
Adaptive Overrelaxed Bound Optimization Methods

Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU

Sam Roweis ROWEIS@CS.TORONTO.EDU

Department of Computer Science, University of Toronto
6 King’s College Rd, M5S 3G4, Canada

Abstract
We study a class of overrelaxed bound opti-
mization algorithms, and their relationship to
standard bound optimizers, such as Expectation-
Maximization, Iterative Scaling, CCCP and
Non-Negative Matrix Factorization. We provide
a theoretical analysis of the convergence prop-
erties of these optimizers and identify analytic
conditions under which they are expected to
outperform the standard versions. Based on this
analysis, we propose a novel, simple adaptive
overrelaxed scheme for practical optimization
and report empirical results on several synthetic
and real-world data sets showing that these new
adaptive methods exhibit superior performance
(in certain cases by several times speedup)
compared to their traditional counterparts. Our
extensions are simple to implement, apply to a
wide variety of algorithms, almost always give
a substantial speedup, and do not require any
theoretical analysis of the underlying algorithm.

1. Introduction
Many problems in machine learning and pattern recogni-
tion ultimately reduce to the optimization of a scalar valued
function L(Θ|data) of a free parameter vector Θ. For ex-
ample, in (supervised or) unsupervised probabilistic mod-
eling the objective function may be the (conditional) data
likelihood or the posterior over parameters. In discrimi-
native learning we may use a classification or regression
score; in reinforcement learning we may use average dis-
counted reward. Optimization may also arise during infer-
ence; for example we may want to reduce the cross entropy
between two distributions or minimize a function such as
the Bethe free energy.

Bound optimization takes advantage of the fact that many
objective functions arising in practice have a special struc-
ture. We can often exploit this structure to obtain a bound
on the objective function and proceed by optimizing this
bound. Ideally, we seek a bound that is valid everywhere
in parameter space, easily optimized, and equal to the true
objective function at one (or more) point(s). A general
form of a bound maximizer which iteratively lower bounds

the objective function is given below:

General Bound Optimizer for maximizing L(Θ):
• Assume: ∃ function G(Θ, Ψ) such that for any Θ′ and Ψ′:

1. G(Θ′, Θ′) = L(Θ′) & L(Θ) ≥ G(Θ,Ψ′) ∀ Ψ′ 6= Θ
2. arg maxΘG(Θ,Ψ′) can be found easily for any Ψ′.

• Iterate: Θt+1 = arg maxΘG(Θ, Θt)
• Guarantee: L(Θt+1) = G(Θt+1, Θt+1) ≥

G(Θt+1, Θt) ≥ G(Θt, Θt) = L(Θt)

Many popular iterative algorithms are bound optimiz-
ers, including the EM algorithm for maximum likeli-
hood learning in latent variable models[3], iterative scaling
(IS) algorithms for parameter estimation in maximum en-
tropy models[2] and the recent CCCP algorithm for min-
imizing the Bethe free energy in approximate inference
problems[19]. Bound optimization algorithms enjoy a
strong guarantee; they never worsen the objective function.

2. Overrelaxed Bound Optimization: BO(η)
To guarantee an increase in the objective function at
each iteration, BO methods must sometimes construct
very conservative bounds, resulting in extremely slow
convergence behavior. Below, we analyze a family of
overrelaxed BO algorithms called BO(η) algorithms with
η denoting the overrelaxation learning rate:

Naive Overrelaxed BO(η) algorithm for max L(Θ):
• Iterate: Θt+1 = Θt + η

�
arg maxΘG(Θ, Θt) − Θt �

• No convergence guarantee.
• Difficult to set η in practice.

Clearly, for η = 1 BO(η) algorithms become just regular
bound optimizers. Several authors have studied a particular
variant of this idea as applied to Expectation Maximization.
In particular, Helmbold et al. (1995) [6] investigated the
problem of estimating the component priors for a mixture
of given densities, and discovered that an EM(η) update
rule can be viewed as a first order approximation to the ex-
ponentiated gradient EG(η) update. Following this, Bauer
et al. (1997) [1] presented an analysis of EM(η) similar
to [6] and derived the update rules for parameter estima-
tion in discrete Bayesian networks. However, more general
BO(η) methods have not been widely used for several rea-
sons. First, only one particular variant of BO(η), EM(η), is

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

well studied, and update rules have been published only in
the special case of discrete Bayesian networks. Second, if a
learning rate larger than optimal is used, BO(η) algorithms
cannot guarantee convergence to even a local optimum of
their objective function, in contrast to standard bound opti-
mizers. Finally, it is computationally very difficult to obtain
the optimal learning rate η∗.

In this paper, we analyze a broad class of BO(η) algorithms
beyond EM(η) and show how one can design a simple
adaptive algorithm that, in general, will possess superior
convergence rates over standard BO(1) methods while at
the same time guaranteeing convergence and avoiding the
need to calculate or estimate an optimal learning rate η∗.

