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Abstract
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2021

We study the pricing of nonlinear problems in computational finance by numerical Partial Dif-

ferential Equation (PDE) methods. We examine the numerical solution obtained via the use of

Policy Iteration methods from Hamilton-Jacobi-Bellman equations and introduce new penalty-

like iterative methods to solve the nonlinear equations. We consider the following problems:

Unequal Borrowing and Lending rates, Stock Borrowing Fees, Stock Borrowing Fees with

American exercise rights, Uncertain Volatility, and Transaction cost models. We demonstrate

second-order convergence of the solution and of the Greeks, and for the nonlinear problems we

study the number of nonlinear iterations taken as a proxy to the total computational cost. Fur-

thermore, the effects of various details such as different boundary conditions and nonuniform

discretization grids are studied. Finally, where applicable, we prove monotonicity of the new

penalty-like methods that we have introduced and demonstrate that our numerical implemen-

tations uphold this property.
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Chapter 1

Introduction

Since the development of the Black-Scholes model [6] in 1973, the practice of option trading
and the study of the pricing of financial options have gained mathematical legitimacy around
the world, leading to a boom in options trading and the accompanying research. The Black-
Scholes model is still used by practitioners today with adjustments. These adjustments are
typically nonlinear in nature and thus result in nonlinear partial differential equations, which
are typically solved not analytically but with numerical methods, the focus of this thesis.

One such adjustment is the introduction of controls and transformation of the Black-Scholes
equation to a controlled PDE. This leads to Hamilton-Jacobi-Bellman equations and solving
the associated problems in optimal control. We study the numerical solution of nonlinear
partial differential equations (PDEs) in computational finance that arise from optimal control
problems, a natural extension of the Black-Scholes model.

The study of optimal control and Hamilton-Jacobi-Bellman (HJB) equations has a long and
rich history [2, 3], with numerous applications such as self-driving cars [34] and human nav-
igation [27] in addition to computational finance. Some methods developed for problems in
computational option pricing are policy iteration algorithms [14, 17] and a “piecewise constant
policy iteration” from [14, 31] among others. In recent years, there is a trend towards the
use of deep learning [19] and neural network approaches [8], especially for high-dimensional
problems.

In this thesis, we take a finite difference approach to the discretization of derivatives and
study options that have only one underlying asset. The main contributions of this thesis are
twofold:

1
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1. The formulation of Penalty and Penalty-like methods that efficiently solve the nonlinear
PDEs arising from these adjustments. These methods can handle nonlinearity in the
solution, first, and second derivatives.

2. Proofs that demonstrate their monotonicity and convergence, when such behaviour is
observed.

3. Improved policy iteration methods which incorporate variable timestepping for Amerian
options, which highly improves the efficiency of the algorithm and gives rise to more
stable convergence of both the solution and the Greeks for American options.

Some of our minor contributions are code profiling results showing the computational time
required for our algorithms and the distribution of time spent to justify our cost analysis, the
testing of numerical consistency between penalty-like (penalty) methods and policy algorithms
and different boundary conditions where applicable, the benefits of using a nonuniform grid in
spatial discretization, improving the order of convergence with Richardson extrapolation, and
the extension of variable timesteps as suggested in [16] for exotic options with an American-
style exercise right.

In addition to the standard problems of European and American option pricing that we study
under the Black-Scholes framework, we also study the following nonlinear control problems
formulated as Hamilton-Jacobi-Bellman (HJB) equations

• The unequal borrowing and lending interest rate problem [4]

• The above problem with Stock Borrowing Fees [13]

• The Stock Borrowing Fee problem with American exercise rights [14]

• The Uncertain Volatility model [1]

• Transaction cost models: While the initial transaction cost model [24] is identical to the
uncertain volatility model, subsequent debate and refinement [22, 38, 25, 35] has led to a
slightly different model [37, 35] which we use. The debate on the merits and drawbacks
of these models are beyond the scope of this thesis, which focuses on the numerical
methods used to solve these models.

• the above with American options [37].

There problems are approximately in order of increasing nonlinearity, that is, more nonlinear it-
erations are expected to be required to solve the later problems than the earlier problems.
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Previous work such as [14] and [17] have used a discrete policy iteration for the numerical
solution of these HJB problems. Our approach is a penalty-like (penalty) method similar to [7]
and [16]. However, to our knowledge there has not been a previous generalization of penalty
matrices to handle nonlinearities in solution and all derivative terms; in [29] a second-derivative
nonlinearity is considered, but it is not given in a general form for any derivative and it is not
given in the context of American options. In this respect our work is novel.

