
Learning Nonlinear Dynamic Models

John Langford jl@yahoo-inc.com

Yahoo! Research, New York, NY 10011

Ruslan Salakhutdinov rsalakhu@cs.toronto.edu

Department of Computer Science, University of Toronto, Ontario M2N6T3

Tong Zhang tongz@rci.rutgers.edu

Department of Statistics, Rutgers University, Piscataway, NJ 08854

Abstract

We present a novel approach for learning non-
linear dynamic models, which leads to a new
set of tools capable of solving problems that
are otherwise difficult. We provide theory
showing this new approach is consistent for
models with long range structure, and apply
the approach to motion capture and high-
dimensional video data, yielding results su-
perior to standard alternatives.

1. Introduction

The notion of hidden states appears in many nonsta-
tionary models of the world such as Hidden Markov
Models (HMMs), which have discrete states, and
Kalman filters, which have continuous states. Figure 1
shows a general dynamic model with observation xt

and unobserved hidden state yt. The system is char-
acterized by a state transition probability P (yt+1|yt),
and a state to observation probability P (xt|yt).

The method for predicting future events under such a
dynamic model is to maintain a posterior distribution
over the hidden state yt+1, based on all observations
X1:t = {x1, . . . ,xt} up to time t. The posterior can be
updated using the formula:

P (yt+1|X1:t)

∝
∑

yt

P (yt|X1:t−1)P (xt|yt)P (yt+1|yt). (1)

The prediction of future events xt+1, . . . ,xt+k, k > 0,

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

.....y1 y2 yn

x1 x2 xn

Figure 1. Dynamic Model with observation vector xt and
hidden state vector yt.

conditioned on X1:t is through the posterior over yt:

P (xt+1, . . . ,xt+k|x1:t)

∝ P (yt+1|X1:t)P (xt+1, . . . ,xt+k|yt+1). (2)

Hidden state based dynamic models have a wide range
of applications, such as time series forecasting, finance,
control, robotics, video and speech processing. Some
detailed dynamic models and application examples can
be found in (West & Harrison, 1997).

From Eq. 2, it is clear that the benefit of using a hid-
den state dynamic model is that the information con-
tained in the observation X1:t can be captured by a
relatively small hidden state yt+1. Therefore in order
to predict the future, we do not have to use all previ-
ous observations X1:t but only its state representation
yt+1. In principle, yt+1 may contain a finite history
of length k + 1, such as xt,xt−1, . . . ,xt−k. Although
the notation only considers first order dependency, it
incorporates higher order dependency by considering
a representation of the form Yt = [y′

t,y
′
t−1, . . . ,y

′

t−k],
which is a standard trick.

In an HMM or Kalman filter, both transition and ob-
servation functions are linear maps. There are reason-
able algorithms that can learn these linear dynamic
models. For example, in addition to the classical EM
approach, it was recently shown that global learning

Learning Nonlinear Dynamic Models

of certain hidden Markov models can be achieved in
polynomial time (Hsu et al., 2008). Moreover, for lin-
ear models, the posterior update rule is quite simple.
Therefore, once the model parameters are estimated,
such models can be readily applied for prediction.

However in many real problems, the system dynamics
cannot be approximated linearly. For such problems,
it is often necessary to incorporate nonlinearity into
the dynamic model. The standard approach to this
problem is through nonlinear probability modeling,
where prior knowledge is required to define a sensible
state representation, together with parametric forms
of transition and observation probabilities. The model
parameters are learned by using probabilistic methods
such as the EM (Wilson & Bobick, 1999; Roweis &
Ghahramani, 2001). When the learned model is ap-
plied for prediction purposes, it is necessary to main-
tain the posterior P (yt|X1:t) using the update formula
in Eq. 1. Unfortunately, for nonlinear systems, main-
taining P (yt|x1:t) is generally difficult because the pos-
terior can become exponentially more complex (e.g.,
exponentially many mixture components in a mixture
model) as t increases.