3. Convergence Properties of BO(1) & BO(η)
Standard bound optimization methods implicitly define a
mapping: M : Θ → Θ′ from parameter space to itself,
such that Θt+1 = M(Θt). If the iterates Θt converge to
Θ∗ and M(Θ) is continuous, then Θ∗ = M(Θ∗), and in
the neighborhood of Θ∗, by Taylor series expansion:

Θt+1 − Θ∗ = M ′(Θ∗)(Θt − Θ∗) (1)

where M ′(Θ∗) = ∂M
∂Θ |Θ=Θ∗ . Since M ′(Θ∗) is typically

nonzero, then any bound optimizer is essentially a linear it-
eration algorithm with a convergence rate matrix M ′(Θ∗).
M ′(Θ∗) can be viewed as an operator that forms a contrac-
tion mapping around Θ∗.1 For multidimensional vector Θ,
a measure of the actual observed convergence rate is the
“global” rate, defined as:

r = limt→∞
‖Θt+1−Θ∗‖
‖Θt−Θ∗‖ (2)

with ‖ � ‖ being Euclidean norm[12]. It is also well-known
that under some regularity conditions r = λmax(M ′) ≡
the largest eigenvalue of M ′(Θ∗). Larger values of λmax

(as they approach unity) imply slower convergence.

BO(η) methods, just as standard bound optimizers, implic-
itly define a mapping: Φ : Θ → Θ from parameter space
to itself, such that Θt+1 = Φ(Θt). In particular,

Φ(Θt) = Θt + η(Θt+1
BO − Θt)

= Θt + η(M(Θt) − Θt) (3)

which means that all fixed points of BO(1) are also fixed
points of BO(η), although the radius of convergence may
change.

We can now analyze convergence behavior of BO(η) meth-
ods and their relationship to standard BO(1) algorithms.

1In general we would expect the Hessian of the objective func-

tion ∂2L(Θ)

∂Θ2 |Θ=Θ∗ to be negative semidefinite, or negative defi-
nite, and therefore the eigenvalues of M ′(Θ∗) all lie in [0, 1] or
[0, 1) respectively [11]. Exceptions to convergence of the bound
optimizer occur if M ′(Θ∗) has eigenvalues that exceed unity.

Lemma: If BO(η) iterates converge to Θ∗ and Φ(Θ) and
M(Θ) are differentiable in the parameter space Θ, then:

Φ′(Θt) = I − η(I − M ′(Θt)) (4)

with I being identity matrix and Φ′
ij(Θ

t) =
∂Θt+1

i

∂Θt
j

is

the input-output derivative matrix for the BO(η) mapping.
This can be shown by differentiating both sides of (3) with
respect to Θ.

Equation (4) shows a very interesting relationship between
convergence properties of BO(η) and its standard BO(1)
counterparts. If the eigenvalues of M ′(Θt) approach unity
in the neighborhood of Θ∗, BO(1) algorithm will exhibit
extremely slow convergence. In this case, larger values of
η will in fact force the eigenvalues of Φ′(Θt) to decrease,
and thus result in faster global rate of convergence of the
BO(η) algorithm.

Proposition 1: If BO(1) iterates converge to Θ∗, then
within some neighborhood of Θ∗, BO(η) algorithm will
also converge to the same local maximum of the objective
function for any 0 < η < 2, although the radius of conver-
gence for BO(η) may be different than for BO(1).

Proposition 2: The optimal learning rate η∗ is:

η∗ = 2/(2− λmax − λmin) (5)

with λmax and λmin being the largest and smallest eigen-
values of M ′(Θ∗). Moreover, η∗ ≥ 1.

We sketch proofs of both propositions in the appendix. The
important consequence of the above analysis is that for the
typical real problems with λmax > 0, the optimal learning
rate is η∗ > 1. Moreover, the global rate of convergence of
BO(η) algorithms is upper bounded by the spectral radius
ρη of Φ′(Θ∗):

r ≤ ρη = max{|1 − η(1 − λmax)|, |1 − η(1 − λmin)|}

This implies that, within some neighborhood of Θ∗, BO(η)
methods can significantly outperform standard BO(1) al-
gorithms in terms of convergence. Indeed, after M itera-
tions BO(η) will shrink the distance ‖ Θ − Θ∗ ‖ by a fac-
tor of ρM

η , whereas standard BO(1) will shrink it by ρM
1 .

This clearly constitutes exponential gain of (ρη/ρ1)
M in

the vicinity of the local optimum. However, setting η to
larger values may result in BO(η) not converging or con-
verging to a different local optimum than BO(1).

The above convergence results for the family of the BO(η)
algorithms are only valid within some neighborhood of Θ∗,
whereas BO(1) methods are guaranteed to converge from
any point in the parameter space. In the next section we
show how we can easily overcome this problem by describ-
ing a simple adaptive BO algorithm.

4. Adaptive Overrelaxed Bound Optimization
Computing the optimal learning rate η∗ is difficult, since
it requires knowledge of the minimum and maximum
eigenvalues λmin and λmax of a particular mapping matrix
that depends on the algorithm details, data set, and current
parameters. Furthermore, this calculation is only valid
in a very small neighborhood around a local optimum.
Ideally, we would like to find the optimal learning rate in
an adaptive fashion that is computationally inexpensive
and valid everywhere. It is possible to perform a line
search at each step to determine η∗ [7]; however, this is
quite expensive. We now describe a very simple adaptive
overrelaxed bound optimization (ABO) algorithm that
is guaranteed not to decrease the objective function at
each iteration and requires only a very slight overhead in
computation over regular BO(1) methods yet can often be
many times faster.