One of the advantages of penalty method (as opposed to policy method) is that we do not need
to enumerate all possibilities of the controls, which is particularly expensive when we have an
increasing number of controls.

In this thesis, we start off with an overview of existing algorithms for financial option pricing,
such as Crank-Nicolson for European options, the discrete penalty method [16] for American
options, and the policy iteration algorithm mentioned earlier. We also discuss details such
as the use of nonuniform discretization grids, which are useful in improving the distribution
of the error as a function of the spatial variable, and the use and implementation of different
types of boundary conditions. Next, the thesis discusses the nonlinear problems and our novel
contributions.

In addition, we also use techniques for the penalty iteration method such as [16] and use them
to improve the policy method given in [14].

Similar methods to ours have been developed such as [32] for more general problems of HJB
variational inequalities. However, our contributions differ from [32] in two aspects:

1. Our method is globally second order convergent while the algorithm proposed in [32] is
first order convergent.

2. Our method addresses nonlinear terms involving partial derivatives in a different way,
resulting in very efficient iteration techniques.

This thesis is organized as follows: Chapter 2 presents the formulation of the various pricing
problems that we consider and solve, both of a control formulation and as a nonlinear PDE
formulation. Chapter 3 presents the numerical methods which we use to solve the problems and
proves desirable properties of the numerical methods, when applicable. Chapter 4 presents and
discusses the results from our numerical experiments, and we conclude with Chapter 5.



Chapter 2

Problem Description

This chapter describes the problems that are studied in this thesis: The pricing of European
options under the Black-Scholes framework, the pricing of American options as a penalized
PDE, and several other option pricing problems under an optimal control framework.

2.1 Introduction to Financial Options

A financial option is a contract between two parties, the writer and the holder, in which the
writer grants the holder the right to buy or sell an asset for a predetermined price over a specified
time interval. Specifically, a call option gives the holder the right to buy the asset for the strike
price K, and a put option gives the right to sell at the strike price K. Options also differ by the
permitted time of exercise: For a European option the only permitted time of exercise is at the
end T of the prescribed maturity time, whereas for an American option, the holder can exercise
the option at any time t ≤ T .

Since the holder has the choice to not exercise the option if it is not a good financial decision,
the option has a nonnegative value associated with it. The accurate computation of this value
is a key problem in computational finance.

Consider a call option at the time of expiry. Denote the value of the asset (known as the
underlying) as S. If the value of S at the end of the time interval is greater than the strike price
K, then it is beneficial for the holder to exercise the option, and gain a benefit of S −K > 0.
Conversely, if S is less than K, then the holder would not use the contract, and not receive any
benefit. Therefore, the payoff V ∗ of a call option is equal to max(S −K, 0).

4
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Analogously, the payoff of a put option is max(K − S, 0).

In our Partial Differential Equation (PDE) models, we start at the known conditions (payoffs)
and integrate backwards in time t by applying the transformation τ = T − t. Therefore, the
payoffs (which occur at the end of the time of interest) are our initial conditions at τ = 0, and
we are solving for the fair price at the initial time t = 0 or τ = T .

2.2 Black-Scholes and European options

We start with European options, which are considered the simplest: there is only one permitted
time of exercise, which is at the time of expiry. In addition, for options with one underlying
and call and put payoffs, we have exact closed-form solutions.

The Black-Scholes PDE, which describes the evolution of the value V (τ, S) of a European
option under the Black-Scholes model [6], is

Vτ =
σ2S2

2
VSS + rSVS − rV ≡ L(r)V (2.1)

where σ is the volatility (a measure of the variance in a market), and r is the bank’s interest
rate. Let also V ∗(S) = V (τ = 0, S) denote the payoff of the option, which also acts as initial
condition for the PDE (2.1). Throughout the thesis, Vτ denotes ∂V/∂τ , VS denotes ∂V/∂S,
and VSS denotes ∂2V/∂S2.

