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» Linear Least Squares

» Normal Equations and Derivation
» Application: Data fitting

» QR Decomposition

» Singular Value Decomposition

>

Image compression
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Linear Least Squares

» Last lecture, we focused on
Ax = b (1)

when A is a square matrix.

» This lecture: what if A is not a square matrix? Example:
3 4 4
17 [f] = |6 (2)
2 5| 2 3

» Least squares compute an approximate solution to these linear
systems, by minimizing the residual r = b — Ax in the 2-norm.

min [[b — Ax]| (3)
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Why the 2-norm?

» The choice of norm relates to how we "count" the distance.
> Alternative norms:
» 1-norm: min ||b — Ax||1. Used in least absolute deviations.
» max-norm: min||b — Ax||cc = minmax; |b — Ax|
» Both 1-norm and max-norm problems lead to linear programming
(linear optimization) problems.
> Simplex algorithm, IPMs (e.g. Karmarkar 1984), etc.
> Beyond the scope of this course. You may find coverage in
optimization, machine learning, or theoretical computer science.
» 2-norm leads to simple solutions
» maximum likelihood estimate (MLE):

» 2-norm leads to the MLE for normal distributions, which are ubiquitous
in modelling
> 1-norm leads to the MLE for double exponential (Laplace) distributions

» 1-norm is robust to outliers
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Normal Equations — Derivation

Two derivations:
» Define ¢(x) = ||b — Ax]||?, set derivatives to zero.

> Using geometry and orthogonality.
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Normal Equations

Two vectors u and v are orthogonal if and only if u”v = 0.
Recall that we wish to minimize ||b — Ax]||.
Find y = Ax that is the closest vector in col(A) to b.

Want residual to be orthogonal to every vector in a spanning set of
that space.

vvyyvyy

v

Therefore, r = b — Ax is orthogonal to every column of A.
Vi,al (b— Ax) =0 (4)
or in other words (matrix notation),
AT(b—Ax) =0 (5)
> Rearranging, we get the normal equations:

ATAx=ATb (6)
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Normal Equations visualized

Figure 1: Visualization of Geometric Interpretation of Least Squares. Source:
Wikimedia Commons.
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Normal Equations (I1)

» From last slides,
AT(b—Ax)=0 (M)

» Normal equation method:

1. Compute ATAand AT h.
2. Decompose AT A using Cholesky factorization and use
forward /backward solves for triangular systems.
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Application: data fitting

» Suppose we have observed data (x1,y1), (x2,¥2), .-, (Xn, ¥n)
> We want to fit this to some model, for example, y = ax + b.
» Create n equations with each pair of (x;, y;).

» Solve the resulting overdetermined system of linear equations.
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Data fitting example

Age

BN

18

Height

87
96
103

176

Table 1: Median height of male children in Canada
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Looking at the data
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Setting up the equations

1 x "
1 X2 c 2

|2]- )
1 x, Yn
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Linear regression model
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With nonlinear functions

L x4 | [q] [n
1 xo x2 X3 o %)

s 2l - (9)
1 x, x2 x3| Lca Yn
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Linear regression with nonlinear functions
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Issues with Normal equation method

Suppose we have the matrix

(10)

OO N =
O mn O =
A OO

for some small value of ¢, say 10710, Then, symbolically,

1+ €2 1 1
ATA=| 1 14+ 1 (11)
1 1 1+ 2

» Numerically, ATAis singular (and the calculations cannot continue),
but A has full rank.

» Is this an issue of the problem, or an issue of the algorithm?
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Singular Value Decomposition

» The singular value decomposition decomposes a general matrix A

into the form
A=UxzvT (12)
where U and V are orthogonal matrices, and ¥ is a diagonal matrix,

with the diagonal entries called the singular values.
» The SVD always exists, and is not unique. By convention, we arrange
Y such that the singular values are sorted and the largest singular value
is in the (1, 1) location.
> The SVD is a generalization of the eigendecomposition of a matrix (i.e.
A= MDM-1),
» Since multiplication with orthogonal matrices do not change norm, we

have
Al = [|Z]| = o1 (13)

> Now consider the pesudoinverse of A: the norm is is Ul—n hence the
condition number of Ais 7.
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Condition number of normal equations

» The condition number of an symmetric positive definite matrix
B = AT A is given by the ratio between its largest and smallest
eigenvalues. This is equivalent to

M9y
k(B) N o2 k(A)“. (14)

> because
B=ATA=(UzvTuzvT =vzuTuzvT =v2vT (15)

giving a diagonalization of B.