This computational difficulty is a significant obsta-
cle to applying nonlinear dynamic systems to prac-
tical problems. The traditional approach to address
the computational difficulty is through approxima-
tion methods. For example, in the particle filtering
approach (Gordon et al., 1993; Arulampalam et al.,
2002), one uses a finite number of samples to represent
the posterior distribution and the samples are then up-
dated as observations arrive. Another approach is to
maintain a mixture of Gaussians to approximate the
posterior, P (yt|X1:t), which may also be regarded as
a mixture of Kalman filters (Chen & Liu, 2000). Al-
though an exponential in t number of mixture com-
ponents are needed to accurately represent the pos-
terior, in practice, one has to use a fixed number of
mixture components to approximate the distribution.
This leads to the following question: even if the poste-
rior can be well-approximated by a computationally
tractable approximation family (such as finite mix-
tures of Gaussians), how can one design a good ap-
proximate inference method that is guaranteed to find
a good quality approximation? The use of complex
techniques required to design reasonable approxima-
tion schemes makes it non-trivial to apply nonlinear
dynamic models for many practical problems.

This paper introduces an alternative approach, where
we start with a different representation of a linear
dynamic model which we call the sufficient poste-
rior representation. It is shown that one can recover

the underlying state representation by using predic-
tion methods that are not necessarily probabilistic.
This allows us to model nonlinear dynamic behaviors
with many available nonlinear supervised learning al-
gorithms such as neural networks, boosting, and sup-
port vector machines in a simple and unified fashion.
Compared to the traditional approach, it has several
distinct advantages:

• It does not require us to design any explicit state
representation and probability model using prior
knowledge. Instead, the representation is implic-
itly embedded in the representational choice of the
underlying supervised learning algorithm, which
may be regarded as a black box with the power
to learn an arbitrary representation. The prior
knowledge can be simply encoded as input fea-
tures to the learning algorithms, which signifi-
cantly simplifies the modeling aspect.

• It does not require us to come up with any spe-
cific representation of the posterior and the corre-
sponding approximate Bayesian inference schemes
for posterior updates. Instead, this issue is ad-
dressed by incorporating the posterior update as
part of the learning process. Again, the posterior
representation is implicitly embedded in the rep-
resentational choice of the underlying supervised
learning algorithm. In this sense, our scheme
learns the optimal representation for posterior ap-
proximation and the corresponding update rules
within the representational power of the underly-
ing supervised algorithm1.

• It is possible to obtain performance guarantees
for our algorithm in terms of the learning per-
formance of the underlying supervised algorithm.
The performance of the latter has been heavily
investigated in the statistical and learning the-
ory literature. Such results can thus be applied
to obtain theoretical results on our methods for
learning nonlinear dynamic models.

2. Sufficient Posterior Representation

Instead of starting with a probability model, our ap-
proach directly attacks the problem of predicting yt+k

based on X1:t. Clearly the prediction depends only
on the posterior distribution P (yt+1|X1:t). Therefore
we can solve the prediction problem as long as we can
estimate, and update this posterior distribution.

1Many modern supervised learning algorithms are uni-
versal, in the sense that they can learn an arbitrary repre-
sentation in the large sample limit.

Learning Nonlinear Dynamic Models

y1 y2 yn

x1 x2 xn

.....s1 s2 sn

Figure 2. Dynamic Model with observation vector xt, hid-
den state vector yt, and the posterior sufficient statistic
vector st.

In our approach, it is assumed that the posterior
P (yt+1|X1:t) can be approximated by a family of dis-
tributions parameterized by st+1 ∈ S: P (yt+1|X1:t) ≈
P (yt+1|st+1) for some deterministic parameter st+1

that depends on X1:t. That is, st+1 is a sufficient
statistic for the posterior P (yt+1|X1:t), and updating
the posterior is equivalent to updating the sufficient
statistic st+1. The augmented model that incorpo-
rates the (approximate) sufficient statistics st ∈ S is
shown in Fig. 2. In this model, yt can be integrated
out, which leaves a model containing only st and xt.

According to the posterior update of Eq. 1, there exists
a deterministic function B such that:

st+1 = B(xt, st).

For simplicity, we can give an arbitrary value for the
initial state s1, and let:

s2 = A(x1) = B(x1, s1).

Moreover, according to Eq. 2, given an arbitrary
vector function f of the future events Xt+1:∞ =
{xt+1,xt+2, · · · }, there exists a deterministic function
Cf (k > 0) such that:

EXt+1:∞
[f(Xt+1:∞)|X1:t] = Cf (st+1).

Therefore the dynamics of the model in Fig. 1 is deter-
mined by the posterior initialization rule A and pos-
terior update rule B. Moreover, the prediction of the
system is completely determined by the function Cf .