Several important assumptions are made in the Black-Scholes model:

• random walk: assumption that S follows a Weiner process

• no arbitrage: it is not possible to make instantaneous riskless profit

• frictionless market: no transaction costs to buying or selling assets/options

• fractional cash: transactions can be made with any amount of cash – any real number is
permitted

The Black-Scholes equation is “adjusted” – certain terms may be added to it, some terms may
be changed – when we are interested in other options, such as American options.
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2.3 American Options

An American option, unlike a European option, allows the holder to exercise the option at
any time up to and including the time of expiry. Since the holder of an American option has
more rights, we expect that if all other conditions are equal, the price of an American option
is at least that of a European option. Unlike European options, American options do not have
a known closed-form solution, which makes them the first type of options that we examine
which requires us to use numerical methods.

Figure 2.1 shows the plot of the value of an American Put option along with the payoff and
the corresponding European Put option. The payoff function “pushes up” the value of the
American option. Without the American early exercise right, the option value would not be
pushed up and would be the exact same as the European option’s payoff.
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Figure 2.1: Plot of American option value and the optimal exercise boundary

A formulation of the American options pricing problem takes the approach of a linear com-
plementarity problem (LCP). For a full derivation, see Chapter 6 of [36]. For the numerical
solution, we transform the LCP into a penalized PDE problem, as introduced in [16].
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The LCP for American options is given by

Vτ − L(r)V ≥ 0 (2.2a)

V − V ∗ ≥ 0 (2.2b)

(Vτ − L(r)V = 0) ∨ (V − V ∗ = 0) (2.2c)

with the notation ∨ meaning “logical or” of the two statements. All three conditions (2.2a),
(2.2b), and (2.2c) must be satisfied.

An alternative way to express the constraints imposed by Equations (2.2) is

Vτ − L(r)V ≥ 0 and V − V ∗ = 0 (2.3a)

V − V ∗ ≥ 0 and Vτ − L(r)V = 0 (2.3b)

Either condition (2.3a) or (2.3b) must be satisfied. When condition (2.3a) is satisfied, we
are in the exercise region, where it would be best to exercise the option immediately. This
corresponds to the left of the optimal exercise boundary in Figure 2.1. When (2.3b) is satisfied,
we are in the continuation region, where it is best to hold on to the option.

The penalized PDE problem of pricing American options is given by

Vτ − L(r)V = ρmax(V ∗ − V, 0), (2.4)

or by

Vτ =
σ2S2

2
VSS + rSVS − rV + ρmax(V ∗ − V, 0), (2.5)

where ρ is known as the penalty parameter, typically very large.

The idea of the penalty method is that we “penalize” violation of the constraint V − V ∗ ≥ 0.
As ρ→∞, the solution satisfies V ≥ V ∗ − ε for some positive ε� 1.

We solve this with a penalty PDE method, however, it can also be posed as an optimal control
problem, which we will introduce in the next section.
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2.4 Optimal Control

For the type of optimal control problems we are interested in, the general form of the problems
is as follows:

Vτ = sup
Q∈Q̂
{a(S, τ,Q)VSS + b(S, τ,Q)VS + c(S, τ,Q)V + d(S, τ,Q)} . (2.6)

There is a corresponding formulation which is sometimes used:

Vτ = inf
Q∈Q̂
{a(S, τ,Q)VSS + b(S, τ,Q)VS + c(S, τ,Q)V + d(S, τ,Q)} . (2.7)

Note that since the objective function is the same and it is well-known that maximizing and
minimizing are interchangeable, these two are equivalent classes of problems. Often, in fi-
nance, the sup formulation corresponds to the short position and the inf formulation corre-
sponds to the long position.

Equations (2.6) and (2.7) are a type of Hamilton-Jacobi-Bellman (HJB) equations.

Here, Q is called the control and corresponds to parameters we have control over (hence its
name). For instance, Q could indicate whether we have exercised an American option early or
not. The value of Q is restricted to Q̂, which is the set of all permitted states of Q.

By choosing different functions of a, b, c, d, the optimal control problem corresponds to differ-
ent types of options. For example, with

a = σ2S2/2 (2.8a)

b = rS (2.8b)

c = −r − µ/ε (2.8c)

d = µV ∗/ε (2.8d)

Here, Q is µ and Q̂is{0, 1}.

and µ ∈ {0, 1}, we have the American option pricing problem, with ε corresponding to 1/ρ in
Equation (2.5). The full HJB equation for the American option pricing problem is

Vτ = sup
µ∈{0,1}

{
σ2S2

2
VSS + rSVS − rV + µ

V ∗ − V
ε

}
. (2.9)



Chapter 2. Problem Description 9

For a different set of functions we have the European option, for instance,

a = σ2S2/2 (2.10a)

b = rS (2.10b)

c = −r (2.10c)

d = 0, (2.10d)

which leads to Equation (2.1). Note that q doesn’t show up here. This is because the European
option can’t be controlled; it merely follows the PDE derived by Black and Scholes (2.1).

