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Introduction

We study the problem of Option Pricing on Sparse Grids.

Option Pricing - gives rise to Black-Scholes equations and variants, continuous (C0) and discontinuous
(C−1) initial conditions, many dimensions.

Sparse Grid framework - mitigates curse of dimensionality for multidimensional problems - stringent
requirements on smoothness of initial conditions.

Typically use smoothing operators [Hendricks, 2016] to resolve insu�ciently smooth initial conditions.

Our contributions [Wu and Christara, 2023]:

▶ compare di�erent remedies of convergence for option pricing on sparse grids.

▶ relate smoothness requirements of some problems to the one-dimensional theory of quantization
error [Christara and Leung, 2018].

▶ apply sparse grid methods to nonlinear PDE from pricing American options.

▶ provide examples where discontinuities in the payo� cannot be aligned with a coordinate axis.
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Black-Scholes PDE

European Options lead to a Black-Scholes PDE in d dimensions:

Vτ = LV ≡ 1

2

d∑
i,j=1

ρi,jσiσjSiSjVSi ,Sj
+

d∑
i=1

rSVSi
− rV , (1)

where

▶ V denotes the option price, Si the price of the i-th underlying, τ the reverse time counted from
expiry T ,

▶ σi the volatility of the i-th underlying, ρi,j the correlation between Si and Sj , r the risk free interest
rate, and

▶ VSi ,Sj
≡ ∂2V /∂Si∂Sj .

American Options lead to a penalized (nonlinear) PDE

Vτ = LV + ρmax(V ∗ − V , 0), (2)

where V ∗ denotes the initial condition and ρ the reciprocal of a desired accuracy.

Spatial domain is semi-in�nite (Si ∈ [0,∞)), but truncated to �nite domain for computation.
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Initial and Boundary conditions

Payo�s correspond to initial conditions:

▶ Basket Put:

V ∗ = V (τ = 0, Si ) = max(K −
∑

wiSi , 0) (3)

▶ Min Put:

V ∗ = V (τ = 0, Si ) = max(K −min(Si ), 0) (4)

▶ Binary Basket Call:

V ∗ = V (τ = 0, Si ) =

{
1 if wiSi − K > 0

0 otherwise.
(5)

where wi are weights, and K is strike price.

Dirichlet boundary conditions, time-discounted payo�s:

V (τ, ∂Ω) = V (0, ∂Ω) exp(−rτ) (6)
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Discretizations

We use �nite di�erences in space, and Crank-Nicolson-Rannacher timestepping.

(I − θ∆τL)uj = (I + (1− θ)∆τL)uj−1 (7)

Here, L is the matrix that is assembled from the �nite di�erences arising from L, and superscripts
denote timesteps.

▶ Crank-Nicolson: θ = 1/2

▶ Fully Implicit: θ = 1

American PDE: τ̃ = τ2/T to restore quadratic convergence [Reisinger and Whitley, 2014].

Solve nonlinear equations with penalty (generalized Newton) iteration [Forsyth and Vetzal, 2002]

(I − θ∆τL+ P j)uj = (I + (1− θ)∆τL)uj−1 + P jV ∗ (8)

where P is a diagonal matrix arising from the discretization of the nonlinear penalty term.

Multi-dimensional grids are constructed by tensor products of one-dimensional grids.
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Sparse Grid Combination Method

In d dimensions with n unknowns in each dimension, tensor product grids lead to O(nd) unknowns.

Sparse Grid combination method solution [Griebel et al., 1992] is de�ned by

uc
q =

d−1∑
p=0

(−1)p
(
d − 1

p

) ∑
∑

li=q+(d−1)−p

ul1,l2,...,ld . (9)

Requires solution of O((log n)d−1) subproblems and gives the following tradeo�s:

▶ Order of accuracy reduced from O(hβ) to O(hβ(log h)d−1).

▶ Number of unknowns reduced from O(nd) to O(n(log n)d−1).

Notation:

▶ q is the grid re�nement level

▶ (l1, l2, . . . , ld) denotes the multi-index, de�ning the grid size of the subproblem.

▶ Examples:

uc
q =

∑
l1+l2=q+1

ul1,l2 −
∑

l1+l2=q

ul1,l2 (2D), uc
q =

∑
l1+l2+l3=q+2

ul1,l2,l3 − 2
∑

l1+l2+l3=q+1

ul1,l2,l3 +
∑

l1+l2+l3=q

ul1,l2,l3 (3D)

Convergence Remedies for Option Pricing on Sparse Grids Sparse Grids 7 / 17



Advantages of the sparse grid method
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Figure 1: Number of unknowns for grid level q = 5, for sparse and full grids of dimensions one through �ve.
Note that the error, governed by the discretization parameter h = 2−q, would be kept relatively consistent for
some hypothetical problem on this domain.
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E�ect of Nonsmoothness and Quantization Error

Proofs of order of accuracy assume that the initial condition is su�ciently smooth.

The sparse grid combination method is particularly sensitive to smoothness.