» Hence, constructing the normal equations squares the condition
number. So this is an issue of the algorithm, and not the problem.

» This means we should look for alternatives to the normal equation
method.
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QR decomposition and Householder reflections

» Suppose we have a decomposition
A=Q m (16)

for some orthogonal matrix @ and a triangular matrix R. Then we
have

lo-ax =1~ @|§| xi = 1@7e~ [§]x1.  an

» To minimize this expression, we rewrite @" b as [c  d]T, where c has
the same number of entries as Rx and d has the remaining entries.

@76 5] =11°7%]i (18)

» We have no control over d, so we solve the system Rx = ¢ to
minimize the other components.

Ray Wu (University of Toronto) Lecture 4: Linear Least Squares February 1, 2023 19 /27



Householder reflections

> We want to decompose A = @R, so, we need to find orthogonal
transformations that transform A into an upper triangular matrix R.

> The idea is to apply a sequence of orthogonal transformations that
zero out the matrix entries that we want to.

» Consider the matrix P = | — 2uu’, for an arbitrary unit vector u.
Now, we want to find the right u such that Pz = ae;.

» What do we know about P? P is a reflection across the plane defined
by the normal vector u.
> Pu=u—2u(u"u)=—u
» Pv=v—2u(uTv)=vif vis orthogonal to u.
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Householder reflections (II)

v

Write Pz =z —2uu’z =z — (2u' z)u = ag

» Then v is the unit vector in the direction z — cve; (rearrange and
divied by 2u' z).

» Since P is an orthogonal transformation (assignment question),

IIPz|| = ||z|| and hence o = ||z]|.

» Therefore, u = z £ ||z||e; (In practice, pick the same sign as the first
entry of z, to avoid any possibilty of cancellation error.)

> Finally, we apply householder reflections to zero out all entries below
the i, i-th entry of A, and complete our orthogonal transformation.

> The series of reflections is the matrix @, and the resulting matrix is R.
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Singular Value Decomposition

Recall that the singular value decomposition is given by
A=UxVvT’ (19)

Hence,
|b—Ax||= [ UTh—ZVTx| (20)

» If the condition number is not too large, then we can directly solve the
system.

UTb—xVTx (21)
» Kind of defeats the purpose of SVD, since QR will also work.

» QR is faster to compute than SVD (We will not get into computing
SVD).
» The real benefit of SVD occurs when A is not numerically full rank.

Ray Wu (University of Toronto) Lecture 4: Linear Least Squares February 1, 2023 22 /27



Singular Value Decomposition, Part 2

» If Ais not full rank numerically, then the ratio o1 /0, is very large
(> 10%).
Solution: remove the singular values that are too small.

vy

Starting from n and going backwards, find a value r such that o1 /0,
is acceptable, and set the remaining singular values to zero.

» Truncate the matrices U and V to only store the first r rows/columns.

» Ais compressed from m x n into r(m+ n + 1) storage locations

v

This is a rank-r approximation of the matrix A. In fact, it is the best
rank-r approximation, as measured by the Frobinus norm.
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Example - Image compression

Consider this cat with the croissant, with the pixels stored as real numbers
in a matrix A:

There are 800 x 576 = 460800 entries we have to store in grayscale.
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Example - Image compression

Rank-20 approximation of A:

We only need to store 20 x (800 4 576 + 1) = 27540 entries.
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Example - Image compression

Rank-10 approximation of A:

100 200 300 400 500 600 700 800

We only need to store 10 x (800 4 576 + 1) = 13770 entries.
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Example - Image compression

Rank-5 approximation of A:

We only need to store 5 x (800 + 576 + 1) = 6885 entries.
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