The optimal control problems (2.6) and (2.7) form the basis for all of our future problems in
this chapter.

For the optimal control problems, there are different formulations for the long and the short
positions. Computationally, there is no major difference, but when proving monotonicity and
convergence of the algorithms, there are difficulties with the long position.

2.5 Borrow-Lend

One interesting optimal control problem is that of the pricing of European-style options with
unequal borrowing/lending rates [4] with a straddle payoff: the holder has both a put and call
option, so the payoff is V ∗ = |S−K|. There are two interest rates: rb for borrowing and rl for
lending. It is assumed that the borrowing interest rate is higher than the lending interest rate,
that is, rb > rl.

We first present the short position given in [14], which is as follows:

Vτ = sup
q∈{rl,rb}

{
σ2S2

2
VSS + qSVS − qV

}
. (2.11)

Forsyth also gives a discontinuous coefficient PDE for the short position:

Vτ =
σ2S2

2
VSS + ρ(V − SVS)(SVS − V ) (2.12)

where

ρ(x) =

rl if x ≥ 0

rb if x < 0
(2.13)
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We derive a new formulation of (2.11) based on a nonlinear PDE in the style of the American
Penalty problem (2.5).

sup
q∈{rl,rb}

{
σ2S2

2
VSS + qSVS − qV

}
=
σ2S2

2
VSS + max {rl(SVS − V ), rb(SVS − V )}

=
σ2S2

2
VSS + rbSVS − rbV + max ((rl − rb)(SVS − V ), 0)

=
σ2S2

2
VSS + rbSVS − rbV + max ((rb − rl)(V − SVS), 0)

=
σ2S2

2
VSS + rbSVS − rbV + (rb − rl) max (V − SVS, 0) .

Thus, the short position is

Vτ =
σ2S2

2
VSS + rbSVS − rbV + (rb − rl) max (V − SVS, 0) . (2.14)

For the long position of both Equation (2.11) and similar problems, the sup is replaced by an
inf:

Vτ = inf
q∈{rl,rb}

{
σ2S2

2
VSS + qSVS − qV

}
(2.15)

Forsyth also presents a similar discontinuous coefficient PDE for the long position

Vτ =
σ2S2

2
VSS + ρ(SVS − V )(V − SVS) (2.16)

with the same definition of ρ.

For the long position, the PDE is derived in a similar way as the short position and is given
by

Vτ =
σ2S2

2
VSS + rbSVS − rbV + (rl − rb) max (SVS − V, 0) . (2.17)

In Chapter 3, we solve Equations (2.14) and (2.17) by a penalty method.

2.6 Borrow-Lend with Stock Borrowing Fees

We extend the borrowing/lending model to include stock borrowing fees, which is described in
detail in [13]. In essence, this changes the model such that the holder of a short position has
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a deduction of rf , known as the stock borrowing fee, on the rate of the proceeds of the short
sale. This changes Equation (2.11) to the following:

Vτ = sup
Q

{
σ2S2

2
VSS + q3(q1SVS − q1V ) + (1− q3)((rl − rf )SVS − q2V )

}
(2.18)

with Q = (q1, q2, q3), q1 ∈ {rl, rb}, q2 ∈ {rl, rb}, q3 ∈ {0, 1} for the short position.

