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Abstract. We apply a constrained Hidden Markov Model architecture
to the problem of simultaneous localization and surveying from sensor
logs of mobile agents navigating in unknown environments. We show the
solution of this problem for the case of one robot and extend our model
to the more interesting case of multiple agents, that interact with each
other through proximity sensors. Since exact learning in this case be-
comes exponentially expensive, we develop an approximate method for
inference using loopy belief propagation and apply it to the localization
and surveying problem with multiple interacting robots. In support of
our analysis, we report experimental results showing that with the same
amount of data, approximate learning with the interaction signals out-
performs exact learning ignoring interactions.

1 Introduction

In the following, we study the problem of analyzing sensor logs created by mobile
agents navigating in unknown environments. We assume that the environment
is static, so that any variation in the sensors is caused by the movement of the
agents in the world. Our goal is to develop algorithms for localization when the
environment is known and also for simultaneous localization and identification
of the environment, which we dub “surveying”. We also consider the situation
of multiple agents that have limited but nontrivial interaction as they explore.
All of these problems can be cast as statistical estimation computations and
approached using techniques of probabilistic inference.

Simultaneous localization and surveying (SLAS) is distinct from the well
known simultaneous localization and mapping (SLAM) problem. In SLAS we
are not trying to learn the occupancy grid of a world, rather we are trying
to learn the values that various sensors (e.g. altitude, temperature, light level,
beacon signals) take on as a function of position in the unknown environment.
Furthermore, we cannot control the movement of the agent, we can only analyze
the sensor logs recorded as it traverses the world. This task is motivated by
agents (for example mobile planetary rovers) which generally operate in open
spaces, collect temporal histories of multiple sensors, and cannot rely on the
odometry of self-locomotion (e.g. because they are navigating extremely rough
terrain or not using conventional wheels).
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Fig. 1. Typical noisy sensor readings seen by a single agent. The first three sensors are
continuous valued sensors; the fourth is a wall-detecting binary sensor. The proximity
sensor indicates whether an agent is in the close proximity with other agents.

Figure 1 shows the typical input to a single agent (robot) in the scenario we
are studying. Each robot moves through the environment under the control of an
external navigation algorithm that we cannot influence. As it proceeds, it logs
readings from multiple noisy sensors, some of which may be smoothly varying
functions of its position in the world and others of which may be intermittent
or discontinuous. No odometry or other information about navigational control
signals (either intended or realized) is available to the agent. When there are
multiple agents navigating the environment at the same time, and they interact
in some way, the problem becomes much more rich. (Without interaction, the
pooled data from all agents is almost identical to one longer data stream from
a single agent.) In the following, we consider a very simple type of interaction:
we assume that agents can detect each other when they are in close proximity.
The most general problem we wish to solve is to simultaneously discover the
trajectories taken by each robot (localization) and to learn the values of each
sensor variable across the environment (surveying).

We approach the localization task as one of state inference in a probabilistic
model and the surveying task as one of unsupervised learning of the model pa-
rameters. In the inference problem, the location of each agent over time is treated
as a hidden variable that is to be inferred, conditioned on the observed sensor
readings (and possibly proximity interactions with other agents). Inference on its
own assumes we are given the model survey parameters, which specify the distri-
butions of sensor values as a function of position across the space. The learning
problem addresses the estimation of these model parameters (sensor map) given
the agent locations over time. The two problems are interconnected, since to
localize, an agent must know the sensor map, but to contribute to the learning
of this map, it must have an estimate of location in the unknown environment.

One very effective way of tackling these problems is to discretize the world
into small spatial cells and to identify each such cell with a discrete state in a
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dynamic Bayesian network such as a Hidden Markov Model (HMM) or a series
of coupled HMMs. When the state is low-dimensional (e.g. containing only a
two dimensional position and no orientation information), this discretization
is expensive but possible. However, in higher dimensions the number of cells
required scales prohibitively. In fact, this discretization is simultaneously the
source of the algorithm’s power and its greatest computational challenge.

Once discretized, we can treat the state as a latent variable and apply stan-
dard statistical learning methods for discrete state models. The key insight is
that by identifying each state in the hidden Markov model with some small
spatial region of the continuous world space, it is possible to naturally define
“neighbouring” states as those which correspond to connected regions in the
underlying space. The transition matrix of the HMM can then be constrained
to allow transitions only between neighbors; this means that all valid state se-
quences correspond to connected paths in the continuous space. The transition
matrix does not need to be explicitly stored or learned, it is merely computed
by a function that respects the state topology; the remaining parameters of the
model scale only linearly with the number of states[12].

For a single agent, or multiple non-interacting agents, the learning and infer-
ence algorithms are identical to those for standard HMMs trained on multiple
observation sequences, except that the transition matrix of the HMM is fixed by
the spatial topology of the problem and is not updated during learning.