Adaptive Overrelaxed Bound Optimization (ABO) for
maximizing L(Θ):
• Iterate starting with η = 1:

1. Θt+1
BO = arg maxΘG(Θ, Θt)

2. Θt+1 = Θt + η(Θt+1
BO − Θt)

3. If L(Θt+1) > L(Θt) Then Increase η
Else Θt+1 = Θt+1

BO and Decrease η

• Guarantee: L(Θt+1) = G(Θt+1, Θt+1) ≥
G(Θt+1, Θt) ≥ G(Θt, Θt) = L(Θt)

Note that for many objective functions, computing
arg maxΘ G(Θ, Θt) also evaluates the function L(Θt)
“for free”, so that step 3 above can be efficiently inter-
leaved between steps 1 and 2 with essentially no extra
computation (except when the optimizer oversteps).

4.1. Reparameterization of Constrained Quantities
The description of the adaptive algorithm above assumes
that the parameters being optimized are unconstrained. In
many cases, parameters must remain non-negative (or pos-
itive definite), sum to unity, respect symmetries or other
parameter tying constraints. In these situations, the appro-
priate update rules can be derived by first reparameteriz-
ing the optimization using unconstrained variables which
are related to the original variables through a fixed (possi-
bly nonlinear) mapping. As examples, we develop several
cases that arise often in practice.

If parameter values Θj must be positive (e.g. variances),
the overrelaxation step can be derived from the reparame-
terization Θj = exp(βj) and results in ratio scaling:

Θt+1
j = Θt

j

(

Θt+1

jBO

Θt
j

)η

(6)

For parameter values ~Θj that represent a discrete distri-
bution (e.g. mixing proportions in a mixture model, con-
ditional probability tables for discrete quantities, or state
transition probabilities in dynamic models), we reparam-

eterize ~Θj via softmax function ~Θji =
exp (βji)�

i=1
exp (βji)

, and

perform overrelaxation in the unconstrained ~β space. In the
constrained space this corresponds to the update:

~Θt+1
j = 1

Z
~Θt

j

(

~Θt+1

jBO

~Θt
j

)η

(7)

using elementwise multiplication and division operations
and with Z being an appropriate normalizing constant.

4.2. Adaptive Overrelaxed EM
We now consider a particular bound optimizer, the popular
Expectation-Maximization (EM) algorithm and present its
adaptive overrelaxed version. As an example, consider a
probabilistic model of continuous observed data x which
uses continuous latent variables y. Then:

L(Θ) = ln p(x|Θ) =
∫

p(y|x, Ψ) ln p(x|Θ)dy =
∫

p(y|x, Ψ) ln p(x, y|Θ)dy −
∫

p(y|x, Ψ) ln p(y|x, Θ)dy

= Q(Θ, Ψ) − H(Θ, Ψ)

Setting Ψ = Θt, it can be easily verified that the following
is the lower bound function:

L(Θ) ≥ Q(Θ, Ψ) − H(Ψ, Ψ) = G(Θ, Ψ) (8)

The EM algorithm is nothing more than coordinate
ascent in the functional G(Θ, Ψ), alternating between
maximizing G with respect to Ψ for fixed Θ (E-step) and
with respect to Θ for fixed Ψ (M-step). Our new adaptive
overrelaxed version of EM is given below:

Adaptive Overrelaxed EM (AEM) algorithm:

• η=1; L(Θ0) = -∞; δ=tol; α > 1;

• While (δ ≥tol and t<Tmax)
– Perform E-step with Θt and get L(Θt)

– δ = (L(Θt) − L(Θt−1))/abs(L(Θt))

– If δ <tol /* We have gone too far */
∗ η = 1; Perform E-step with Θt

EM

∗ Get L(Θt
EM) and compute new δ;

∗ /* Count this as an additional step */
Else η = α ∗ η; EndIf

– Perform M-step to get Θt+1
EM

– Θt+1 = Θt+η(Θt+1
EM − Θt)

• EndWhile

Dempster, Laird, and Rubin [3] showed that if EM iterates
converge to Θ∗, then
∂M(Θ)

∂Θ |Θ=Θ∗ =

[

∂2H(Θ,Θ∗)
∂Θ2 |Θ=Θ∗

][

∂2Q(Θ,Θ∗)
∂Θ2 |Θ=Θ∗

]−1

which can be interpreted as the ratio of missing informa-
tion to the complete information near the local optimum.
According to Lemma 2, the convergence rate matrix of
EM(η) algorithm can be represented as follows: In the
neighborhood of a solution (for sufficiently large t):

Φ′(Θt) = I − η

[

I −
(

∂2H
∂Θ2

)(

∂2Q
∂Θ2

)−1

|Θ=Θt

]

(9)

This view of the EM(η) algorithm has a very interesting
interpretation: An increase in the proportion of missing
information corresponds to higher values of the learning
rate η. If the fraction of missing information approaches
unity, standard EM will be forced to take very small,
conservative steps in parameter space, therefore higher
and more aggressive values of η will result in much
faster convergence. When the missing information is
small compared to the complete information, the potential
advantage of EM(η) over EM(1) becomes much less.