The key observation of our approach is that the func-
tions A, B, and C are deterministic, which does not
require any probability assumption. It fully captures
the correct dynamics of the underlying probabilistic
dynamic model. However, by removing the probabil-
ity assumption, we obtain a more general and flexi-
ble model. In particular, we are not required to start
with specific forms of the transition model P (yt+1|yt),
the observation model P (xt|yt), or the posterior suf-
ficient statistic model P (yt+1|x1:t) ≈ P (yt+1|st+1), as

required in the standard approach. Instead, we may
embed the forms of such models into the functional
approximation forms in standard learning algorithms,
such as neural networks, kernel machines, or tree en-
sembles. These are universal learning machines that
are well studied in the learning theory literature.

Our approach essentially replaces a stochastic hidden
state representation through the actual state Y by a
deterministic representation through the posterior suf-
ficient statistic S. Although the corresponding repre-
sentation may become more complex (which is why
in the traditional approach, yt is always explicitly in-
cluded in the model), this is not a problem in our
approach, because we do not have to know the ex-
plicit representation. Instead, the complexity is incor-
porated into the underlying learning algorithm — this
allows us to take advantage of sophisticated modern
supervised learning algorithms that can handle com-
plex functional representations. Moreover, unlike the
traditional approach, in which one designs a specific
form of P (yt|st) by hand, and then derives an approx-
imate update rule B by hand using Bayesian inference
methods, here, we simply use learning to come up with
the best possible representation and update (assuming
the underlying learning algorithm is sufficiently pow-
erful). We believe this approach is also more robust
because it is less sensitive to model mis-specifications
or non-optimal approximate inference algorithms that
commonly occur in practice.

By changing the standard probabilistic dynamic model
in Fig. 1 to its sufficient posterior representation in
Fig. 2 (where we assume yt is integrated out, and thus
can be ignored), we can define the goal of our learning
problem. Since yt is removed from the formulation, in
the following, we shall refer to the sufficient posterior
statistic st simply as state.

We can now introduce the following definition of Suf-
ficient Posterior Representation of Dynamic Model,
which we refer to SPR-DM.

Definition 2.1. (SPR-DM) A sufficient posterior rep-
resentation of a dynamic model is given by an ob-
served sequence {xt} and unobserved hidden state {st},
characterized by state initialization map s2 = A(x1),
state update map st+1 = B(xt, st), and state prediction
maps:

EXt+1:∞
[f(Xt+1:∞)|X1:t] = Cf (st+1)

for any pre-determined vector function Cf .

Our goal in this model is to learn the model dynamics
characterized by A and B, as well as Cf for any given
vector function of interest.

Learning Nonlinear Dynamic Models

s2

x1 x2

A C

stst−1

xt−1 xt

B C

stst−2j

xt

Dj

C

Figure 3. Left Panel: A state defining prediction. At training time, x1 and x2 are known. The essential goal is to
predict x2 given x1 using bottleneck hidden variables s2. Two distinct mappings A and C are learned, with s2 ≡ A(x1).
Middle Panel: A state evolution prediction. At training time, xt−1 and st−1 are used to predict st via the operator
B(xt−1, st−1) such that xt is reproduced via C(st). Right Panel: A state projection prediction. At training time, st−2j

is used to predict st such that xt is reproduced via C(st) for j ∈ {0, 1, 2, ⌊log
2
T ⌋}.

3. Learning SPR-DM

The essential idea of our algorithm is to use a bot-
tlenecking approach to construct an implicit definition
of state, along with state space evolution and projec-
tion operators to answer various natural questions we
might pose.

3.1. Training

There are two parts to understanding the training pro-
cess. The first is the architecture trained, and the
second is the exact method of training this architec-
ture. Note that our architecture is essentially func-
tional rather than representational.

3.1.1. Architecture

Graphically, in order to recover the system dynamics,
we solve two distinct kinds of prediction problems. To
understand these graphs it is essential to understand
that the arrows do not represent graphical models. In-
stead, they are a depiction of which information is used
to predict which other information. We distinguish
observations and hidden “state” as double circles and
circles respectively, to make clear what is observed and
what is not.

The first prediction problem solved in Fig. 3, left
panel, provides our initial definition of state. Essen-
tially, state is “that information which summarizes the
first observation in predicting the second observation”.
Compared to a conventional dynamic model, the quan-
tity s2 may be a sufficient statistic of the state poste-
rior after integrating x1, the posterior after integrating
x1 and evolving one step or some intermediate mix-
ture. This ambiguity is fundamental, but inessential.