Another way to address the problem is to represent the state of each agent
using a distribution over the continuous domain of the random variables. Be-
cause the distribution on these variables can be highly complex and multimodal,
the most natural representation is to store a set of (weighted) samples as an
approximation of the distribution. The greatest advantage of this approach is
that it does not require discretization of the entire state space and thus does not
scale up prohibitively with the number of spatial cells. This general approach
is known as “particle filtering”, and the central technical challenge is how to
update the particles to efficiently represent the state posterior.

In this work, we take the very simple approach of searching only for the
mode of the true posterior, and use a single particle at each time to represent
the state of the agent. Optimizing this set of particles to find the maximum a
posteriori state trajectory is a very difficult search problem. We use the embed-
ded hidden Markov model architecture discussed by [9, 10] as our search engine.
(Although originally it was proposed as a more sophisticated method for draw-
ing samples from the exact posterior.) The search begins by forming a pool of
possible candidate states at each time, candidates, representing the agent’s pos-
sible locations in the unknown environment. Given the pool, we can restrict the
agent’s state to only those values represented by candidates at each time, and
thus define an “embedded HMM”, whose discrete states are the indices within
each pool time. By performing efficient Viterbi-style decoding, we can find the
most probable trajectory of the agent, constrained to pass only through the ex-
isting pool states. If we always include the current best estimate of the state
into the pool of candidates at each time, we are guaranteed to either find a new
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and improved (more probable) state sequence or to retain the same trajectory
we currently have. After the dynamic programming, we create a new pool by
randomly sampling states at each time in the vicinity of the current best state
estimate.

The most difficult and interesting case we explore in this work is that of mul-
tiple agents that navigate through the environment simultaneously and interact
in some way with each other. In this case, exact inference requires estimating
the joint state of all agents, and quickly becomes exponentially expensive be-
cause the effective state space is the product of the state spaces of the individual
robots. For the case of discretized world, we develop an approximate but ef-
ficient and accurate method for solving this multiple-inference problem using
belief propagation (BP). We apply our BP algorithm to the localization and
surveying problem with multiple interacting robots and show that approximate
learning using multiple agents with interaction signals outperforms exact learn-
ing using the same amount of data but ignoring the interaction signals that make
the problem more difficult.

2 Localization with a Single Robot

In this section we develop techniques to solve the localization problem for a
single robot, which navigates in an unknown environment and records some
observations (continuous or binary) from its sensors. We denote the observation
at (discrete) time t from sensor c by yct, the entire vector of sensor readings at
time t by yt, and the unknown state (location) of the robot at time t by st.

The probabilistic graphical model that relates the empirical observation se-
quence Y = {y1, ..., yT } to the hidden state sequence S = {s1, ...sT } is shown
in figure 2. This model specifies a factorization of the joint distribution between
the trajectory and the observation sequence as:

p(Y, S) =
∏

t

p(st|st−1)p(yt|st) (1)

Our goal in localization is to find the optimal trajectory given a sequence of
observations:

arg max
S

log P (S|Y ) = argmax
S

∑

t

[
log P (st|st−1) + log P (yy|st)

]
(2)
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Fig. 2. The graphical model that displays the relationship between the state sequence
s1, ..., s4, and the empirical observation sequence y1, ..., y4. for t = 1, .., 4 time steps
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Later, when we are interested in identifying the parameters (survey maps)
of the unknown world, our goal will be to maximize the likelihood of the obser-
vations given the (survey) parameters, integrating (summing) over all possible
paths the robot could have taken:

max
θ

log P (Y |θ) = log
∑

S

∑

t

[
log P (st|st−1, θ) + log P (yy|st, θ)

]
(3)

As a byproduct of this parameter learning we will end up inferring the
marginal posterior of the robot’s position at each time, thus also performing
a form of average localization. (It is also possible to use our inference about the
single most probable (Viterbi) path of each agent to do a form of MAP learning,
although in the discussion below we focus on maximum likelihood estimation
which sums over all possible paths.)

2.1 Discretizing the World

Our first approach to solving the localization problem is to discretize the world
into small spatial cells. By identifying each state in a hidden Markov model with
some small spatial region of a continuous space, it is possible to naturally de-
fine neighboring states as those which correspond to connected regions in the
underlying space, which leads us to the constrained HMM architecture [12]. The
transition matrix of the HMM is precomputed to allow transitions only between
neighbors; this means that all valid state sequences correspond to connected
paths in the continuous space. The transition matrix does not need to be ex-
plicitly stored or learned, it is merely computed by a function that respects the
state topology; the remaining parameters of the model scale only linearly with
the number of states. Given these constraints, localization reduces to inference
in this sparsely connected HMM, and can be solved using the well known Viterbi
decoder.

To represent the world map of each continuous sensor c, we assume a con-
ditional Gaussian model given the index of the discrete state: P (yct|st = i) =
N (yct; mc

i , σ
c
i ). For binary sensors d we assume a simple Bernoulli model: P (ydt =

1|st = i) = md
i . We assume that the noise in the sensor observations is uncorre-

lated from sensor to sensor and also over time (white).
An example of using this approach for localization (given knowledge of the

sensor maps) is presented in figure 3 (left panel). Note that inference using this
approach will always be only approximate due to the discretization error.