4.3. Generalized Iterative Scaling (GIS) Algorithm
The Generalized Iterative Scaling algorithm is widely used
for parameter estimation in maximum entropy models [2].
Its goal is to determine the parameters Θ∗ of an expo-
nential family distribution p(x|Θ) = 1

Z(Θ) exp (ΘT F (x))

such that certain generalized marginal constraints are pre-
served:

∑

x p(x|Θ∗)F (x) =
∑

x p̄(x)F (x), where Z(Θ)
is the normalizing factor, p̄(x) is a given empirical distri-
bution and F (x) = [f1(x), ..., fn(x)]T is a given feature
vector. These types of problems can be expressed in a stan-
dard form, with fi(x) > 0 ∀i, and

∑

i fi(x) = 1 for each
x. The log-likelihood function is:

L(Θ) =
∑

x p̄(x) ln p(x|Θ) =
∑

x p̄(x)ΘT F (x) − ln Z(Θ)

By noting that ln Z(Θ) ≤ Z(Θ)/Z(Ψ) + ln Z(Ψ) − 1
for all Ψ, and exp

∑

i Θifi(x) ≤ ∑

i fi(x) exp Θi we can
construct a lower bound on L(Θ):

L(Θ) ≥
∑

x

p̄(x)
∑

i

Θifi(x) − ln Z(Ψ) + 1 −
∑

x

p(x|Ψ)
∑

i

fi(x) exp (Θi − Ψi) = G(Θ, Ψ)

We can now derive an adaptive overrelaxed version of GIS:

Adaptive Overrelaxed GIS (AGIS) algorithm:

• η=1; L(Θ0) = -∞; δ=tol; α > 1;

• While (δ ≥tol and t<Tmax)
– Θt

iGIS
= Θt−1

i + ln
�

x p̄(x)fi(x)�
x p(x|Θt)fi(x)

– Θt = Θt−1+η(Θt
GIS − Θt−1) and get L(Θt)

– δ = (L(Θt) − L(Θt−1))/abs(L(Θt))

– If δ <tol /* We have gone too far */
∗ η = 1; Θt = Θt

GIS

∗ Get L(Θt
GIS) and compute new δ;

∗ /* Count this as an additional step */
Else η = α ∗ η; EndIf

• EndWhile

It has been observed that the convergence of GIS algo-
rithms depends on the correlation between features. In
general, an increase in the feature correlation corresponds
to higher values of the learning rate η. If feature vectors
are highly correlated, GIS will take very small conservative
steps in the parameter space. Thus higher and more ag-
gressive values of η will result in much faster convergence.

4.4. Non-Negative Matrix Factorization (NMF)
Given non-negative matrix V, we are interested in finding
non-negative matrices W and H, such that V ≈ WH [9].
Posed as an optimization problem, we are interested in
maximizing a negative divergence L(Θ) = −D(V ||WH),
subject to Θ = (W, H) ≥ 0 elementwise, where:

L(Θ) = −∑

ij

(

Vij ln
Vij

(WH)ij
− Vij + (WH)ij

)

(10)

We use ln
∑

c WicHcj ≤ ∑

c αij(c, c) ln
WicHcj

αij (c,c) where

αij(a, b) = W t
iaHt

bj/
∑

r W t
irH

t
rj , so that αij(c, c) sum

to one. Defining Θ = (W, H) and Ψ = (W t, Ht), we can
construct a lower bound on the cost function:

L(Θ) ≥ −
∑

ij

Vij ln Vij + Vij −
∑

ijc

WicHcj +

∑

ijc

Vijαij(c, c)

[

ln
WicHcj

αij(c, c)

]

= G(Θ, Ψ)

Adaptive overrelaxed NMF algorithm is then derived as:

Adaptive Overrelaxed NMF (ANMF) algorithm:

• η=1; L(Θ0) = -∞; δ=tol; α > 1;

• While (δ ≥tol and t<Tmax)

– W t
icNMF = W t−1

ic

� �
j HcjVic/(WH)ic�

v Hcv � η

Ht
cjNMF = Ht−1

cj

� �
i WicVic/(WH)ic�

w Wwc � η

– Θt = Θt−1+η(Θt
NMF −Θt−1); and get L(Θt)

– δ = (L(Θt) − L(Θt−1))/abs(L(Θt))

– If δ <tol /* We have gone too far */
∗ η = 1; Update W t and Ht; get L(Θt

NMF)
∗ Compute new δ;
∗ /* Count this as an additional step */

Else η = α ∗ η; EndIf

• EndWhile

For many models overrelaxation is straightforward to im-
plement and does not require significant computational
overhead. As we will see in the next section, it can substan-
tially outperform standard bound optimization algorithms.

5. Experimental Results
We compared the performance of adaptive overrelaxed
bound optimizers to standard BO(1) algorithms for learn-
ing parameters of various models on both synthetic data
sets (which are easier to interpret, display and analyze) and
on real world data sets, supporting the analysis presented
above. Though not reported, we confirmed that the conver-
gence results did not vary significantly for different initial
starting points in the parameter space. For all of the exper-
iments reported below, we used tol = 10−8 and α = 1.1
(for which a few percent of steps are rejected). Of course
the stepsize η is set adaptively. We did not observe these
results to be very sensitive to the setting of α, if close to
but greater than unity.