For the long position, we change the sup to an inf:

Vτ = inf
Q

{
σ2S2

2
VSS + q3(q1SVS − q1V ) + (1− q3)((rl − rf )SVS − q2V )

}
(2.19)

with Q = (q1, q2, q3), q1 ∈ {rl, rb}, q2 ∈ {rl, rb}, q3 ∈ {0, 1}

Forsyth gives another pair of discontinuous coefficient PDEs for the short and the long posi-
tions:

Vτ =
σ2S2

2
VSS +H(VS)[ρ(V − SVS)(SVS − V )] +H(−VS)[(rl − rf )SVS − ρ(V )V ]

(2.20)

Vτ =
σ2S2

2
VSS +H(−VS)[ρ(SVS − V )(V − SVS)] +H(VS)[(rl − rf )SVS − ρ(−V )V ]

(2.21)

where ρ(x) is defined the same as in the Borrow-Lend problem, and

H(y) =

1 if y ≥ 0

0 if y < 0
(2.22)

Like for the problem defined by Equation (2.11), we derived a new formulation based on a
nonlinear PDE: derived a penalty method to solve a nonlinear PDE for the problem defined by
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Equation (2.18)

sup
Q

{
σ2S2

2
VSS + q3q1(SVS − V ) + (1− q3) [(rl − rf )SVS − q2V ]

}
=
σ2S2

2
VSS + sup

Q
{q1(SVS − V ), (rl − rf )SVS − q2V }

=
σ2S2

2
VSS + max

{
max
q1
{q1(SVS − V )},max

q2
{(rl − rf )SVS − q2V }

}
=
σ2S2

2
VSS + max

{
max
q1
{q1(SVS − V )}, (rl − rf )SVS − rlV

}
=
σ2S2

2
VSS + max {rl(SVS − V ), rb(SVS − V ), rl(SVS − V )− rfSVS}

=
σ2S2

2
VSS + rl(SVS − V ) + max{(rb − rl)(SVS − V ),−rfSVS, 0}

Note that the expression
max
q2
{(rl − rf )SVS − q2V } (2.23)

is equivalent to (rl − rf )SVS − rlV , since V is always nonnegative.

Thus, the short position PDE is equal to

Vτ =
σ2S2

2
VSS + rl(SVS − V ) + max{(rb − rl)(SVS − V ),−rfSVS, 0} (2.24)

The long position has a similar derivation, resulting in

Vτ =
σ2S2

2
VSS + rb(SVS − V ) + min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS, 0} (2.25)

In Chapter 3, we develop penalty methods for Equations (2.24) and (2.25).



Chapter 2. Problem Description 13

2.7 Adding American Early Exercise

When we add an American Early Exercise feature to (2.18), we get

Vτ = sup
µ,Q

{
σ2S2

2
VSS + q3q1(SVS − V ) + (1− q3)((rl − rf )SVS − q2V ) + µ

V − V ∗

ε

}
(2.26)

with Q = (q1, q2, q3), q1 ∈ {rl, rb}, q2 ∈ {rl, rb}, q3 ∈ {0, 1} and µ ∈ {0, 1}.

However, the long position is claimed to be more interesting in [14]:

Vτ = sup
µ

inf
Q

{
σ2S2

2
VSS + q3q1(SVS − V ) + (1− q3)((rl − rf )SVS − q2V ) + µ

V − V ∗

ε

}
,

(2.27)
with Q = (q1, q2, q3), q1 ∈ {rl, rb}, q2 ∈ {rl, rb}, q3 ∈ {0, 1} and µ ∈ {0, 1}

Unlike in the two previous cases, this problems seems to be introduced by Forsyth, who only
gives the control problems and does not give any nonlinear PDEs.

Due to the sup inf, this type of equation is known as a Hamilton-Jacobi-Bellman-Issacs (HJBI)
equation, and corresponds to a stochastic game: One agent tries to minimize the objective func-
tion over the possible choices ofQ, and the other agent tries to maximize the objective function
over µ. It is considered a more difficult problem; however, we have not had computational dif-
ficulties by calculating the sup inf as it is.

For both the short and long positions of this problem, we can add an American penalty con-
straint to our penalty formulation used to model the previous problem.

The equations we get are very similar to the penalty problem arising from Equation (2.18)
combined with the American early exercise feature from Equation (2.5).

Short position:

Vτ =
σ2S2

2
VSS + rl(SVS − V ) + max{(rb − rl)(SVS − V ),−rfSVS, 0}+ ρmax(V − V ∗, 0)

(2.28)

Long position:

Vτ =
σ2S2

2
VSS+rb(SVS−V )+min{(rl−rb)(SVS−V ),−(rb−rl+rf )SVS, 0}+ρmax(V−V ∗, 0)

(2.29)
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In Chapter 3, we solve Equations (2.28) and (2.29) by a double-penalty method, similar to [7]
for the pricing of valuation adjustments.

