementation, each iteration of mean-field requires
going through each hidden-to-hidden connection twice (upward
and downward). Assuming layers with similar sizes, each itera-
tion of mean-field is up to twice as expensive as a single bottom-
up pass. So with about 25 iterations, the mean-field inference is
up to 50 times more expensive than a single bottom-up pass.

Algorithm 1 Greedy Pretraining Algorithm for a Deep
Boltzmann Machine with3-layers.
1: Make two copies of the visible vector and tie the visible-to-

hidden weightsW1. Fit W1 of the1st layer RBM to data.
2: FreezeW1 that defines the1st layer of features, and use sam-

pleshl from P (h1|v, 2W1) as the data for training the next
layer RBM with weight vector2W2.

3: FreezeW2 that defines the2nd layer of features and use the
samplesh2 from P (h2|h1, 2W2) as the data for training the
3rd layer RBM with weight vector2W3.

4: When learning the top-level RBM, double the number of hid-
den units and tie the visible-to-hidden weightsW

3.
5: Use the weights{W1,W2,W3} to compose a Deep Boltz-

mann Machine.

ing to avoid. Second, as the DBM’s parameters are chang-
ing during learning, so is the result of mean-field inference.

Here, we propose a simple procedure to overcome these
two issues. The procedure requires a separate set of recog-
nition weights, which are initialized to the weights found
by the greedy pretraining procedure. During learning,
given an input vector, the recognition weights are used to
provide an initial guessν = {ν1, ν2, ν3} of the fully fac-
torized approximating posterior distribution:

Qrec(h|v; µ) =

F1
∏

j=1

F2
∏

k=1

F3
∏

m=1

qrec(h1
j)q

rec(h2
k)qrec(h3

m), (7)

with qrec(hl
i = 1) = νl

i for l = 1, 2, 3, and where each
layer of hidden units is activated in a single deterministic
bottom-up pass:

ν1
j = σ

(D
∑

i=1

2R1
ijvi

)

, (8)

ν2
k = σ

(F1
∑

j=1

2R2
jkν1

j

)

, (9)

ν3
m = σ

(F3
∑

k=1

R3
kmν2

k

)

, (10)

with θrec = {R1, R2, R3} denoting the set of recognition
weights. It is important to note that the weights of the
recognition model are doubled at each layer to compensate
for the lack of top-down feedback, as shown in Fig 2, ex-
cept for the very top layer, which does not have a top-down
input. We then applyK iterations of mean-field, initial-
ized atµ = ν, to obtain the mean-field parameters that
will be used in the training update for DBM’s (K is set to
1 or 5 in our experiments). Finally, the recognition weights
are updated so as to make the initial guessν (prediction)
closer to the resultµ (target) of the K-step mean-field in-
ference. More precisely, we update the recognition weights
to minimize the Kullback–Leibler divergence between the
mean-field posteriorQMF (h|v; µ) and the factorial poste-

Ruslan Salakhutdinov, Hugo Larochelle

Algorithm 2 Learning a Deep Boltzmann Machine.

1: Given: a training set ofN binary data vectors{v}N
n=1, M

(the number of Markov chains), andK (the number of mean-
field steps).

2: // Pretraining :
3: Use Algorithm 1 to pretrain parameters

θ0 = {W 1
0 , W 2

0 , W 3
0 } of a DBM.

4: Initialize the recognition modelθrec
0 = {R1

0, R
2
0, R

3
0} to the

values ofθ0.
5: Randomly initializeM sample particles:

{ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}, whereh̃ = {h̃1, h̃2, h̃3}.

6: for t = 0 to T (number of iterations)do

7: // Variational Inference:
8: for each training examplevn, n = 1 to N do
9: In a single deterministic bottom-up pass, use the recog-

nition model (Eqs. 8, 9, 10) to obtain a parameter vector
ν of the approximate factorial posteriorQrec.

10: Setµ = ν and run the mean-field updates (Eqs. 4, 5, 6)
for K steps to obtain the mean-field approximate poste-
rior QMF .

11: Adjust the recognition parameters by taking a single gra-
dient step in Eq. 11:

θ
rec
t+1 = θ

rec
t + αt

∂KL(QMF ||Qrec)

∂θrec

12: Setµn = µ.
13: end for

14: //Stochastic Approximation:
15: for each samplem = 1 to M do
16: Sample(ṽt+1,m, h̃t+1,m) given (ṽt,m, h̃t,m) by run-

ning a Gibbs sampler.
17: end for

18: // Parameter Update:

19: W 1
t+1 = W 1

t + αt

„

1

N

PN

n=1
vn(µ1

n)⊤−

1

M

PM

m=1
ṽt+1,m(h̃1

t+1,m)⊤
«

20: W 2
t+1 = W 2

t + αt

„

1

N

PN

n=1
µ

1
n(µ2

n)⊤−

1

M

PM

m=1
h̃

1
t+1,m(h̃2

t+1,m)⊤
«

21: W 3
t+1 = W 3

t + αt

„

1

N

PN

n=1
µ

2
n(µ3

n)⊤−

1

M

PM

m=1
h̃

2
t+1,m(h̃3

t+1,m)⊤
«

22: Decreaseαt.