0 100 200 300 400 500 600 700 800 900 1000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
Lo

g−
Li

ke
lih

oo
d

+
C

on
st

−4 −2 0 2 4
−4

−2

0

2

4

EM AEM

Mixture of Gaussians

0 100 200 300 400 500 600 700

−0.6

−0.4

−0.2

0

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

−6 −3 0 3 6

−6

−3

0

3

6

EM

AEM

Probabilistic PCA

0 50 100 150 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

−15 −10 −5 0 5 10
−20

−10

0

10

20

30

40

EM AEM

Mixture of Factor Analyzers

0 50 100 150 200 250 300

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

Sequence:
 HISTORY OF THE...

EM AEM

Hidden Markov Model

...

0 200 400 600 800 1000 1200 1400
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

C
on

d
Lo

g−
Li

ke
lih

oo
d

+
C

on
st

6 8 10 12 14
6

8

10

12

14

IS

AIS

Logistic Regression

0 100 200 300 400 500 600 700
−2

−1.5

−1

−0.5

0

0.5

D
iv

er
g

en
ce

 +
 C

o
n

st NMF

ANMF

Iterations

Non−Negative Matrix Factorization

=

Figure 1. Learning curves for adaptive overrelaxed and standard bound optimization algorithms, showing convergence performance
for different models. Upper panel displays MoG (left), PPCA (middle), MFA (right); and bottom panel displays HMM (left), logistic
regression (middle), NMF (right). Learning curves of adaptive bound optimizers include discarded steps (these curves contain flat
regions). The iteration numbers are shown on the horizontal axis, and the value of the cost function is shown on the vertical axis, with
zero-level corresponding to the converging point of the BO(1) algorithm.

5.1. Synthetic Data Sets
To compare AEM and EM algorithms, we considered sev-
eral latent variable models. As predicted by theory, a high
proportion of missing information in these models will re-
sult in slow convergence of EM, more aggressive learning
rates η and thus superior performance of AEM.

First, consider a mixture of Gaussians (MoG) model. We
generated data from a 5 component Gaussian mixture (see
Fig 1). In this model the proportion of missing informa-
tion corresponds to how “well” or “not-well” data is sep-
arated into distinct clusters. In our data, mixture compo-
nents overlap in one contiguous region, which constitutes
a large proportion of missing information. Figure 1 shows
that AEM outperforms standard EM algorithm by almost a
factor of three. We also experimented with the Probabilis-
tic Principal Component Analysis (PPCA) latent variable
model[15, 17], which has continuous rather than discrete
hidden variables. Here the concept of missing information
is related to the ratios of the leading eigenvalues of the sam-
ple covariance, which corresponds to the ellipticity of the
distribution. We observe that even for “nice” data, AEM
outperforms EM by almost a factor of four. Similar results
are displayed in figure 1 for the MFA [5] model.

In figure 3 we show the evolution of the adaptive learn-
ing rate η and the “optimal” learning rate η∗ while learning
the means in the MoG model (holding the mixing propor-
tions and covariances fixed). The “optimal” learning rate
η∗ was obtained by calculating λmin and λmax eigenval-
ues of M ′(Θ∗) matrix and applying equation 5; since this

bound is only valid under a local quadratic approximation,
the adaptive algorithm is sometimes able to exceed it and
still improve the objective before overstepping.

0 10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

Iteration Number

η*

2η*

Adaptive Rate η
0 10 20 30 40 50 60 70 80 90

0

0.5

1

1.5

2

2.5

3

Iteration Number

E
ig

en
va

lu
es

 o
f M

’(Θ
*)

0 0.4 0.8
0

0.4

0.8

0 50 100
−1

−0.6

−0.2

0.2

Iteration Number

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

EM
AEM

Figure 3. Left panel pictorially illustrates the adaptive learning
rate η, the optimal rate η∗, and the approximate upper bound on
the learning rate 2η∗. The right panel shows the evolution of the
eigenvalues of the convergence rate matrix M ′(Θ∗) in eq.(1).

We then applied our algorithm to the training of Hidden
Markov Model. Missing information in this model is high
when the observed data do not well determine the under-
lying state sequence (given the parameters). A simple 5-
state fully-connected model was trained on 41 character
sequences from the book ”Decline and Fall of the Roman
Empire” by Gibbon, with an alphabet size of 30 characters
(parameters were randomly initialized). We observe that
even for the real, structured data AEM is superior to EM.

To compare IS and adaptive IS algorithms, we applied both
methods to the simple 2-class logistic regression model:
p(y = ±1|x, w) = 1/(1 + exp (−ywT x)) [13]. Feature
vectors of dimensionality d were drawn from standard nor-
mal: x ∼ N (0, Id), with true parameter vector w∗ being

0 10 20 30 40 50 60

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
Lo

g−
Li

ke
lih

oo
d

+
C

on
st

20 30 40 50

−15

−10

−5

0

x 10
−3

EM
AEM

2−Class AMM

0 10 20 30 40 50 60

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

20 30 40 50

−0.03

−0.02

−0.01

0

0.01

AEM
EM

4−Class AMM

0 10 20 30 40 50 60
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

20 30 40 50

−0.04

−0.03

−0.02

−0.01

0

0.01

AEM EM

6−Class AMM

0 200 400 600 800 1000
−6

−5

−4

−3

−2

−1

0

1

x 10
−3

DNA Sequence:
 ATGCCGGAGGCCCCGC ...