The second prediction problem is state evolution,
shown in Fig. 3, middle panel. Here, we use a state
and an observation to predict the next state, reusing
the prediction of state from observation from the first

step. Note that even though there are two sources
of information for predicting st, only one prediction
problem (using both sources) is solved. Operator B
is what is used to integrate new information into the
state of an online system.

Without loss of generality, in the notation of Fig. 3 we
consider f0(Xt+1:∞) = E[xt+1|X1:t], and denote Cf0

by C. An alternative interpretation of C, which we do
not distinguish in this paper, is to learn the probability
distribution over xt+1. It should be understood that
our algorithm can be applied with other choices of f0.

The above two learning diagrams are used to obtain
the system dynamics (A and B). One can then use
the learned system dynamics to learn prediction rules
Cf with any function f of interest. Here, we con-
sider the problem of predicting xt+k at different ranges
of k = 2j. This gives a state projection operator
Dj : st → st+2j , without observing the future sequence
xt+1,xt+2, · · · . The learning of state projection is pre-
sented in Fig. 3, right panel. The idea in state projec-
tion is that we want to build a predictor of the ob-
servation far in the future. To do this, we’ll chain
together several projection operators from the current
state. To make the system computationally more effi-
cient, we learn ⌊log2 T ⌋ operators, each specialized to
cover different timespans. Note that state evaluation
provides an efficient way to learn xt+k based on st si-
multaneously for multiple k through combination of
projection operators. If computation is not an issue,
one may also learn xt+k based on st separately for each
k.

3.1.2. Method

Training of A is straightforward. Training of C is
complicated by the fact that samples appear at multi-
ple timesteps, but otherwise straightforward given the
other components. To deal with multiple timesteps,
it is important for our correctness proof in section 4.2

Learning Nonlinear Dynamic Models

that the observation xt include the timestep t. The
training of D is also straightforward given everything
else (and again, we’ll require the timestep be a part of
the update for the correctness proofs).

The most difficult thing to train is B, since an alter-
ation to B can cascade over multiple timesteps. The
method we chose takes advantage of both local and
global information to provide a fast near-optimal so-
lution.

1. Initialization: Learn Bt, Ct starting from
timestep t = 1 and conditioning on the previ-
ous learned value. Multitask learning or initial-
ization with prior solutions may be applied to im-
prove convergence here. In our experiments, we
initialize Bt, Ct to the average parameter values
of previous timesteps and use stochastic gradient
descent techniques for learning.

2. Conditional Training Learn an alteration B′

which optimizes performance given that the ex-
isting Bt are used at every other time step. Since
computational performance is an issue, we use a
“backprop through time” gradient descent style
algorithm. For each timestep t, we compute the
change in squared loss for all future observations
using the chain rule, and update according to the
negative gradient.

3. Iteration: Update B using stochastic mixing ac-
cording to Bi = αB′ +(1−α)Bi−1 where α is the
stochastic mixing parameter. The precise method
of stochastic mixing used in the experiments is
equivalent to applying the derivative update with
probability α and not update with probability
1 − α, which is a computational and represen-
tational improvement over Searn (Daume et al.,
2009).

We prove (below) that the method in step (1) alone is
consistent. Steps (2) and (3) are used to force conver-
gence to a single B and C while retaining the perfor-
mance gained in step (1). The intuition behind step
(3) is that when α = o(1

T
), with high probability B′ is

executed only once, implying that B′ need only per-
form well with respect to the learning problem induced
by the rest of the system to improve the overall sys-
tem. This approach was first described in Conservative
Policy Iteration (Kakade & Langford, 2002).

3.2. Testing

We imagine testing the algorithm by asking questions
like: what is the probability of observation xt′ given

what is known up to time t for t′ > t? This is done by
using A(x1) to get s2, then using B(xi, si) to evolve
the state to st. Then the time interval from t′ − t is
broken down into factors of 2, and the corresponding
state projection operators Di are applied to the state
resulting in a prediction for st′−1. This is transformed
into a prediction for xt′ using operator C.

4. Analysis

4.1. Computation

The computational requirements depend on the ex-
act training method used. For the initialization step,
training of A, Bt, and Ct requires just O(nT) exam-
ples. Training Di can be done with just O(nT log2 T)
examples. For the iterative methods, an extra factor
of T is generally required per iteration for learning B.