The discretization of the continuous state space can be very expensive and
presents the model’s greatest computational challenge. In higher dimensions or
for very large areas requiring fine spatial resolution to reduce the discretization
error, the number of cells required scales prohibitively. To alleviate this problem,
we can represent the state of the robot using continuous random variables, as
discussed in the following subsection. However, the optimization (search) prob-
lem of finding the best path given a history of sensor readings become extremely
difficult.
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Fig. 3. Display of the discretized approach (left panel) and embedded HMM approach
(right panel) to the robot localization problem, given the true map of sensor readings.
The ”o”s indicate the time slices when the true observation was taken, and ”x”s indicate
the inferred path taken by the robot.

2.2 Continuous Representation

To avoid the exponential cost of discretization as well as the unavoidable estima-
tion error it imposes on localization, we can attempt to represent the trajectories
of each agent using truly continuous random variables. However, two major dif-
ficulties arise when taking this approach: first, how should we represent a joint
distribution over states at all times and second, how should we optimize this
distribution given the sensor readings and the maps? These issues are central to
the study of inference in all nonlinear dynamical systems and various approxi-
mation solutions have been proposed. Here, we follow the common programme
of representing the distribution using sample trajectories, this approach is often
called “particle filtering” or “Monte Carlo filtering”.

We consider the robot’s continuous trajectory to be a sequence of unknown
positions L = {�1, ..., �T } and our goal is to infer something about L given
the empirical observation sequence Y = {y1, ..., yT } and the known observation
functions p(yc|�) for each sensor. In the most ambitious setting, we could attempt
to infer the full joint posterior over L given Y , but as a first step we consider
only finding the mode of L, i.e. the most likely trajectory given the observations.

For this search, we apply the embedded hidden Markov model[9, 10] as a
simple optimization technique to solve the localization problem without the
need to discretize the world. The optimization starts with some initial guess
L̂ = {�̂1, . . . , �̂T } of the state trajectory, perhaps from a very coarse discretiza-
tion or other approximation. At each step of the search, we create a pool of can-
didate states at each time. The pool contains K members, representing possible
locations of the agent at each time step t. The candidate states within each pool
are generated according to a proposal distribution Qt(�̂t). In our experiments we
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Fig. 4. Display of one iteration of the embedded HMM optimizer. Left panel shows
part of the robot’s true and currently inferred trajectory, where the ”x”s indicate the
time slices when the true observation was taken, and ”o”s indicate the currently inferred
path taken by the robot. The middle panel displays the candidate states (dots) within
each pool along with the more probable path after performing Viterbi decoding. The
right panel shows the true along with the newly inferred trajectory.

have used simple Gaussian proposals with the mean set to the current guess �̂t

and a fixed (isotropic) covariance equal at all time steps: Qt = N (�̂t, σI). This
encourages the points placed into the pool to represent plausible alternatives to
the current guess �̂t about the state at time t. Crucially, we also include the
current guess in the pool.

If we now constrain our search to only consider locations represented by pool
states, the collection of pools across time define an “embedded HMM”, whose
K +1 states are the indices within each pool. By performing Viterbi decoding on
this resulting embedded HMM, we can efficiently search through an exponential
number of trajectories to find the best one. As well, we are guaranteed to always
find a trajectory that increases P (L̂|Y ) or leaves it the same, since the current
guess at each time is always included in the pool. The optimization is repeated
until several steps have passed with no change to our best trajectory estimate.
The complete inference algorithm using embedded HMM is given below:

Localization Algorithm using Embedded HMM:

• Initialize L̂ = {�̂1, ..., �̂T }
• Repeat until a better trajectory cannot be found:

– Form pools of candidate states for each time step t by:

• Including the current state �̂t at time t into the pool for time t
• Sampling K other candidate states for each pool from Qt(�̂t)

– Define an embedded HMM, whose K+1 states are the indices within each pool
– Perform Viterbi decoding to select the new trajectory L̂new through the pool

states that increases P (L|Y ) or leaves it the same.
– Set L̂ = L̂new

Of course, the initial trajectory estimate greatly affects the quality of the
final path returned by the search. If we were to randomly initializing the initial



320 Sam T. Roweis and Ruslan R. Salakhutdinov

guess, the algorithm would often get stuck in a poor local optimum. To avoid
this problem, we first subsample time by forming blocks of contiguous sequential
empirical observations (each block containing N observations). The embedded
HMM optimizer is then applied as above, using only one pool per block to find
a coarse estimate of the trajectory, effectively subsampled by a factor of N. This
will help our algorithm to roughly locate the parts of the sensor maps that best
explain each block of empirical observations. Once convergence of the search has
been achieved at the coarse level, the resulting estimate is then used as an initial
trajectory input into a finer level of grouping, and so on until the full resolution
of the problem is reached.