Lo
g−

Li
ke

lih
oo

d
+

C
on

st EM AEM

5−State HMM

0 200 400 600 800 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

DNA Sequence:
 ATGCCGGAGGCCCCGC ...

AEM

EM

7−State HMM

0 200 400 600 800 1000
−0.03

−0.02

−0.01

0

0.01

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

DNA Sequence:
 ATGCCGGAGGCCCCGC ...

EM

AEM

10−State HMM

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

Lo
g−

Li
ke

lih
oo

d
+

C
on

st

EM

AEM

MFA

0 50 100 150
−3

−2.5

−2

−1.5

−1

−0.5

0

x 10
4

D
iv

er
g

en
ce

 +
 C

o
n

st

NMF

ANMF

0 200 400 600 800 1000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

C
on

d
Lo

g−
Li

ke
lih

oo
d

+
C

on
st

MEMM

AGIS

GIS

Iterations

<header> Newsgroups: comp.unix.bsd.netbsd...
<question> How to add your pet answer to the FAQ.
<answer> This is the trickiest part of this section
 of the FAQ. There are ...
<tail> *bsd FAQ Maintainer / SysAdmin for the...

FAQ Data Set

Figure 2. Learning curves for adaptive overrelaxed and standard bound optimization algorithms, showing convergence performance for
different models. Upper panel displays AMM model with number of learned classes being: 2 (left), 4 (middle), and 6 (left). Middle
panel shows HMM model with number of states being: 5 (left), 7 (middle), and 10 (right). Lower panel displays MFA (left), NMF
(middle), and MEMM (right). The iteration numbers are shown on the horizontal axis, and the value of the cost function is shown on the
vertical axis, with zero-level corresponding to the converging point of the BO(1) algorithm.

randomly chosen on surface of the d-dimensional sphere
with radius

√
2. To make features positive, the data set was

modified by adding 10 to all feature values. This in tern
introduces significant correlation, and thus results in slow
convergence of IS. To insure that wtx is unchanged, an ex-
tra feature was added. Figure 1 reveals that for d=2, AIS is
superior to standard IS by at least a factor of 3. Similar re-
sults are obtained if dimensionality of the data is increased.

Finally, to compare ANMF and NMF, we randomly
initialized the non-negative matrix V16×24, and applied
both algorithms to perform non-negative factorization:
V16×24 ≈ W16×5H5×24. Once again, results confirm
the fact that overrelaxed methods can give speedup over
conventional bound optimizers by several times.

5.2. Real World Data Sets
To compare AEM and EM, our first experiment consisted
of training Aggregate Markov models AMM [16] on the
ARPA North American Business News (NAB) corpus.
AMMs are class-based bigram models in which the map-

ping from words to classes is probabilistic. The task of
AMMs is to discover ”soft” word classes. The experi-
ment used a vocabulary of sixty-thousand words, includ-
ing tokens for punctuation, sentence boundaries, etc. The
training data consisting of approximately 78 million words
(three million sentences), with all sentences drawn with-
out replacement from the NAB corpus. The number of
classes was set C=2,4,6 and all parameter values were ran-
domly initialized.2 Figure 2 (upper panels) reveals that
AEM outperforms EM by at least a factor of 1.5. The
considered data sets contain rather structured real data,
suggesting a relatively small fraction of the missing in-
formation. Nevertheless, to perform fair comparison, we
have run both algorithms until the convergence criterion:
(L(Θt+1)−L(Θt))/abs(L(Θt+1)) ≤ 10−8 is met. For ex-
ample, with 2 classes, EM has converges in 164 iterations,
whereas AEM has converges to exactly the same likelihood
after only 72 iterations, a speedup by a factor of more than
two.

2For the details of the model and the data set, refer to [16].

Our second experiment consisted of training a fully con-
nected HMM to model DNA sequences. For the training,
we used publicly available ”GENIE gene finding data set”,
provided by UCSC and LBNL [4], that contains 793 un-
related human genomic DNA sequences. We applied our
AEM algorithm to 66 DNA sequences from multiple exon
and single exon genes, with length varying anywhere be-
tween 200 to 3000 nucleotides per sequence. The number
of states was set to 5,7, and 10 and all the parameter values
were randomly initialized. Figure 2 shows superior conver-
gence of AEM over EM algorithm. This data contains very
little Markovian structure, which constitutes a high propor-
tion of missing information. (We also observed that for 7
and 10 state HMMs, AEM converged to a better local op-
timum; however in general, we can not say anything about
the quality of the local optimum to which EM or AEM will
converge.)

We also applied the MFA model to the block transform im-
age coding problem. A data set of 360×496 pixel images
(see fig 2 bottom left panel) were subdivided into nonover-
lapping blocks of size 8×8 pixels. Each block was regarded
as a d=8×8 dimensional vector. The blocks (total of 2,790)
were then compressed down to five dimensions using 10
mixture components.3 Again, AEM beats EM by a factor
of over two, converging to the better likelihood.