2.8 Uncertain Volatility

The Uncertain Volatility model [1] is given as a control problem in [14] and examined as a
nonlinear PDE in [29] and more extensively as a control problem in [17].

We solve the equations

Vτ = sup
q∈{σmin,σmax}

{
q2S2

2
VSS + rSVS − rV

}
(2.30)

and
Vτ = inf

q∈{σmin,σmax}

{
q2S2

2
VSS + rSVS − rV

}
(2.31)

which we will refer to as the “best case” and “worst case”, respectively.

The payoff function is called a butterfly spread: it is defined by

V ∗(S) =


0 if S ≤ K − a or S > K + a

S − (K − a) if K − a < S ≤ K

(K + a)− S if K < S ≤ K + a

(2.32)
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Figure 2.2: Butterfly Spread payoff function, with K = 100 and a = 5

It can be generated by a portfolio of vanilla call/put options, with two short call/put options
at the strike price K, and two long call/put options at the adjusted strike prices K − a and
K + a.

The nonlinear PDE that describes the best case is

Vτ =
σ2

minS
2

2
VSS + rSVS − rV + max

{
(σ2

max − σ2
min)S2

2
VSS, 0

}
(2.33)

and the nonlinear PDE that describes the worst case is

Vτ =
σ2

maxS
2

2
VSS + rSVS − rV + max

{
(σ2

min − σ2
max)S2

2
VSS, 0

}
(2.34)

In Chapter 3, using penalty methods, we solve these two nonlinear PDEs.

2.9 Transaction cost Models

Transaction cost models have been introduced in [24], and extensively debated and refined in
[22, 38, 25, 35]. It is beyond the scope of the paper to discuss the merits and drawbacks of
these models; we use the model given in [37], which is based on [35]. It is given by

Vτ =
σ2S2

2
VSS + rSVS − rV − κS2|VSS| (2.35)
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where κ < σ2/2 (to ensure a positive coefficient of the diffusion term) is the transaction cost
parameter.

For a transaction cost model with American options, Yousuf [37], following the logic in [16],
gives

Vτ =
σ2S2

2
VSS + rSVS − rV − κS2|VSS|+ ρmax(V ∗ − V, 0) (2.36)

where ρ is the same as the one used for American options in [16].

For the cases where the payoff is convex, VSS ≥ 0 and Equation (2.35) becomes

Vτ =

(
σ2

2
− κ
)
S2VSS + rSVS − rV, (2.37)

the Black-Scholes equation; and Equation (2.36) becomes

Vτ =

(
σ2

2
− κ
)
S2VSS + rSVS − rV + ρmax(V ∗ − V, 0), (2.38)

the penalty PDE for American options, as examined in [16]. In both cases, the volatility is
adjusted; the new volatility σ′ is given by

σ′ =
√
σ2 − 2κ (2.39)

Which gives rise to the requirement that κ < σ2/2.

Since the PDE becomes a linear PDE under a convex payoff, we also consider the Butterfly
spread payoff as an initial condition for this model.

2.10 Greeks

The Greeks are partial derivatives that measure sensitivity of price to changes in the variables.
They have important practical uses in risk management and hedging, so we will have a brief
mention of some of the most common ones: Delta (VS) and Gamma (VSS). We compute the
numerical values of these with second-order finite difference formulas.



Chapter 3

Numerical Methods

In this chapter, we discuss the numerical methods used to solve the problems previously de-
scribed.

3.1 Time and Space Discretization

In this section we describe the time and space discretizations for the Black-Scholes PDE. This
will firstly allow us to numerically price European options; and secondly it serves as a founda-
tion for problems in the later sections.

3.1.1 Temporal Discretization

To obtain the solution at the end time V (τ = T, S) starting from τ0 = 0, we integrate through
time at various timesteps 0 < τ1 < τ2 < . . . < T . Although the description is for uniform
timesteps, it applies equally well to nonuniform timesteps. We denote V (τj, ·) as V j , and
we use ∆τ to denote the step size taken. In our descriptions we assume a constant step size,
however, the description doesn’t change for variable step sizes.