An example of using embedded HMM approach for localization (given the
sensor maps of the world) is presented in figure 3 (right panel). First, the em-
bedded HMM optimizer is applied for the blocks of N=20 sensor observations,
then for blocks of length N=10 (using the final trajectory from N=20 as the
initialization); then N=5 and finally at the full resolution of the problem.

From the results in figure 3, it can be seen that the embedded HMM is capable
of achieving arbitrarily good accuracy in reconstructing the agent trajectories,
while the discrete state constrained HMM approach is ultimately limited by
the discretization error of the grid. However, the discrete state representation
allows us to easily represent and compute a distribution over state trajectories,
for example by computing the marginal uncertainty of state occupations at each
time. Such a distribution will be useful for learning the parameters of an unknown
world, as discussed below.

3 Simultaneous Localization and Surveying

We now turn our attention to the more ambitious problem of analyzing sensor
logs from agents operating in unknown environments. Here, our goal is to simul-
taneously learn (identify) the sensor maps describing the world and localize the
agents by estimating their trajectories. We have dubbed this problem Simulta-
neous Localization and Surveying (SLAS), in contrast to the related problem of
Simultaneous Localization and Mapping (SLAM).

Of course, the SLAS problem is only solvable up to certain identifiability
limitations. The absolute rotation and reflection of the true world map can never
be recovered since rotating or flipping the world and simultaneously rotating and
flipping our trajectory estimates will result in identical likelihood of the observed
sensor logs. Similarly, the scale of the world cannot be recovered unless we have
prior knowledge about the agents velocities. However, up to these degeneracies,
the problem is still worth investigating, as we show below.

3.1 Single Agent

For the case of discretized world, and a single agent, we can use the well known
EM algorithm for learning the parameters of the effective Hidden Markov Model
being used to model the world. In the case of HMMs, the EM algorithm is known



Simultaneous Localization and Surveying with Multiple Agents 321

as Baum-Welch, and the associated equations are very well known. In our case,
the HMM is highly constrained, which makes learning much easier since we do
not need to estimate the state transition matrix. This matrix is fixed by the
spatial topology of states, allowing transitions only between neighbors, and is
not updated during learning. In fact, the sparsity of the spatial topology results
in very efficient inference and learning, since very few entries of the transition
matrix are nonzero and sums need be performed only over these. The learning
equations for the output distributions of each state, which represent the sensor
maps, are the same as for a regular HMM. Inference is performed using the stan-
dard forward-backwards recursions, which are a special case of belief propagation
applied to the graphical model of the HMM.

An example of simultaneously learning the survey parameters and estimating
the agent’s trajectory is shown in the second row of figure 7.

When the sensor maps are known a priori, localization can be performed opti-
mally, and given only a small amount of data it is usually possible to discover the
trajectory of the agent quite accurately. However, when simultaneously learning
the maps and performing localization the problem is much harder. With small
amounts of data (short trajectories), parts of the environment map that have
similar patterns of sensor readings are difficult to distinguish from one another.
Therefore a single robot may have difficulty accurately localizing itself.

The problem can be alleviated by having multiple robots which explore the
environment simultaneously and interact with each other, for example through
proximity sensors. (If the robots were not interacting, the problem would be
exactly equivalent to that of a single robot who explored the environment on
several independent excursions.)

In the interacting agents case, exact learning requires inferring the joint state
of all robots, and quickly becomes exponentially expensive because the effective
state space of the HMM is the product of the state spaces of the individual
robots. In the next section we develop an approximate but efficient method for
inference in this case using belief propagation and apply it to the SLAS problem
with multiple interacting robots.

3.2 Multiple Interacting Agents

Consider a scenario in which multiple robots explore the environment simultane-
ously and interact with each other by communicating signals between them. In
what follows, we only consider a very simple form of interaction: the robots are
equipped with proximity sensors which notify them when they are near another
robot. The proximity signal includes the identity of the other agent encountered,
but not a relative heading.

The new graphical model relating empirical observation sequences, interac-
tion signals, and hidden state sequences is shown in figure 5 for two robots and
four time steps. This model is very similar to the Factorial HMM[4], except that
there are both private outputs from each chain (in our case the sensor readings
of each robot) as well as shared outputs (in this case the interaction signals).
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Fig. 5. The graphical model, that displays the relationship between state chains of
two agents S1 = {s1, ..., s4}, S2 = {s1, ..., s4}, their empirical observations, and the
interaction signals z1, ..., z4 for 4 time steps. The interaction signal zt is shaded if it is
on, which forces the state chains to become coupled.