In �nance, we typically have nonsmooth (including discontinuous) initial conditions - although they give
rise to smooth solutions. These initial conditions can cause unstable or reduced order of convergence.

Additionally, these initial conditions can introduce �quantization error� - error arising from the
placement of the point of non-smoothness on the discrete grid.
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Figure 2: Examples of common payo�s, with discretizations (left) and the PDE solution at a time t > 0 (right).
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Smoothing in Fourier Space

Smoothing is a popular approach to obtain stable convergence and restore optimal order of convergence
in the presence of insu�ciently smooth initial conditions.

We look at smoothing operators introduced in [Kreiss et al., 1970]. In particular, we are interested in
the �rst two smoothing operators. In the spatial domain, the �rst-order operator is given by

(Φ1 ∗ v)(x) =
1

h

∫ h/2

−h/2

v(x − y) dy (10)

and the second-order operator is given by

(Φ2 ∗ v)(x) =
1

h

∫ h

−h

(1− |y |
h
)v(x − y) dy (11)

In multiple dimensions, the smoothings operators result in nested integrals:

(Φ2 ∗ (Φ2 ∗ v))(x , y) =
1

hxhy

∫ hy

−hy

∫ hx

−hx

(1− |w |
hx

)(1− |z |
hy

)v(x − w , y − z) dw dz (12)
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More on Quantization Error

In one dimension, with one point of nonsmoothness, let α ∈ (0, 1] denote the relative o�set of the point
of nonsmoothness with the grid. From [Christara and Leung, 2018], the quantization error arising from
a continuous (C0) but nonsmooth initial condition,

▶ with no smoothing is O(h2), with coe�cient depending on α, and

▶ with Φ1 smoothing is O(h2), with coe�cient independent of α.

The quantization error arising from a discontinuous (C−1) initial condition,

▶ with no smoothing is O(h), with coe�cient α− 1/2,

▶ with Φ1 smoothing is O(h2), with coe�cient depending on α, and

▶ with Φ2 smoothing is O(h2), with coe�cient independent of α.

Note that α can change with grid re�nement, except when point of nonsmoothness is on the grid.

In multiple dimensions, with lines or hypersurfaces of nonsmoothness, de�ning α is di�cult, and
maintaining α across re�nements is di�cult if not impossible.
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Coordinate Transformation

Coordinate Transformation for Basket Options removes dependence of the payo� function on all
variables except one. In original coordinates, the Basket Put payo� function is

V (0, Si ) = max(K −
∑

wiSi , 0). (13)

In new coordinates, the Basket Put payo� function becomes

V (0, xi ) = max(K − x1, 0). (14)

Coe�cients of the transformed PDE given in [Leentvaar and Oosterlee, 2008].

Figure 3: The Basket Put payo�, in original and transformed coordinate systems.
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Combining it all together

The transformed payo� function V (0, xi ) = max(K − x1, 0) allows us to apply the one-dimensional
theory of quantization error to certain problems in multiple dimensions.

Since the initial condition only depends on x1, there would only be quantization error in that dimension.

This allows us to apply one less order of smoothing compared to not using a grid transformation and
still achieve stable convergence with the sparse grid combination method.

Type of IC Remedy for stable convergence

Discontinuous C−1 Φ2 smoothing, OR
Φ1 smoothing with grid transformation and maintaining α.

Continuous C0 Φ1 smoothing, OR
no smoothing with grid transformation and maintaining α.

Table 1: Summary of remedies for stable convergence for common payo�s
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American Basket Put Option
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Figure 4: 2D American Basket Put Option. Parameters: σi = 0.4, ρ = 0.2, r = 0.1, T = 1, K = 10.
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Digital Basket Call Option
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Figure 5: 2D European Binary Basket Call Option. Parameters: σi = 0.4, ρ = 0.2, r = 0.1, T = 1, K = 10.
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Min-Put Option
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Figure 6: 3D Min-Put Option. Parameters: σi = 0.4, ρ = 0.2, r = 0.1, T = 1, K = 10.
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Conclusions

Nonsmooth/discontinuous initial conditions cause trouble in the sparse grid combination method.

Smoothing techniques and coordinate transformation are known remedies to restore the order of
convergence.

We connect these techniques with the one-dimensional grid-alignment theory in
[Christara and Leung, 2018], which allows us to obtain the necessary order of smoothings for typical
initial conditions.

We show that the coordinate transformation allows us to use one less order of smoothing, compared to
solving the PDE in the original coordinates.

Our numerical experiments demonstrate stable O(h2) convergence for nonlinear problems (American
options), discontinuous initial conditions (binary options), and initial conditions where the coordinate
transformation cannot be applied (min-put options).
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Elliptic PDE
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Figure 7: Convergence of the numerical solution of an elliptic PDE using the full grid method (red) and the
sparse grid method (blue). As can be seen, the sparse grid method can use fewer unknown parameters to
extrapolate to a higher grid level that is not possible with the full grid method.Convergence Remedies for Option Pricing on Sparse Grids References 3 / 3
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