4.2. Consistency

We now show that under appropriate assumptions, the
SPR-DM model can be learned in the infinite sample
limit using our algorithm. Due to the space limitation,
we only consider the non-agnostic situation, where the
SPR-DM model is exact. That is, the functions A, B,
C used in our learning algorithm contains the correct
functions. The agnostic setting, where the SPR-DM
model is only approximately correct, can be analyzed
using perturbation techniques (e.g., for linear systems,
this is done in (Hsu et al., 2008)). Although such anal-
ysis is useful, the fundamental insight is identical to
the non-agnostic analysis considered here.

We consider the following constraints in the SPR-DM
model. We assume that the model is invertible: The
distribution over xt (more generally, the definition can
be extended to other vector functions φ0(xt, . . . ,)) is
a sufficient statistic for the state st that generates xt.
This is a nontrivial limitation of state based dynamic
models which retains the ability to capture long range
dependencies.

Definition 4.1. (Invertible SPR-DM) The SPR-DM
in Definition 2.1 is invertible if there exist a function
E such that for all t, E(Cf (st)) = st.

Invertibility is a natural assumption, but it’s impor-
tant to understand that invertible dynamic systems
are a subset of dynamic systems as shown by the fol-
lowing hidden Markov model example:

Example 4.1 A hidden Markov model which is not
invertible: Suppose there are two observations, 0 and
1 where the first observation is uniform random, the
second given the first is always 0, and the third is the
same as the first. Under this setting, the two valid

Learning Nonlinear Dynamic Models

sequences are 000 and 101. There is a hidden Markov
model which is not invertible that can express this se-
quence. In particular, suppose state s1 is (0, 1) or (1, 1)
and state s2 is (0, 2) or (1, 2), with a conditional ob-
servation that is P (0|∗, 1) = 1 and P (0|0, 2) = 1 and
P (0|1, 2) = 0. However, no invertible hidden Markov
model can induce a distribution over these sequences
because the distribution on x2 is always 0, implying
that a specification of state is impossible due to lack
of information.

Although Invertible SPR-DMs form a limited subset
of SPR-DMs, they are still nontrivial as the following
example shows.

Example 4.2 An Invertible hidden Markov model with
long range dependencies: Suppose there are two ob-
servations 0 and 1 and two states s1 and s2. Let the
first observation always be 0 and the first state be uni-
form random P (s1|0) = P (s2|0) = 0.5. Let the states
only self-transition according to P (s1|s1) = 1 and
P (s2|s2) = 1. Let the observations be according to the
following distribution: P (0|s1) = 0.75, P (0|s2) = 0.25.
Given only one observation, the probability of state
s1 is 0.75 or 0.25 for observations 0 or 1 respectively.
Given T observations, the probability of state s1 con-
verges to 0 or 1 exponentially fast in T using Bayes
Law and the Chernoff bound.

The above two examples illustrate the intuition behind
invertibility. One can extend the concept by incorpo-
rating look aheads: that is, instead of taking C as the
probability of xt given st, we may let C be the prob-
ability of Xt:t+k given st. This broadens the class of
invertible models. In this notation, invertibility means
that if two states st and s′t induce the same short range
behavior Xt:tk

, then they are identical in the sense
they induce the same behavior for all future obser-
vations: Xt+1:∞. Generally speaking, non-invertible
models are those that cannot be efficiently learned by
any algorithm because we do not have sufficient infor-
mation to recover states that have different long range
dynamics but identical behavior in short ranges. In
fact, there are well-known hardness results for learn-
ing such models in the theoretical analysis of hidden
Markov models. There are no known efficient meth-
ods to capture non-trivial long-range effects. This im-
plies that our restriction is not only necessary, but also
not a significant limitation in comparison to any other
known efficient learning algorithms.

Next we prove that our algorithm can recover any in-
vertible hidden Markov model given sufficiently pow-
erful prediction with infinitely many samples. This is
analogous to similar infinite-sample consistency results
for supervised learning.

Theorem 4.1. (Consistency) For all Invertible SPR-
DMs, if all prediction problems are solved per-
fectly, then for all i, p(xi|x1, ...,xi−1) is given by:
Ĉ(B̂(xi−1, B̂(xi−2, ..., Â(x1)...))).

A similar theorem statement holds for projections.

Proof. The proof is by induction.