Note that, even though the state chains are a priori independent, once we
condition on the interaction evidence, the chains become coupled. This makes
inference much more difficult (and similarly learning, which requires inference),
since we can no longer run the simple forward-backward recursions independently
on each robot’s chain. Of course, the factorial representation of the coupled HMM
can always be transformed into a regular HMM, whose effective state space is
the Cartesian product of the state spaces of the individual robots. However,
inference in this “flattened” model requires working in the joint state space of
all robots and quickly becomes exponentially expensive.

Several approaches can be taken to tackle this challenging inference compu-
tation. Stochastic sampling algorithms, usually based on importance sampling
or Markov Chain Monte Carlo[5] can provide randomized (but often unbiased)
estimates of state occupation statistics. One can also employ structured varia-
tional approximations to the posterior over hidden states, similar to the ones
discussed in [4], and proceed to optimize a lower bound on the likelihood.

Another alternative is to apply a class of approximate (i.e. biased) inference
algorithms that are based on belief propagation [11]. Of course, for the uncoupled
HMM, the standard HMM inference algorithms are exactly equivalent to belief
propagation on a particular junction tree constructed from the original graphical
model. For the coupled HMM, we derive below an approximate method for
inference which uses loopy belief propagation (LBP) on the equivalent junction
tree. Loopy BP passes messages exactly as in regular belief propagation, ignoring
the cycles in the graph. The messages are passed according to a predetermined
schedule and beliefs are updated in the standard way. Although approximate,
LBP has proved to be very successful in practice in many other domains[3, 2]

In theory, LBP runs the risk of “overcounting” information, and thus may
not converge or may converge to the wrong answer. However, for our particular
problem we find the algorithm very suitable. Indeed, it has been observed in
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Fig. 6. Factor graph representation of the original Bayes net along with message
propagation.

practice that if the original graph does not contain dense loops, LBP usually
converges and produces very good approximation. In terms of our setup, if the
interaction signals are infrequent (robots do not meet each other very often), then
our graphical model will have exactly this characteristic of large, loosely coupled
cycles; which is well matched to loopy propagation. In the experimental section
we confirm this intuition: loopy BP on our graphs almost always converges to
sensible beliefs; and when it is used as the inference step in learning the resulting
maps accurately survey the true world sensor maps.

4 Localization with Multiple Agents: Loopy Propagation

The multiple agent localization problem focuses on inferring the most probable
trajectories (state sequences) of each agent conditioned on the observed sensor
readings of all agents, and the proximity interactions between agents.

To solve this problem, we first pursue only the mode of the joint distribution
over agent trajectories. That is, we try to find the single set of trajectories (one
for each agent) that simultaneously explain the interaction signals and the sensor
logs of each agent as well as possible.

Our approach is to develop below the variant of LBP known as max-product
loopy belief propagation [13]. This is exactly the equivalent of Viterbi decoding
for coupled HMMs. To derive the necessary equations, we first convert the orig-
inal Bayes net (fig. 5) to its factor graph (fig. 6) representation [7]. The factor
graph contains both variable nodes and factor nodes and is bipartite: edges exist
only between variables and factors. Messages flow only from factor nodes to vari-
ables and back, but never between factors or between variables. Once a variable
node has received messages from all other neighboring factor nodes it takes the
product of these messages and delivers it to the destination factor node. The
message that a factor node f sends to a variable node x is the maximum over
all quantities not present in x of the product of all the incoming messages to f
from other neighboring variable nodes y. The incoming messages to f are also
multiplied by the potential function defined at f before the max is taken:
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µx→f (x) =
∏

h∈neigh(x)\{f}
µh→x(x) (4)

µf→x(x) = max
X\x

f(X)
∏

y∈neigh(f)\x

µy→f (x) (5)

(Note that if we ignore the proximity interactions, the max-product algo-
rithm reduces to performing Viterbi decoding separately on each robot’s state
chain given its sensor observations, i.e. treating it as a regular HMM.) All that
remains is to specify a message passing schedule. In principle, one could apply
any schedule including running the above updates in parallel. We choose a mes-
sage passing schedule in which we cycle through chains, passing messages across
time for one chain, then from that chain to all others (using the proximity poten-
tials), and then across time in the next chain. In effect, we are performing Viterbi
on each chain, taking into account both its observations and the effect of the
messages it receives from other chains (which appear as pseudo-observations).
This schedule is sometimes known as “chainwise Viterbi”.

