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Overview

▶ Linear Least Squares

▶ Normal Equations and Derivation

▶ Application: Data �tting

▶ QR Decomposition

▶ Singular Value Decomposition

▶ Image compression
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Linear Least Squares

▶ Last lecture, we focused on

Ax = b (1)

when A is a square matrix.

▶ This lecture: what if A is not a square matrix? Example:3 4
1 7
2 5

[
x1
x2

]
=

46
3

 (2)

▶ Least squares compute an approximate solution to these linear
systems, by minimizing the residual r = b − Ax in the 2-norm.

min
x

∥b − Ax∥ (3)
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Why the 2-norm?

▶ The choice of norm relates to how we "count" the distance.

▶ Alternative norms:
▶ 1-norm: min ∥b − Ax∥1. Used in least absolute deviations.
▶ max-norm: min ∥b − Ax∥∞ = minmaxi |b − Ax |

▶ Both 1-norm and max-norm problems lead to linear programming
(linear optimization) problems.
▶ Simplex algorithm, IPMs (e.g. Karmarkar 1984), etc.
▶ Beyond the scope of this course. You may �nd coverage in

optimization, machine learning, or theoretical computer science.

▶ 2-norm leads to simple solutions

▶ maximum likelihood estimate (MLE):
▶ 2-norm leads to the MLE for normal distributions, which are ubiquitous

in modelling
▶ 1-norm leads to the MLE for double exponential (Laplace) distributions

▶ 1-norm is robust to outliers
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Normal Equations � Derivation

Two derivations:

▶ De�ne ϕ(x) = ∥b − Ax∥2, set derivatives to zero.

▶ Using geometry and orthogonality.
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Normal Equations

▶ Two vectors u and v are orthogonal if and only if uT v = 0.

▶ Recall that we wish to minimize ∥b − Ax∥.
▶ Find y = Ax that is the closest vector in col(A) to b.

▶ Want residual to be orthogonal to every vector in a spanning set of
that space.

▶ Therefore, r = b − Ax is orthogonal to every column of A.

∀i , aTi (b − Ax) = 0 (4)

or in other words (matrix notation),

AT (b − Ax) = 0⃗ (5)

▶ Rearranging, we get the normal equations:

ATAx = ATb (6)

Ray Wu (University of Toronto) Lecture 4: Linear Least Squares February 1, 2023 6 / 27



Normal Equations visualized

Figure 1: Visualization of Geometric Interpretation of Least Squares. Source:
Wikimedia Commons.
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Normal Equations (II)

▶ From last slides,
AT (b − Ax) = 0 (7)

▶ Normal equation method:

1. Compute ATA and ATb.
2. Decompose ATA using Cholesky factorization and use

forward/backward solves for triangular systems.
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Application: data �tting

▶ Suppose we have observed data (x1, y1), (x2, y2), . . . , (xn, yn)

▶ We want to �t this to some model, for example, y = ax + b.

▶ Create n equations with each pair of (xi , yi ).

▶ Solve the resulting overdetermined system of linear equations.
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Data �tting example

Age Height

2 87
3 96
4 103
...

...
18 176

Table 1: Median height of male children in Canada
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Looking at the data
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Setting up the equations


1 x1
1 x2
...

...
1 xn


[
c1
c2

]
=


y1
y2
...
yn

 (8)
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Linear regression model
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With nonlinear functions


1 x1 x21 x31
1 x2 x22 x32
...

...
...

...
1 xn x2n x3n



c1
c2
c3
c4

 =


y1
y2
...
yn

 (9)
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Linear regression with nonlinear functions

0 5 10 15 20

age (years)

60

80

100

120

140

160

180

200

h
e

ig
h

t 
(c

m
)

Ray Wu (University of Toronto) Lecture 4: Linear Least Squares February 1, 2023 15 / 27



Issues with Normal equation method

Suppose we have the matrix

A =


1 1 1
ϵ 0 0
0 ϵ 0
0 0 ϵ

 (10)

for some small value of ϵ, say 10−10. Then, symbolically,

ATA =

1+ ϵ2 1 1
1 1+ ϵ2 1
1 1 1+ ϵ2

 (11)

▶ Numerically, ATA is singular (and the calculations cannot continue),
but A has full rank.

▶ Is this an issue of the problem, or an issue of the algorithm?
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Singular Value Decomposition

▶ The singular value decomposition decomposes a general matrix A

into the form
A = UΣV T (12)

where U and V are orthogonal matrices, and Σ is a diagonal matrix,
with the diagonal entries called the singular values.
▶ The SVD always exists, and is not unique. By convention, we arrange

Σ such that the singular values are sorted and the largest singular value
is in the (1, 1) location.