The base case is C(A(x1)) = Ĉ2(Â(x1)) which holds
under the assumption that the prediction problem
is solved perfectly. In the inductive case, define:
s2 = A(x1), ŝ2 = Â(x1), si = B(xi−1, si−1), ŝi =
B̂i(xi−1, ŝi−1) and assume C(si) = Ĉi(ŝi). Invertibil-
ity and the inductive assumption implies there exists
E such that: si = E(Ĉi(ŝi)). Consequently, there ex-
ists Ĉi+1 = C and B̂i+1(xi, ŝi) = B(xi, E(Ĉ(ŝi))) such
that:

C(B(xi, si)) = Ĉi+1(B̂i+1(xi, ŝi)

proving the inductive case.

5. Experiments

In this section we present experimental results on
two datasets that involve high-dimensional, highly-
structured sequence data. The first dataset is the mo-
tion capture data that comes from CMU Graphics Lab
Motion Capture Database. The second dataset is the
Weizmann dataset2, which contains video sequences of
nine human subjects performing various actions.

5.1. Details of Training

While the introduced framework allows us to use many
available nonlinear supervised learning algorithms, in
our experiments we use the following parametric forms
for our operators:

s2 = A(x1) = σ
(

A⊤x1 + b
)

,

st = B(xt−1, st−1) = σ
(

B⊤

1 xt−1 + B⊤

2 st−1 + b
)

,

x̂t = C(st) = C⊤st + a,

st+2j = Dj(st) = D⊤

j st + d,

where σ(y) = 1/(1 + exp(−y)) is the logistic function,
applied componentwise, {C, B, A, Dij ,a,b,d} are the
model parameters with a,b and d representing the
bias terms.

For both datasets, during the initialization step, the
values of {Bt, Ct} are initialized to the average pa-
rameter values of previous timesteps3. Learning of

2Available at http://www.wisdom.weizmann.ac.il/
∼vision/SpaceTimeActions.html.

3The values of A, B1, C1 were initialized with small ran-
dom values sampled from a zero-mean normal distribution
with standard deviation of 0.01.

Learning Nonlinear Dynamic Models

Motion Capture Data

Figure 4. Left panel: compares the average squared test error as a function of prediction horizon for three models:
two linear autoregressive models when conditioning on 2 and 5 previous time steps, and the nonlinear model that uses a
20-dimensional hidden state. Right panel: compares nonlinear model with 20-state and 100-state HMM models. The
average predictor always predicts a vector of zeros.

{Bt, Ct} then proceeds by minimizing the squared loss
using stochastic gradient descent. For each time step,
we use 500 parameter updates, with learning rate
of 0.001. We then used 500 iterations of stochastic
mixing, using gradients obtained by backpropagation
through time. The stochastic mixing rate α was set
to 0.9 and was gradually annealed towards zero. We
experimented with various values for the learning rate
and various annealing schedules for the mixing rate α.
Our results are fairly robust to variations in these pa-
rameters. In all experiments we were conditioning on
the two previous time steps to predict the next.

5.2. Motion Capture Data

The human motion capture data consists of sequences
of 3D joint angles plus body orientation and transla-
tion. The dataset was preprocessed to be invariant to
isometries (Taylor et al., 2006), and contains various
walking styles, including normal, drunk, graceful, gan-
gly, sexy, dinosaur, chicken, and strong. We split at
random the data into 30 training and 8 test sequences,
each of length 50. The training data was further split
at random into the 25 training and 5 validation se-
quences. Each time step was represented by a vector
of 58 real-valued numbers. The dataset was also nor-
malized to have zero mean was scaled by a single num-
ber, so that the variance across each dimension was on
average equal to 1. The dimensionality of the hidden
state was set to 20.

Figure 4 shows the average test prediction errors us-
ing squared loss, where the prediction horizon ranges
over 1,2,4,8,10,16, and 25. The nonlinear model was
compared to two simple autoregressive linear models
that operate directly in the input space. The first lin-
ear model, LINEAR-2, makes predictions x̂t+k via the

linear combination of the two previous time steps:

x̂t+k = L1⊤xt + L2⊤xt−1 + l. (3)

The model parameters {L1, L2, l} were fit by ridge re-
gression. The second model, LINEAR-5, makes pre-
dictions by conditioning on the previous five time
steps. We note that the number of the model pa-
rameters for these simple autoregressive linear models
grows linearly with the input information. Hence when
faced with high-dimensional sequence data, learning
linear operators directly in the input space is unlikely
to perform well.