To formalize the algorithm, we must define the proximity (interaction) po-
tential function fqr(sq, sr) that couples robots r and q. In general, one would like
to account for noisy interaction signals which are functions of the true separation
of the robots. In many applications, the proximity sensors have an extremely low
false positive rate, and a moderately low false negative rate. To make inference
efficient, and keep the loops in our graphical model as large as possible, we ap-
proximate the proximity potential using the assumption that the false positive
rate is zero. Thus, at time slice t if a proximity signal between q and r is detected,
we set

f t
qr(s

q
t , s

r
t ) = N(sq

t , s
r
t )

where N(sq
t , s

r
t ) =

{
1 if sq

t and sr
t are neighbouring states

0 otherwise

Otherwise, if a proximity signal between q and r sensor is not observed (pt
qr =

0), we define fqr(sq, sr) to be a constant.
Note that this definition implies that when a proximity signal is observed,

both robots must be in neighbouring (or identical) states, which according to
our problem corresponds to neighbouring or identical discretized spatial cells.
(Ideally, the definition of the potential function could be more sophisticated,
but this would increase the complexity of inference.) The message at time slice
t that a variable node sq

t node sends to the factor node f t
qr takes the form:

µt
q→fqr

=
∏

h∈neigh(sq
t )\{ft

qr}
µh→sq

t
(6)

Then the message that a factor node f t
qr sends to the variable node sr

t is:

µt
fqr→r = max

sq
t

f t
qr(s

q
t , s

r
t )

∏

y∈neigh(fqr )\sr
t

µt
y→fqr

(7)

Initially, all messages are set to one.
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Max-Product Loopy Belief Propagation executed by each robot r:

• Define: δr
t (i) = maxsr

1 ,...,sr
t−1

p(sr
1, ..., s

r
t = i, yr

1, ..., y
r
t |Θ);

. ψr
t (i) = maxsr

T
,...,sr

t+1
p(sr

T , ..., s
r
t = i,yr

t+1, ..., y
r
T |Θ)

– Initialize δr
1(i) = πr

i p(y
r
1|sr

1 = i), ψr
T (i) = 1 1 ≤ i ≤ N ,

with N being the number of states.

– Induction for 1 ≤ j ≤ N and 1 ≤ i ≤ N :

δr
t+1(j) =

[
max

i
δr

t (i)Tij

∏

q:proximity

µt
q→r(i)

]
p(yr

t+1|sr
t = j); 1 ≤ t ≤ T − 1

ψr
t (i) = max

j
Tijp(y

r
t+1|sr

t = j)ψr
t+1(j)

∏

q:proximity

µt+1
q→r(j) t = T − 1, ..., 1

– Termination: Compute local beliefs and a new set of messages.

γr
t (i) =

δr
t (i)ψr

t (i)
∏

q µ
t
q→r(i)∑

j δ
r
t (j)ψr

t (j)
∏

q µ
t
q→r(j)

For proximity signals, where Z is the normalization constant

µt
r→q(i) =

1

Z
max

sr
t

[
f t

rq(s
r
t , s

q
t = i)δr

t (i)ψr
t (i)

∏

p �=q

µt
p→r(i)

] ∀q

The final max-product algorithm run by each robot is given above. Our mes-
sage passing schedule is quite simple: we iterate through robots r = 1, 2, ..., R
sequentially, running the above max-product algorithm (which includes the ef-
fect of all incoming messages). Afterwords, the algorithm computes local beliefs
γr

t (i) and all outgoing messages µt
r→q are sent to all other agents. We monitor

the convergence of this LBP by the absolute difference between successive local
beliefs and continue passing messages until these stabilize which typically takes
4-5 iterations We have also experimented with running the the above message
updates in parallel, and obtained exactly the same results, although with slightly
slower convergence.

5 Multi-SLAS: Learning with Multiple Agents

The final problem we discuss is the most difficult: simultaneous localization and
surveying using sensor logs from multiple interacting robots. Our approach to
this problem is to employ a loopy belief propagation (LBP) method very similar
to the one from the previous section as the inference engine, and to alternate
between approximate inference using this new version of LBP and parameter
(sensor map) estimation based on the results of this inference.

To develop the new LBP equations, which we will use for learning, we focus
not on the mode of the distribution but on its marginals. In other words, we
use sum-product instead of max-product in an attempt to integrate over all
possible paths that the multiple agents could have taken. This is analogous to
the forward-backward (alpha-beta) procedure for a single HMM but now in the
case of our coupled HMM chains. Once again, we convert the original Bayes net
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to its factor graph representation. As before, once a variable node has received
messages from all other neighboring factor nodes it takes the product of these
messages and delivers it to the destination factor node. However, in contrast to
the max-product algorithm, the message that a factor node sends to a variable
node is the marginalized product of all the incoming messages from its other
neighboring variable nodes, multiplied by its current potential function:

µx→f (x) =
∏

h∈neigh(x)\{f}
µh→x(x) (8)

µf→x(x) =
∑

X\x

f(X)
∏

y∈neigh(f)\x

µy→f (x) (9)

Such algorithms are thus often termed “sum-product” algorithms. We employ
a message passing schedule identical to the one used for max-product loopy
propagation. Using the same potential functions as before,the message at time
slice t that a variable node sq

t node sends to the factor node f t
qr takes the form:

µt
q→fqr

=
∏

h∈neigh(sq
t )\{ft

qr}
µh→sq

t
(10)

Then the message that a factor node f t
qr sends to the variable node sr

t is:

µt
fqr→r =

∑

sq
t

f t
qr(s

q
t , s

r
t )

∏

y∈neigh(fqr )\sr
t

µt
y→fqr

(11)

Sum-Product Loopy Belief Propagation executed by each robot r:

• Define: αr
t (i) = p(yr

1, ..., y
r
t , s

r
t = i|Θ); βr

t (i) = p(yr
t+1, ..., y

r
T , s

r
t = i|Θ)

. γr
t (i) = p(sr

t = i|Y,Θ)

– Initialize αr
1(i) = πr

i p(y
r
1|sr

1 = i), βr
T (i) = 1 1 ≤ i ≤ N ,

with N being the number of states.