To present the comparison between GIS and AGIS, we
trained Maximum Entropy Markov Model [10] on the Fre-
quently Asked Questions (FAQ) data set. The data set con-
sisted of 38 files belonging to 7 Usenet groups. Each file
contains header, followed by a series of one or more ques-
tion/answer pairs, and ends with tail. The goal is to auto-
matically label each line according to whether it is header,
question, answer, or tail by using 24 boolean features of
lines, like begin-with-number, contains-http, etc.4 We ob-
serve that AGIS outperforms GIS by several times. We
have also obtained analogous results training Conditional
Random Fields [8].

In our last experiment, we trained NMF and adaptive NMF
on the data set of facial images to learn part-based repre-
sentation of faces [9]. The data set5 consisted of m=2,429
facial images, each consisting of n=19×19 gray pixels, thus
forming an n×m matrix V; the number of learned basis im-
ages was set to 49. Once again, figure 2 reveals that ANMF
substantially outperforms standard NMF algorithm. In par-
ticular, ANMF takes about 3,500 iterations until the conver-
gence criterion is met, whereas regular NMF converged in
approximately 13,500 iterations to exactly the same value
of the cost function, loosing to ANMF by a factor of almost
four.

3This experiment is similar to the one described in [18].
4See [10] for a description of the model and the data set.
5See [9] for a more detailed description.

6. Discussion & Future Work
In this paper we have analyzed the convergence properties
of a large family of overrelaxed bound optimization BO(η)
algorithms. Based on this analysis, we introduced a novel
class of simple, adaptive overrelaxed bound optimization
(ABO) methods and provided empirical results on several
synthetic and real-world data sets showing superior conver-
gence of ABO methods over standard bound optimizers.

In all of our experiments with adaptive algorithms we found
that the value of objective function at any iterate was bet-
ter than the value at the same iterate of the standard bound
optimizer: L(Θt

ABO) > L(Θt
BO) : ∀t. In other words, we

have never found a disadvantage to using adaptive meth-
ods; and often there is a large advantage, particularly for
complex models with large training data sets, where due to
the time constraints one could only afford to perform a few
number of the BO iterations.

We are experimenting with models where parameter values
Θ represent symmetric positive definite matrices (e.g. co-
variance matrices in the MoG model). We can use the ma-
trix exponential Θ = exp Λ to perform overrelaxation in
the unconstrained Λ space. In particular, we use a spectral
decomposition: Θ = V DV T , with D being the diagonal
matrix of the eigenvalues, and V being the orthogonal ma-
trix of the corresponding eigenvectors. The matrix func-
tions ln and exp are then defined: ln Θ = V ln (D)V T ,
exp Θ = V exp (D)V T . When the matrix is diagonal,
overrelaxation corresponds to eq. (6).

Bauer et al. (1997) [1] presented empirical results using
non-adaptive EM(η) algorithm with fixed η < 2. Our anal-
ysis and empirical results indicate that in the cases when the
convergence rate matrix has large eigenvalues, (e.g. miss-
ing information is high while learning with EM, or feature
vectors are highly dependent while estimating parameters
with GIS or NMF), adaptive bound optimizers can exhibit
convergence rates substantially superior to BO(2) by using
η > 2, while at the same time maintaining convergence
guarantees and setting η automatically.

Acknowledgments
We would like to thank Zoubin Ghahramani and Lawrence
Saul for many useful discussions and for providing us with
some data sets.

References
[1] Eric Bauer, Daphne Koller, and Yoram Singer. Update rules

for parameter estimation in bayesian networks. In Proceed-
ings of the 13th Conference on Uncertainty in Artificial In-
telligence (UAI-97), pages 3–13, August 1–3 1997.

[2] Stephen Della Pietra, Vincent J. Della Pietra, and John D.
Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(4):380–393, 1997.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm (with
discussion). J. of the RS Society series B, 39:1–38, 1977.

[4] GENIE gene data set. LBNL and UC Santa Cruz,
http://www.fruitfly.org/sequence. 2001.

[5] Zoubin Ghahramani and Geoffrey Hinton. The EM algo-
rithm for mixtures of factor analyzers. Technical Report
CRG-TR-96-1, University of Toronto, May 1996.

[6] D. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth.
A comparison of new and old algorithms for a mixture esti-
mation problem. Machine Learning, pages 97–119, 1997.

[7] Mortaza Jamshidian and Robert I. Jennrich. Conjugate gra-
dient acceleration of the EM algorithm. Journal of the Amer-
ican Statistical Association, 88(421):221–228, March 1993.

[8] John Lafferty, Andrew McCallum, and Fernando Pereira.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. 18th Inter-
national Conf. on Machine Learning, pages 282–289, 2001.

[9] Daniel D. Lee and H. Sebastian Seung. Learning the parts
of objects by non-negative matrix factorization. Letters to
Nature, 401:788–791, 1999.

[10] Andrew McCallum, Dayne Freitag, and Fernando Pereira.
Maximum entropy Markov models for information extrac-
tion and segmentation. In Proc. 17th International Conf. on
Machine Learning, pages 591–598, 2000.

