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1. Introduction

Initialization is an important consideration in deep learning (DL) to avoid vanishing/exploding gradients
and local optima. Despite the long history of this topic, most techniques still incorporate randomness.
Indeed, such delicate schemes therefore introduce variability and difficulty in reproducing experiments.
Conversely, deterministic (i.e. non-random) schemes can directly address the latter issues but are often
suboptimal or less generalizable. Finding the “sweet spot” remains an area of interest.

2. ZerO Initialization: Initializing Neural Networks with only Zeros and Ones

Zhao et al. (2022) introduced ZerO, a deterministic scheme that initializes layers of a neural network with
a product of identity (depending on shape changes) and Hadamard transforms.

Definition 1 (Partial Identity) The partial identity matrix I∗ ∈ Rl×r is defined:

I∗ :=


(I,0),where I ∈ Rl×l,0 ∈ Rl×r−l (contraction) if l < r

I,where I ∈ Rl×l (passthrough) if l = r

(I,0)T ,where I ∈ Rr×r,0 ∈ Rr×l−r (expansion) if l > r

(1)

Definition 2 (Hadamard) With H0 = 1, any Hadamard Hm ∈ R2m×2m is expressed recursively:

Hm :=

(
1 1
1 −1

)
⊗Hm−1 ∈ R2m×2m (2)

The authors remark: 1) adding random noise to I near-guarantees the layer is full-rank; 2) simply applying
I∗ upper-bounds every layer’s expressivity to the rank of the input; this is sometimes referred to as
feature symmetry and results in training degeneracy; and 3) introducing the Hadamard transform Hm at
expansion layers Wexpand ∈ Rl×r breaks said degeneracy.

Wexpand ← cI∗HmI∗,where m := ⌈log2(l)⌉and c := 2
1−m

2 (3)

While they used a multi-layer perceptron (MLP) on MNIST (LeCun et al., 1998) to validate their
theorem, Zhao et al. (2022) also experimented on ResNet-18 and ResNet-50 (He et al., 2015) for CIFAR-10
(Krizhevsky, 2009) and ImageNet Deng et al. (2009), respectively. ZerO consistently outperformed Kaiming
and Xavier initialization. On CIFAR-10 ZerO was on-par with or exceeded ReZero (Bachlechner et al.,
2020), Fixup (Zhang et al., 2019), SkipInit (De and Smith, 2020), and ConstNet∗ (Blumenfeld et al., 2020).
The authors also claim superior results for the Transformer on WikiText-2 (Vaswani et al., 2017).

In addition to improving reproducibility and allowing training ultra-deep networks without batch
normalization (Zhao et al., 2022), ZerO exhibits a monotonic low-rank learning trajectory. The authors
posit that it’s a pioneering case of greedy low-rank learning (GLRL), whereby low rank parameters are
maintained and slowly relaxed as needed during training to restrict model complexity.
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3. Custom Expressivity via Pruning ZerO

Low rank is (weakly) correlated with sparsity; the latter can potentially reduce redundancy and be
optimized at a systems-level. But they are roughly at odds with expressivity, a quality lacking in models
trained with degenerate regimes. A lower-rank and/or sparser model might not learn as much from new
data. This has implications for robustness (to outliers or out-of-distribution data) and transfer learning.

3.1 GLRL/Expressivity Tuning with Pruning

Because data is typically not homogeneous, it might be possible to prune ZerO-initialized matrices without
losing too much expressivity. As an exploration, I conducted experiments by modifying the initialization
schemes used by Zhao et al. (2022) in their MLP experiments on MNIST (LeCun et al., 1998). I came up
with some pruning techniques for every weight matrix in the MLP (Figure 1). Most of the MNIST digits
were roughly centred, which inspired me to target the outer edges of initialized matrices.
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Figure 1: 4× 4 matrix → {even/odd-indexed, top-left/bottom-right corner, trim-around} pruning.

Zhao et al. (2022) used a four-layer MLP with input dimension nx = 784 (MNIST images are 28×28) and
hidden dimension nh = 2048. The weights were of dimensions W1 ∈ Rnx×nx , W2 ∈ Rnx×nh , W3 ∈ Rnh×nh ,
W4 ∈ Rnh×nc where nc = 10 corresponds to classes of MNIST. All models were ZerO-initialized, pruned as
below, and trained to a stable 96%− 97% test accuracy.

Regular Interval Pruning I attempted to sparsify the matrices with a regular interval (roughly uniform
distribution) along the main diagonal. An interval of 2 means pruning even/odd-indexed entries (Figure 1).
The results show the matrix ranks immediately increase, supposedly to a point of redundancy; I suspect
this is perhaps due to the indiscriminate loss of information (Figure 2).

Corner Pruning Motivated by the many corners of some example images, I pruned entries from either
corner on the main diagonal. Matrix rank appears to finely and monotonically correlate with number of
entries pruned (Figure 3), implying that the the model can still learn expressively while remaining sparse.

Trim-Around Pruning Equivalent to corner pruning both the top-left and bottom-right corners.
Similarly, rank roughly increases in relation to trim-around pruning (Figure 4). In fact, trim-around
pruning might be more consistent compared to the assymetric results of corner pruning (Figure 3).

Due to MNIST’s simple and centred structure, it appears pruning from the edges provides the best
“tuning knob” to finely control expressivity/rank. Based on these experiments, custom-pruning weight
matrices initialized with ZerO (or elsehow) can: 1) take advantage of the deterministic nature (and
benefits) of ZerO; 2) increase sparsity where appropriate; 3) provide fine-grained control over expressivity;
4) be tailored and optimized to each dataset’s structure; 5) all while avoiding decreasing accuracy or
exploding matrix rank. The result is a potentially powerful tuning tool for model efficiency/expressivity.
However, generalization becomes a problem: the pruning technique must be engineered for each dataset
and potentially each model. Furthermore, it’s unlikely that the GLRL trajectory and tuning process are
as trivial in training on more complex data. Work remains to be done to investigate this idea further.
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Appendix A. Results of Pruning
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Figure 2: Results from regular interval (even/odd-indexed) pruning.
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Figure 3: Results from corner (top-left/bottom-right) pruning.
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Figure 4: Results from trim-around pruning.
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