▶ The SVD is a generalization of the eigendecomposition of a matrix (i.e.
A = MDM−1).

▶ Since multiplication with orthogonal matrices do not change norm, we
have

∥A∥ = ∥Σ∥ = σ1 (13)

▶ Now consider the pesudoinverse of A: the norm is is 1
σn
, hence the

condition number of A is σ1
σn
.
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Condition number of normal equations

▶ The condition number of an symmetric positive de�nite matrix
B = ATA is given by the ratio between its largest and smallest
eigenvalues. This is equivalent to

κ(B) =
λ1

λn

=
σ2
1

σ2
n

= κ(A)2. (14)

▶ because

B = ATA = (UΣV T )TUΣV T = VΣUTUΣV T = VΣ2V T (15)

giving a diagonalization of B .

▶ Hence, constructing the normal equations squares the condition
number. So this is an issue of the algorithm, and not the problem.

▶ This means we should look for alternatives to the normal equation
method.
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QR decomposition and Householder re�ections

▶ Suppose we have a decomposition

A = Q

[
R

0

]
(16)

for some orthogonal matrix Q and a triangular matrix R . Then we
have

∥b − Ax∥ = ∥b − Q

[
R

0

]
x∥ = ∥QTb −

[
R

0

]
x∥. (17)

▶ To minimize this expression, we rewrite QTb as [c d ]T , where c has
the same number of entries as Rx and d has the remaining entries.

∥QTb −
[
R

0

]
x∥ = ∥

[
c − Rx

d

]
∥ (18)

▶ We have no control over d , so we solve the system Rx = c to
minimize the other components.
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Householder re�ections

▶ We want to decompose A = QR , so, we need to �nd orthogonal
transformations that transform A into an upper triangular matrix R .

▶ The idea is to apply a sequence of orthogonal transformations that
zero out the matrix entries that we want to.

▶ Consider the matrix P = I − 2uuT , for an arbitrary unit vector u.
Now, we want to �nd the right u such that Pz = αe1.

▶ What do we know about P? P is a re�ection across the plane de�ned
by the normal vector u.
▶ Pu = u − 2u(uTu) = −u
▶ Pv = v − 2u(uT v) = v if v is orthogonal to u.
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Householder re�ections (II)

▶ Write Pz = z − 2uuT z = z − (2uT z)u = αe1

▶ Then u is the unit vector in the direction z − αe1 (rearrange and
divied by 2uT z).

▶ Since P is an orthogonal transformation (assignment question),
∥Pz∥ = ∥z∥ and hence α = ∥z∥.

▶ Therefore, u = z ± ∥z∥e1 (In practice, pick the same sign as the �rst
entry of z , to avoid any possibilty of cancellation error.)

▶ Finally, we apply householder re�ections to zero out all entries below
the i , i-th entry of A, and complete our orthogonal transformation.

▶ The series of re�ections is the matrix Q, and the resulting matrix is R .
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Singular Value Decomposition

Recall that the singular value decomposition is given by

A = UΣV T (19)

Hence,
∥b − Ax∥ = ∥UTb − ΣV T x∥ (20)

▶ If the condition number is not too large, then we can directly solve the
system.

UTb − ΣV T x (21)

▶ Kind of defeats the purpose of SVD, since QR will also work.

▶ QR is faster to compute than SVD (We will not get into computing
SVD).

▶ The real bene�t of SVD occurs when A is not numerically full rank.
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Singular Value Decomposition, Part 2

▶ If A is not full rank numerically, then the ratio σ1/σn is very large
(> 1016).

▶ Solution: remove the singular values that are too small.

▶ Starting from n and going backwards, �nd a value r such that σ1/σr

is acceptable, and set the remaining singular values to zero.

▶ Truncate the matrices U and V to only store the �rst r rows/columns.

▶ A is compressed from m × n into r(m + n + 1) storage locations

▶ This is a rank-r approximation of the matrix A. In fact, it is the best

rank-r approximation, as measured by the Frobinus norm.
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Example - Image compression

Consider this cat with the croissant, with the pixels stored as real numbers
in a matrix A:

There are 800× 576 = 460800 entries we have to store in grayscale.
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Example - Image compression

Rank-20 approximation of A:

100 200 300 400 500 600 700 800
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We only need to store 20× (800+ 576+ 1) = 27540 entries.
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Example - Image compression

Rank-10 approximation of A:
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We only need to store 10× (800+ 576+ 1) = 13770 entries.
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Example - Image compression

Rank-5 approximation of A:
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We only need to store 5× (800+ 576+ 1) = 6885 entries.
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