23: end for

rior defined by the recognition modelQrec(h|v; ν):

KL(QMF (h|v; µ)||Qrec(h|v; ν)) =

−
∑

i

µi log νi −
∑

i

(1− µi) log(1 − νi) + Const, (11)

The gradient of this KL with respect to the recognition pa-
rametersθrec can be efficiently computed using the back-
propagation algorithm. In brief, we see that learning pro-

ceeds by jointly optimizing both the recognition model and
the model parameters of the DBM in an online fashion. The
full learning procedure is summarized in Algorithm 2.

This procedure exploits three properties of DBM’s. First,
because we do not expect the mean-field mapping to
change drastically after one update of the DBM parameters,
the procedure can update the current recognition weights
using only a few (possibly just one){vn, µn} pairs. Sec-
ond, since the variational lower bound of Eq. 3 applies for
any value of the mean-field parametersµ, it is not neces-
sarily crucial that the value ofµ satisfies the fixed-point
equations (i.e. correspond to the tightest possible lower
bound), at least at the beginning of learning. Finally, since
one mean-field iteration is guaranteed to yield parameters
closer to a solution satisfying the mean-field fixed-point
equations, we may hope that the predictions made by the
recognition model become increasingly close to a fixed-
point solution.

The idea of using a separate set of recognition weights, or
learning to do inference, dates back to the wake-sleep al-
gorithm (Hinton et al., 1995), which was used to learn a
multilayer sigmoid belief network. A variant of the wake-
sleep algorithm was also used to learn parameters of a Deep
Belief Network. However, it is important to note that our
recognition model is only used toinitialize the parameters
of the variational inference algorithm, which differs signif-
icantly from the approach taken by the wake-sleep algo-
rithm. Indeed, the wake-sleep algorithm solely relies on
the recognition weights to perform approximate inference,
and having inaccurate recognition weights can greatly af-
fect learning. During the “wake” phase, the algorithm uses
only its recognition weights to stochastically activate the
states of all the hidden units in a single bottom-up pass.
By treating the model as fully observed, learning the gen-
erative weights on the directed connections then becomes
easy. Hence, the quality of model parameters found during
learning relies heavily on how good the recognition model
is. In particular, if we were to set the recognition weights
to zero, adjusting the generative weights on the directed
connections of the Deep Belief Network would be mean-
ingless. In our case, having recognition weights set to zero
would only amount to initializing theK-step mean-field
inference toµi = 0.5 for all hidden units, which is much
less dramatic. In principle, if we were to run the mean-field
fixed-point equations until convergence, the quality of the
learned DBM would not be very affected by the recogni-
tion model5. In this respect, the proposed procedure yields
a learning algorithm that should be much more robust.

Finally, we also mention the work of Ranzato et al. (2007)
where, in the context of single-layer sparse autoencoders,
a similar procedure is proposed for jointly training recog-
nition (encoder) and generative (decoder) weights. In con-

5The recognition model would only affect which local opti-
mum the mean-field converges to.

Efficient Learning of Deep Boltzmann Machines

trast, the procedure proposed here can be successfully ap-
plied to DBM’s with more than a single hidden layer, al-
lowing for learning many hidden layers jointly.

4 Evaluating DBM’s

We now describe two ways of evaluating the quality of the
solution found by the different DBM learning algorithms
considered in our experiments.

4.1 Evaluating DBM’s as Generative Models

For DBM’s, and undirected models in general, comput-
ing the probability of held-out inputs exactly is intractable,
since computing the global normalization constant requires
enumeration over an exponential number of terms. Re-
cently, Salakhutdinov and Murray (2008) showed that a
Monte Carlo based method, Annealed Importance Sam-
pling (AIS) (Neal, 2001), can be used to efficiently estimate
the partition function of an RBM. We adopt AIS in our ex-
periments as well. Together with variational inference this
will allow us to obtain good estimates of the lower bound
on the log-probability of the train and test data. Indeed,
once we obtain a Monte Carlo estimate of the global parti-
tion functionẐ, we can estimate, for a given test casev