– Induction for 1 ≤ j ≤ N and 1 ≤ i ≤ N :

αr
t+1(j) =

[ ∑

i

αr
t (i)Tij

∏

q:proximity

µt
q→r(i)

]
p(yr

t+1|sr
t = j); 1 ≤ t ≤ T − 1

βr
t (i) =

∑

j

Tijp(y
r
t+1|sr

t = j)βr
t+1(j)

∏

q:proximity

µt+1
q→r(j) t = T − 1, ..., 1

– Termination: Compute marginal beliefs and a new set of messages

γr
t (i) =

αr
t (i)β

r
t (i)

∏
q µ

t
q→r(i)∑

j α
r
t (j)β

r
t (j)

∏
q µ

t
q→r(j)

For proximity signals, where Z is the normalization constant

µt
r→q(i) =

1

Z

∑

sr
t

[
f t

rq(s
r
t , s

q
t = i)αr

t (i)β
r
t (i)

∏

p �=q

µt
p→r(i)

] ∀q

Initially, all messages are set to one. Note that in our problem setting, the
messages that are being passed from one robot to another can be interpreted as
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a local marginal belief about the state distribution that different robots have.
LBP essentially tries to insure the consistency of these different local beliefs at
the times when proximity signals are observed.

We iterate through robots r = 1, 2, ..., R sequentially, running the above in-
ference algorithm. When completed, the algorithm has computed γr

t (i) and all
outgoing messages µt

r→q are sent. We monitor the convergence of this LBP by
the absolute difference between successive marginal beliefs and continue passing
messages until these stabilize (which typically takes 15-20 iterations) or until
a maximum number of iterations, which we set to 25, has been reached. After
inference has converged, we perform an M-step to update the model parame-
ters Θ and then repeat the iterative inference procedure before updating the
parameters again.

The final learning and inference algorithm is given below.

Learning Algorithm for Multiple Interacting Robots :

• Repeat until parameters converged or maximum number of learning iterations

– E-step: Perform Inference Step (see above box)

• While inference not yet converged and below maximum inference iterations
∗ Run modified FB recursion for each robot r = 1, ..., R, which

· takes into account the incoming messages from other robots
· computes marginal beliefs about robot’s state occupation
· sends appropriates messages to other robots.

• If inference does not converge, Run standard FB on disconnected state
chains.

• Compute marginal beliefs

– Perform an M-step to update parameters

In rare cases, when LBP fails to converge, we may make some further approx-
imations. (However, in all of the examples presented here this never occurred.) It
is possible to employ ”damped” versions of LBP [8] which often converge empir-
ically, or resort to more tedious and slow double-loop algorithms that are always
guarantee to converge [6]. However, it is generally believed that the accuracy of
the answers returned by these damped or double-loop algorithms in cases where
regular LBP has trouble converging may be quite poor. In more complex exam-
ples when LBP failed to converge, we simply ignore all robot interactions for one
iteration, and just run the standard forward-backward (FB) recursions on the
disconnected state chains in parallel. We then perform an M-step as usual and
return to loopy propagation at the next inference step.

6 Experimental Results

We experimented with single and multiple robots in a 15x15 grid world using
simulated logs from 3 continuous valued and 1 binary valued sensor. The func-
tions defining the 3 continuous sensors were generated at random using mixtures
of small numbers of Gaussians. The binary sensor measures contact with the wall
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(world edge), using the output model P (ywall = 1|st = i) = 1 − ε if i is a wall
state and zero if i is not a wall state. In our simulations, ε = 0.1 Smooth,
continuous trajectories of nonconstant velocity were generated and sampled at
regular time intervals. The values of the 3 sensors at these continuous positions
and discrete times was corrupted with Gaussian noise of standard deviation 0.1,
with the scale of sensor readings being from 0 to 1. (In our experiments we as-
sumed that the output model for the binary sensor only was known to the robot:
in effect this lets the robot guess when it has reached the limits of the region
it is exploring, although it does not know which of the four wall it might be
contacting.)

Figure 7 (top panel) shows the true sensor maps for the continuous sensors,
along with a subsequence of one continuous trajectory. It also shows the state
discretization of the world as dotted lines. In total, we generated 4 sequences of
2500 noisy observations where each observation consisted of 3 continuous valued
and 1 binary valued sensor (fig 1).