It is interesting to observe that autoregressive linear
models perform quite well in terms of making short-
range predictions. This is probably due to the fact
that locally, motion capture data is linear. However,
the nonlinear model performs considerably better com-
pared to both linear models when making long-range
predictions. Figure 4 (right panel) further shows that
the proposed nonlinear model performs considerably
better than 20 and 100-state HMM’s. Both HMM’s
use Gaussian distribution as their observation model.
It is obvious that a simple HMM model is unable to
cope with complex nonlinear dynamics. Even a 100-
state HMM is unable to generalize.

5.3. Modeling Video

Results on the motion capture dataset show that
a nonlinear model can outperform linear and HMM
models, when making long-range predictions. In this
section we present results on the Weizmann dataset,
which is considerably more difficult than the motion
capture dataset.

The Weizmann dataset contains video sequences of

Learning Nonlinear Dynamic Models

 1 2 4 8 10 16 25
0

30

60

90

120

150

180

210

240

Length of Prediction Horizon

T
es

t S
qu

ar
ed

 E
rr

or

LINEAR−5

LINEAR−2

Nonlinear−50

 1 2 4 8 10 16 25
0

30

60

90

120

150

180

210

240

270

Length of Prediction Horizon

T
es

t S
qu

ar
ed

 E
rr

or

HMM−50

HMM−100

Nonlinear−50

Video Data

Figure 5. Left panel: compares the average squared test error for three models: two linear autoregressive models, and
the nonlinear model that uses a 50-dimensional hidden state. Right panel: compares nonlinear model to 50-state and
100-state HMM models.

nine human subjects performing various actions, in-
cluding waving one hand, waving two hands, jumping,
and bending. Each video sequence was preprocessed
by placing a bounding box around a person perform-
ing an action. The dataset was then downsampled to
29 × 16 images, hence each time step was represented
by a vector of 464 real-valued numbers. We split at
random the data into into 36 training (30 training and
6 validation), and 10 test sequences, each of length 50.
The dataset was also normalized to have zero mean
and variance 1. The dimension of the hidden state
was set to 50.

Figure 5 shows that the nonlinear model consistently
outperforms both linear autoregressive and HMM
models, particularly when making long-range predic-
tions. It is interesting to observe that on this dataset,
the nonlinear model outperforms the autoregressive
model even when making short-range predictions.

6. Conclusions

In this paper we introduced a new approach to learning
nonlinear dynamical systems and showed that it per-
forms well on rather hard high-dimensional time series
datasets compared to standard models such as HMMs
or linear predictors. We believe that the presented
framework opens up an entirely new set of devices for
nonlinear dynamic modeling. It removes several ob-
stacles in the traditional approach that requires heavy
human design, and allows well-established supervised
learning algorithms to be used automatically for non-
linear dynamic models.

References

Arulampalam, M. S., Maskell, S., Gordon, N., &
Clapp, T. (2002). A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian track-

ing. IEEE Transactions on Signal Processing, 50,
174–188.

Chen, R., & Liu, J. S. (2000). Mixture Kalman filters.
Journal of the Royal Statistical Society: Series B,
62, 493–508.

Daume, H., Langford, J., & Marcu, D. (2009). Search-
based structured prediction. Machine Learning
Journal.

Gordon, N. J., Salmond, D. J., & Smith, A.
(1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proceedings Part F.
(pp. 107–113).

Hsu, D., Kakade, S. M., & Zhang, T. (2008). A spec-
tral algorithm for learning hidden markov models.
http://arxiv.org/abs/0811.4413.

Kakade, S., & Langford, J. (2002). Approximately
optimal approximate reinforcement learning. Int.
Conference on Machine Learning (pp. 267–274).

Roweis, S., & Ghahramani, Z. (2001). Learning nonlin-
ear dynamical systems using the em algorithm. In
S. Haykin (Ed.), Kalman filtering and neural net-
works, 175–220. Wiley.

Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2006).
Modeling human motion using binary latent vari-
ables. Advances in Neural Information Processing
Systems (pp. 1345–1352). MIT Press.

West, M., & Harrison, J. (1997). Bayesian forecasting
and dynamic models (2nd ed.). New York, NY, USA:
Springer-Verlag New York, Inc.

Wilson, A. D., & Bobick, A. F. (1999). Parametric
hidden markov models for gesture recognition. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 21, 884–900.