∗,
the variational lower bound of Eq. 3:

log P (v∗; θ) ≥ (16)

−
∑

h

QMF (h|v∗; µ)E(v∗,h; θ) +H(QMF)− logZ(θ)

≈ −
∑

h

QMF (h|v∗; µ)E(v∗,h; θ) +H(QMF)− log Ẑ,

with h = {h1,h2,h3}. For each test vector under consid-
eration, we maximize this lower bound with respect to the
variational parametersµ by solving the mean-field fixed-
point equations exactly. Of course, we can also adopt
AIS to estimate an unnormalized probabilityP ∗(v) =
∑

h1,h2,h3 P ∗(v,h1,h2,h3), and together with an esti-
mate of the global partition function we can actually esti-
mate the true log-probability of the test data. This however,
would be computationally very expensive, since we would
need to perform a separate AIS run for each test case.

4.2 Evaluating DBM’s as Discriminative Models

A perhaps more pragmatic approach to evaluating the per-
formance of DBM’s is to see whether they can be used to
better solve some supervised learning task we are interested
in. To this end, we follow the approach of Salakhutdi-
nov and Hinton (2009). We use the data together with the
top-level marginalsµ3 (feature representations), estimated
by the approximate inference procedure used to train the
DBM, as a new augmented input into a multilayer neural
network (see Salakhutdinov and Hinton (2009) for details).

5 Experiments

We present several experimental results on three publicly
available datasets: the MNIST dataset, the OCR letters
dataset, and the NORB dataset, and report generalization
and classification performance of Deep Boltzmann Ma-
chines.

5.1 Description of Datasets and Model Architectures

The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. The training set was further split into
50,000 training and 10,000 validation images6. Our sec-
ond OCR letters dataset corresponds to an English char-
acter recognition problem. The goal is to classify 16×8
binary pixel images into 26 classes, corresponding to the
26 letters of the English alphabet. The dataset is split into
32,152 training, 10,000 validation, and 10,000 test exam-
ples. Our third, more difficult object recognition dataset,
NORB ((LeCun et al., 2004)), contains images of 50 differ-
ent 3D toy objects with 10 objects in each of five generic
classes: cars, trucks, planes, animals, and humans. Each
object is captured from different viewpoints and under var-
ious lighting conditions. The training set contains 24,300
stereo image pairs of 25 objects, 5 per class, while the test
set contains 24,300 stereo pairs of the remaining, different
25 objects. The goal is to classify each previously unseen
object into its generic class. From the training data, 4,300
were set aside for validation.

For the NORB experiment, we used a three-hidden-layer
DBM, with each layer containing 4,000 hidden units (about
68 million parameters). As for the experiments on the
relatively simpler MNIST and OCR letters problems, we
only used two hidden layers. The DBM trained on the
MNIST dataset had 500 and 1000 hidden units in the first
and second hidden layer respectively. For the OCR letters
dataset, we used 2000 hidden units in both layers. For all
datasets, to speed-up learning, we subdivided the data into
mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of sample par-
ticles, used for approximating the model’s expected suffi-
cient statistics, was also set to 100. For the stochastic ap-
proximation algorithm, we used 5 Gibbs updates. Pretrain-
ing of DBM’s required 100 epochs over the training set7.
Global training was done for 200 epochs. To induce spar-
sity, we also encouraged the average activations of the hid-
den layers units to be close to 0.1. Finally, for discrimina-
tive fine-tuning we used the method of conjugate gradients

6We note that once good hyper-parameter values were found
based on the validation set, all 60,000 training examples were
used to train the final model.

7To speed up pretraining, instead of doubling the input, we
double the bottom-up visible-to-hidden weights of the lower-level
RBM. Similarly, for the top-level RBM, we simply double the
top-down weights.

Ruslan Salakhutdinov, Hugo Larochelle

Table 1:The estimates of the variational lower bound on the aver-
age test log-probabilities per image for different inference strate-
gies.

Models Datasets
MNIST OCR Letters NORB

MF-0 -96.75 -43.40 -624.75
MF-1 -89.97 -37.21 -612.08
MFRec-1 -86.47 -35.29 -598.34
MF-5 -86.21 -34.87 -596.92
MFRec-5 -85.36 -34.73 -595.98
MF-Full -84.97 -34.24 -593.58

on larger mini-batches of 10 000 data vectors, with three
line searches performed for each mini-batch in each epoch.
The code that can be used for pretraining, learning and fine-
tuning DBM’s is available athttp://www.cs.toronto.

edu/ ˜ larocheh/code/dbm_recnet.tar.gz .