The time-stepping scheme that we use in this thesis is one that is proposed by Crank and Nicol-
son in 1947 [12]. We include a brief explanation below (superscripts denote timesteps):

Suppose that the PDE of interest is

Vτ = F (τ, S, V, VS, VSS) (3.1)

17
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As we take a step of size ∆τ forwards from V j−1 to V j , the solution at time j − 1 to time j,
the Crank-Nicolson (CN) timestepping method solves the following system of equations for
the solution at the next timestep

V j − V j−1

∆τ
=

1

2

(
F j(τ, S, V, VS, VSS) + F j−1(τ, S, V, VS, VSS)

)
, (3.2)

where F j(τ, S, V, VS, VSS) denotes F (τ j, S, V j, V j
S , V

j
SS).

Another timestepping method is

V j − V j−1

∆τ
= F j(τ, S, V, VS, VSS) (3.3)

which is the implicit Euler or Backwards Euler (BE) method.

It is useful to examine BE and CN together, as a weighted sum parametrized by θ. A general
form is

V j − V j−1

∆τ
= θF j(τ, S, V, VS, VSS) + (1− θ)F j−1(τ, S, V, VS, VSS), (3.4)

known as a family of θ-methods.

Note that as long as θ > 0, this is an implicit method: the solution must be obtained by
solving a possibly nonlinear system of equations instead of by direct calculation as in explicit
methods, which have restrictions on their step size for stability requirements. Implicit methods
frequently have less stringent requirements than explicit methods and often are unconditionally
stable.

This allows us to take larger timesteps at the cost of solving a system of linear equations.
Fortunately, since the computation of derivative values only depend on adjacent nodes, the
matrix A which computes the spatial discretization of L is tridiagonal and we can solve the
systems of equations in linear time; an example is Algorithm 2.8 in Chapter 2 of [20].

In a subsequent section, we will also show that under certain conditions the matrix A is diag-
onally dominant; however, we note that such a result has already been proven in [9] and we
extend it to other matrices arising from the nonlinear problems.

Compared with CN, which is second order accurate, BE is only first order accurate. However,
BE has damping properties which turns out to be helpful because of the nondifferentiable
nature of the initial conditions (there is a cusp at the strike price K). After applying a constant
number of BE timesteps and the solution curve has been sufficiently smoothed out, we can
then apply CN timestepping for the remaining timesteps. This technique of a few iterations of
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BE followed by CN is known as Rannacher smoothing [30], and it does not affect the overall
second-order accuracy of CN. The original Rannacher smoothing technique divides the initial
timestep into two equal substeps, and instead of taking a CN step over the entire timestep,
we take one BE step over each substep. However, it has been shown in [10, 18] that the
best Rannacher smoothing for convergence is when we divide the first two timesteps into four
substeps, and take BE steps over each substep.

The effects of Rannacher smoothing may not be noticeable when we look at the value itself,
however, when we look at the “Greeks” we notice that the initial non-smoothness has been
exacerbated when we do not use Rannacher smoothing, and smoothed out when we implement
Rannacher smoothing (see Figure 3.1).

3.1.2 Spatial Discretization

Recall that the domain for S, the price of the underlying asset, is theoretically any nonnegative
amount. However, to make computation practical, we typically truncate the semi-infinite do-
main [0,∞) to a finite domain [0, Smax]. In our numerical experiments, we truncate to [0, 10K],
where K is the strike price.

Recall also the Black-Scholes equation:

Vτ =
σ2S2

2
VSS + rSVS − rV ≡ L(r)V (3.5)

We will directly describe the discretization on an arbitrary grid, where the continuous domain
[0, Smax] is represented with a finite number of points denoted as S0 = 0 < S1 < S2 < · · · <
SN = Smax. Define v to denote the vector of approximate values at the gridpoints {Si}Ni=0

that is calculated at each timestep. To calculate the partial derivatives VS and VSS , we use the
(N + 1) × (N + 1) tridiagonal matrices T1 and T2 defined based on formulas (3.6). These
matrices are defined such that T1v and T2v approximate the values of VS and VSS respectively
at the gridpoints.

We consider uniform grids only to demonstrate the superiority of nonuniform grids in lessening
of discretization error.

One reason for using a nonuniform grid is the fact that not all regions of the spatial domain have
equal significance. The region near the strike price is more important because the underlying is
more likely to be near that price. A second reason is that the graph of the value away from the
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Figure 3.1: European Put option, K = 100, σ = 0.8, r = 0.05, T = 0.25. Grid: N =
1000, ∆τ = 1/1600, Clarke-Parrott with a = 0.38. Left: No Rannacher smoothing. Right:
Rannacher smoothing over 1 timesteps. Top: Option value (V ). Middle: Delta (VS). Bottom:
Gamma (VSS)

strike price is almost linear; therefore fewer points are required for the same level of accuracy.
An example of the benefits of using a nonuniform grid can be seen in Figure 3.2: the maximum
error located near the strike priceK is reduced by almost an order of magnitude with otherwise
equal parameters.