Figure 7 (second from top panel) shows the results of applying our SLAS al-
gorithm assuming that these 4 sequences were generated by 4 separate excursions
by a single robot (or 4 excursions by non-interacting robots). The reconstructed
maps have been flipped vertically for the display, since of course the algorithm
cannot recover absolute orientation. (Of course the sensor maps we estimate
are piecewise constant at the scale of the grid resolution; but graphically some
smoothing has also taken place when drawing the contour lines.)

The average RMS localization error between our reconstructed trajectories
(computed using Viterbi decoding in this case) and the true trajectories is only
1.02 times the grid size (averaged over all reconstructed trajectories). This im-
plies that, on average, we can estimate the agents’ locations to within our dis-
cretization error limit.

Figure 7 (middle panel) shows the results of applying our multi-SLAS algo-
rithm, assuming that the 4 trajectories were executed in two excursions by two
interacting robots. Notice that the same total amount of data is used, except for
the inclusion of the proximity sensors (in fact exactly the same data traces are
used, we just pretend they came from two robots instead of four). The proximity
signals were generated with probability 1 − δ if the true (continuous) positions
of the robots were within a distance of 1.0 grid units and with probability zero
otherwise. (Notice that this is a slightly different process than the one assumed
by the robots during inference.) In our experiments, δ = 0.1. This resulted in
proximity signals being observed at 3-5% of timesteps for each agent on average.
Keep in mind that the proximity signals for each robot are noisy and this noise
is independent; this means that at time t robot p may detect robot q but not
vice versa.

We can see that by trying to enforce consistency between the robots using
LBP, our approximate algorithm improves the survey map as well as the trajec-
tory reconstructions as compared to exact inference without interaction signals.
(The RMS position error in this case went down to 0.81.)
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True Maps

Sensor 1 Sensor 2 Sensor 3

One Robot

Two Robots

Four Robots

Fig. 7. Display of the true three (left to right) maps of sensor readings along with the
part of the true trajectory taken by the robot (top panel), reconstructed maps with
inferred trajectories for one (second), two (third) and four (bottom) robots. The ”o”s
indicate the time slices when the true observation was taken, and ”x”s indicate the
inferred path taken by the robot.
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Finally, Figure 7 (bottom panel) shows the results of running our multi-
SLAS algorithm assuming four robots navigated the space simultaneously. The
pairwise proximity signals were generated as above. In this case, the survey and
trajectory reconstructions have further improved. (RMS position error is 0.76.)
Because there were more agents, the graph in this case contains proximity signals
at 10-12% of the timesteps.

7 Discussion & Conclusions

In this paper, we have presented a variety of algorithms for solving the simul-
taneous surveying and localization problem when an unknown environment is
explored by multiple interacting agents. Although a simple discretization of the
world leads to a tractable constrained HMM architecture in the case of a single
agent, multiple interacting agents cause exact learning and inference to become
exponentially expensive. Rather than ignoring interactions, we have derived an
efficient approximate multi-agent inference algorithm for this architecture based
on Loopy Belief Propagation. Although our algorithm does not perform exact
inference, we have shown on simple grid world experiments that its performance
– both in terms of survey parameters and localization – is superior to performing
exact inference while ignoring agent interactions. Other approximate inference
methods, especially those based on applying particle filters [1], have been ap-
plied to mobile robotics, but this work has focused on mapping occupancy grids
(SLAM), and on the single agent setting.

One particularly intriguing byproduct of our learning algorithm is that the
intermediate state marginals Γ (i) =

∑R
r=1

∑T
t=1 γr

t (i) contain the estimated oc-
cupancy numbers for each grid state. These estimates can potentially be used
for traditional mapping (SLAM): states with very low occupation numbers likely
correspond to inaccessible regions. Also, these values could be returned as feed-
back signals to the control algorithm driving the robots to indicate which areas
of the world need to be explored further, in the consensus opinion of all agents.
Figure 8 displays this statistic for single-robot, two-robot and four-robot ex-
periments using the same data as in the other experiments. It is interesting to
note that the map and trajectory reconstruction are inaccurate precisely in areas
where we think we are most uncertain about the world according to Γ .

For localization with a single agent, we have also investigated a continuous
trajectory representation which avoids the need to discretize the world. In this
setting we have successfully employed the embedded HMM architecture as an op-
timizer and found that it achieves excellent localization results avoiding both the
computational cost and the discretization performance limit of our constrained
HMMs.

We are currently developing SLAS algorithms based on the discretization-
free continuous representation and using the embedded HMM optimizer. We are
particularly interested in possible extensions to the multiple robots case both for
localization and for multi-SLAS. Ultimately, we hope to apply these algorithms
to real data from teams of mobile agents, for example planetary rovers.
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Fig. 8. Display of uncertainty about the current state distribution for 1 robot (left),
2 robots (middle), and 4 robots(right). The uncertainty is measured by Γ . For visual-
ization purposes we display 1/Γ , so white cells correspond to the states which robots
are most uncertain about.
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