5.2 Approximate Inference

To compare the different approximate inference strategies,
we trained several DBM’s using various approximate in-
ference procedures. Our first two DBM’s used recogni-
tion weights, as described in Algorithm 2, with the number
of mean-field steps set to 1 and 5. We call these models
MFRec-1 andMFRec-5. Our second two DBM’s did not
use a separate recognition model. Instead, each layer of
hidden units was activated in a single deterministic bottom-
up pass using the DBM’s current set of weights, followed
by 1 or 5 steps of mean-field. We call these modelsMF-1
andMF-5. For comparison, we also trained two additional
DBM’s. In the first DBM, calledMF-Full , the mean-field
updates were run until convergence, which typically re-
quired about 25 iterations through the entire network. In
the second DBM, calledMF-0, approximate inference did
not use the mean-field at all. The values of the latent vari-
ables were inferred using a single bottom-up pass.

5.3 Generative Performance

For each of the three datasets and for each Deep Boltzmann
Machine, we estimated the variational lower bound on the
average test log-probability using Eq. 12. The global parti-
tion function of each model was estimated using AIS with
20,000 inverse temperatures spaced uniformly between 0
and 1.0. The estimates were averaged over 100 AIS runs.

Table 1 shows that for all three datasets, both DBM’s that
use recognition weights, MFRec-1 and MFRec-5, consis-
tently outperform their equivalent DBM’s that do not use
the recognition model. For the MNIST dataset, MFRec-1
achieves a lower bound of -86.47, improving upon MF-1
by at least 3 nats. We also note that the MF-Full model
achieves only a slightly better lower bound of -84.97. How-
ever, performing inference (and hence learning) in this
model was computationally considerably more demanding.
To estimate how loose the variational bound is, we ran-

domly sampled 100 test cases, 10 of each class, and ran
AIS for each test case to estimate the true test log probabil-
ity. Computationally, this is equivalent to estimating 100
additional partition functions. Our estimate of the true test
log probability was -84.28 per test case. The estimate of
the variational bound was -84.76, showing that the bound
is actually rather tight.

For the OCR letters and NORB dataset, results were very
similar to the MNIST dataset, showing that the recognition
model helps learning better generative models. The differ-
ence in performance between MFRec-1 and MF-1 is partic-
ularly large for the NORB dataset, reaching over 10 nats.
Finally, the very weak performance of MF-0 highlights the
importance of incorporating top-down information in the
inference procedure to obtain a good generative model.

5.4 Discriminative Performance

Finally, we evaluated the discriminative performance of
the DBM’s on the handwritten digit, OCR letters, and
NORB object recognition tasks. Table 2 shows results.
For the MNIST dataset, MFRec-1 achieves a test error of
1.00% compared to 0.95% achieved by MF-Full (Salakhut-
dinov & Hinton, 2009), 1.2% achieved by DBN (Hinton
et al., 2006), and 1.4% achieved by SVM’s (Decoste &
Schölkopf, 2002). For the OCR letters dataset, various
DBM’s perform about the same, the difference between
performances not being statistically significant. However,
for this dataset, all DBM’s significantly outperform Deep
Belief Networks and SVM’s (Larochelle et al., 2009).

Finally, for the NORB dataset, MFRec-1 achieves a test er-
ror of 7.6%, which is considerably lower compared to 8.3%
achieved by DBN’s, 11.6% achieved by SVM’s (Bengio
& LeCun, 2007), and 18.4% achieved by K-nearest neigh-
bours (LeCun et al., 2004). We also mention the very recent
work of Nair and Hinton (2010) who showed that by learn-
ing an implicit mixture of DBN’s, a result of 5.2% could be
achieved. We emphasize that an equivalent extension could
be applied here, yielding implicit mixtures of DBM’s.

Overall, we observe that the simple MFRec-1 model per-
forms just as well as the slow MF-Full model. In fact,
MFRec-1 appears to strike a good balance between effi-
ciency and accuracy. It allows for inference that is as fast as
in MF-1, while yielding accuracy that is statistically equiv-
alent to MF-5 or MF-Full. Indeed, for the NORB dataset,
MFRec-1 reduces training time from 5 days down to 1,
whereas training DBM’s using the original learning algo-
rithm (MF-full) takes about 3 weeks. More importantly,
during the test phase, inference on 100 test images takes
only 0.69 sec. using MF-Rec1, compared to 3.2 and 16.5
sec. using MF-5 and MF-full.

Results in table 2 also reveal that across all three datasets,
MFRec-1 significantly outperforms traditional Deep Belief
Networks, that only use a single bottom up pass to do in-

Efficient Learning of Deep Boltzmann Machines

Table 2:Classification performance on the test set for different inference strategies. The results in bold correspond to the lowest error
rates along with the error rates that are statistically indistinguishable from the best (the difference is not statistically significant).