[11] G. J. McLachlan and T. Krishnan. The EM Algorithm and
Extensions. Wiley, 1997.

[12] X. L. Meng and D. B. Rubin. On the global and compo-
nentwise rates of convergence of the EM algorithm. Linear
Algebra and Its Applications, 199:413–425, 1994.

[13] Tom Minka. Algorithms for maximum-likelihood logis-
tic regression. Technical Report 758, Dept. of Statistics,
Carnegie Mellon University, 2001.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C. Cambridge University
Press, Cambridge, second edition, 1992.

[15] S. T. Roweis. EM algorthms for PCA and SPCA. In
Advances in neural information processing systems, vol-
ume 10, pages 626–632, Cambridge, MA, 1998. MIT Press.

[16] Lawrence Saul and Fernando Pereira. Aggregate and mixed-
order Markov models for statistical language processing. In
Proceedings of the Second Conference on Empirical Meth-
ods in Natural Language Processing, pages 81–89. Associ-
ation for Computational Linguistics, 1997.

[17] M. E. Tipping and C. M. Bishop. Mixtures of probabilis-
tic principal component analysers. Neural Computation,
11(2):443–482, 1999.

[18] Naonori Ueda, Ryohei Nakano, Zoubin Ghabramani, and
Geoffrey E. Hinton. SMEM algorithm for mixture models.
Neural Computation, 12(9):2109–2128, 2000.

[19] Alan Yuille and Anand Rangarajan. The convex-concave
computational procedure (CCCP). In Advances in Neural
Information Processing Systems, volume 13, 2001.

Appendix
Proof of Proposition 1:6 First, by using Taylor series expansion
of Φ(Θt) around Θ∗, we have:

Φ(Θt) = Φ(Θ∗) + Φ′(Θ∗)(Θt − Θ∗) + ... (11)

In the vicinity of Θ∗ (for sufficiently large t), we have the follow-
ing linear approximation:

Θt+1 − Θ∗ ≈ Φ(Θt) − Φ(Θ∗) = Φ′(Θ∗)(Θt − Θ∗) (12)

For a fixed η, consider γ1, ..., γk being the non-zero eigenvalues
of Φ′(Θ∗). The corresponding eigenvectors v1, ..., vk form an
orthonormal basis for the real k-subspace Ω.7 Assume that within
some neighborhood of Θ∗ (for sufficiently large t), (Θt − Θ∗) ∈
Ω, in which case a vector (Θt −Θ∗) can be represented uniquely
as (Θt − Θ∗) = � k

i=1 civi. Moreover

Φ′(Θ∗)(Θt − Θ∗) = � k
i=1 γicivi (13)

The application of Φ′(Θ∗) to (Θt − Θ∗) results in linear coeffi-
cients ci to be scaled by γi. Therefore the rate at which different
components of (Θt−Θ∗) shrink or stretch depends on the size of
the eigenvalues γi. To guarantee the shrinkage of each component
of (Θt − Θ∗), we require |γi| < 1 for i=1,...k. In this case:

‖ Φ′(Θ∗)(Θt − Θ∗) ‖ =

�
� k

i=1 γ2
i c2

i v
T
i vi ≤

ρη

���� k�
i=1

c2
i v

T
i vi = ρη ‖ Θt − Θ∗ ‖ (14)

with ‖ · ‖ denoting Euclidean norm. and ρη being the spec-
tral radius of Φ′(Θ∗): ρη=max|γ|. Clearly, the spectral radius of
Φ′(Θ∗) is defined as:

ρη = max{|1 − η(1 − λmax)|, |1 − η(1 − λmin)|}

with λmax and λmin being the largest and smallest eigenvalues
of M ′(Θ∗). And thus for any 0 < η < 2 we have ρη < 1. We
can now analyze the global rate of convergence of Φ′(Θt) in the
neighborhood of Θ∗. In particular, for sufficiently large t and any
0 < η < 2:

r =
‖ Θt+1 − Θ∗ ‖

‖ Θt − Θ∗ ‖
=

‖ Φ′(Θ∗)(Θt − Θ∗) ‖

‖ Θt − Θ∗ ‖

≤
ρη ‖ Θt − Θ∗ ‖

‖ Θt − Θ∗ ‖
= ρη < 1 (15)

Therefore in the vicinity of Θ∗ for any 0 < η < 2, BO(η)
algorithm is guaranteed to converge to the local optimum of the
objective function.

Proof of Proposition 2: We have established that the global rate
of convergence of the BO(η) algorithms is upper bounded by:

r ≤ max{|1 − η(1 − λmax)|, |1 − η(1 − λmin)|}

Clearly, the fastest uniform global rate of convergence is obtained
when |1−η(1−λmax)| = |1−η(1−λmin)|. We can now easily
derive that η∗ = 2/(2 − λmax − λmin). Since 0 ≤ λmin ≤
λmax < 1, we have

η∗ = 2/(2 − λmax − λmin) ≥ 1 (16)

6Our proof is similar in spirit to [1, 14].
7We note that M ′(Θ∗) has exactly the same eigenvectors with

eigenvalues defined as λi = 1 − (1 − γi)/η for i = 1, ..., k.