Dataset DBM inference procedures DBN SVM K-NN
MF-0 MF-1 MFRec-1 MF-5 MFRec-5 MF-Full

MNIST 1.38% 1.15% 1.00% 1.01% 0.96% 0.95% 1.17% 1.40% 3.09%
OCR letters 8.68% 8.44% 8.40% 8.50% 8.48% 8.58% 9.68% 9.70% 18.92%
NORB 9.32% 7.96% 7.62% 7.67% 7.46% 7.23% 8.31% 11.60% 18.40%

ference. This observation again confirms the important role
that a top-down mechanism can play in improving the inter-
pretation and classification of sensory inputs, even with just
a single downward pass. Finally, comparisons with SVM
and K-NN confirm that DBM’s that use the proposed recog-
nition model can be competitive classifiers in general.

6 Conclusion

We presented a new approximate inference algorithm for
Deep Boltzmann Machines that uses a separate recognition
model to quickly initialize the values of the latent vari-
ables in all hidden layers. Learning a good recognition
model averts the need to solve the expensive mean-field
fixed-point equations for each update of the DBM param-
eters. This approach substantially speeds up the inference
step, allowing for learning DBM’s on larger scales (i.e. for
larger DBM’s and/or on larger datasets). As our experi-
mental results demonstrate, using the recognition model,
followed by only a single step of mean-field inference, is
sufficient for learning good generative and discriminative
models. However, this single step of mean-field is crucial
for obtaining competitive performances, which highlights
the important role that a top-down feedback plays in pro-
cessing high-dimensional sensory input.

The recognition model considered in this paper was di-
rectly inspired by the architecture of the DBM, but it
need not be. Indeed, any function (parametric or non-
parametric) that can be adapted given some error signal
could have been used instead. This perspective opens up
the space of recognition models and could allow us to de-
rive faster and/or more accurate inference procedures. We
believe that this avenue of research is promising and de-
serves more investigation.

Acknowledgments

We acknowledge the financial support from NSERC, Shell,
and NTT Communication Sciences Laboratory.

References

Bengio, Y. (2009). Learning deep architectures for AI.Founda-
tions and Trends in Machine Learning.

Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithmsto-
wards AI. Large-Scale Kernel Machines. MIT Press.

Decoste, D., & Schölkopf, B. (2002). Training invariant support
vector machines.Machine Learning, 46, 161.

Hinton, G., Dayan, P., Frey, B., & Neal, R. (1995). The” wake-
sleep” algorithm for unsupervised neural networks.Science,
268, 1158–1161.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning
algorithm for deep belief nets.Neural Computation, 18, 1527–
1554.

Hinton, G. E., & Sejnowski, T. (1983). Optimal perceptual infer-
ence.IEEE conference on Computer Vision and Pattern Recog-
nition.

Larochelle, H., Erhan, D., & Vincent, P. (2009). Deep learning
using robust interdependent codes.Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics.

LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning meth-
ods for generic object recognition with invariance to pose and
lighting. CVPR (2)(pp. 97–104).

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolu-
tional deep belief networks for scalable unsupervised learning
of hierarchical representations.ICML. ACM.

Lee, T. S., Mumford, D., Romero, R., & Lamme, V. (1998). The
role of the primary visual cortex in higher level vision.Vision
research, 38, 2429–2454.

Nair, V., & Hinton, G. (2010). 3D object recognition with deep
belief nets. Advances in Neural Information Processing Sys-
tems. Cambridge, MA: MIT Press.

Neal, R. M. (2001). Annealed importance sampling.Statistics
and Computing, 11, 125–139.

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Ef-
ficient learning of sparse representations with an energy-based
model. InNIPS 19, 1137–1144. Cambridge, MA: MIT Press.

Salakhutdinov, R. R. (2008).Learning and evaluating Boltzmann
machines(Technical Report UTML TR 2008-002). Depart-
ment of Computer Science, University of Toronto.

Salakhutdinov, R. R., & Hinton, G. E. (2009). Deep Boltzmann
machines.Proceedings of the International Conference on Ar-
tificial Intelligence and Statistics.

Salakhutdinov, R. R., & Murray, I. (2008). On the quantitative
analysis of deep belief networks.Proceedings of the Interna-
tional Conference on Machine Learning(pp. 872 – 879).

Torralba, A., Fergus, R., & Weiss, Y. (2008). Small codes and
large image databases for recognition.Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

Younes, L. (1989). Parameter inference for imperfectly observed
Gibbsian fields.Probability Theory Rel. Fields, 82, 625–645.