Although any grid that is not a uniform grid is a nonuniform grid, in practice we restrict the
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Figure 3.2: Error of European option at the strike price is reduced significantly with the use of
a nonuniform grid

nonuniform grids of interest to those that can be generated by applying a mapping function
to a uniform grid. By imposing certain requirements on the mapping function, we can obtain
desired convergence results.

The mapping functions that we use are defined as g : [0, 1] → [0, 1] and must satisfy the fol-
lowing requirements (we scale the resulting grid as needed):

1. g has fixed endpoints: g(0) = 0, g(1) = 1

2. g is monotonically increasing, continuous, and has two continuous derivatives

The function g is plotted in Figure 3.3 with different values of a.

Let the grid be defined by Si (0 ≤ i ≤ n) satisfying S0 = 0 < S1 < S2 < ... < Sn−1 < Sn =

Smax. Define hi = Si − Si−1. Let Vi be the value of V (·, Si) at an arbitrary point in time. We
show the formulas for approximating VS and VSS on arbitrary gridpoints, where [VS]i denotes
VS at Si.
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Figure 3.3: Plot of mapping functions with various values of a

More specifically, the nonuniform centered differences are computed with the following ap-
proximations:

[VS]i ≈
−hi+1

hi(hi + hi+1)
Vi−1 +

hi+1 − hi
hihi+1

Vi +
hi

hi+1(hi+1 + hi)
Vi+1 (3.6a)

[VSS]i ≈
2

hi(hi + hi+1)
Vi−1 +

−2

hihi+1

Vi +
2

hi+1(hi + hi+1)
Vi+1. (3.6b)

For the first derivative, we also use backward differences, computed by the following expres-
sion

[VS]i ≈
Vi − Vi−1

hi
(3.7)

However, this is only used on the right endpoint at S = Smax when we implement linear
boundary conditions (see Section 3.1.2). Therefore, i = N in Equation (3.7) for all usage in
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this thesis.

Using Equations (3.6) and (3.7), we can define the tridiagonal matrices T1 and T2:

T1 =



0 0 0 0 · · · 0
−h2

h1(h1+h2)
h2−h1
h1h2

h1
h2(h2+h1)

0 · · · 0

0 −h3
h2(h2+h3)

h3−h2
h2h3

h2
h3(h3+h2)

· · · 0
...

...
...

...
...

...
0 · · · 0 −hN

hN−1(hN−1+hN )

hN−hN−1

hN−1hN

hN−1

hN (hN+hN−1)

0 0 0 0 · · · 0


(3.8)

T2 =



0 0 0 0 · · · 0
2

h1(h1+h2)
−2
h1h2

2
h2(h1+h2)

0 · · · 0

0 2
h2(h2+h3)

−2
h2h3

2
h3(h2+h3)

· · · 0
...

...
...

...
...

...
0 · · · 0 2

hN−1(hN−1+hN )
−2

hN−1hN

2
hN (hN−1+hN )

0 0 0 0 · · · 0


(3.9)

To compute the discretization of the Black-Scholes operator L(r)V in Equation (3.5), we de-
fine the diagonal matrices W0, W1 and W2, where the diagonal entries are defined by the
following:

[W0]ii = r (3.10)

[W1]ii = rSi−1 (3.11)

[W2]ii =
σ2S2

i−1

2
(3.12)

Note that since matrices are always indexed from 1 to N + 1, and the nodes are indexed from
0 to N , the indices will have a difference of one in Equations (3.11) and (3.12).

Then, define
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A = W0 +W1T1 +W2T2 +B, (3.13)

where W0, W1, W2, T1, T2 are defined above, and B is the matrix which defines the boundary
conditions. In the case of Dirichlet boundary conditions on both endpoints,B1,1 = BN+1,N+1 =

1. In the case of Dirichlet boundary conditions on the left endpoint and linear boundary condi-
tions on the right endpoint,

B1,1 = 1 (3.14a)

BN+1,N = rSN+1

(
1

hN

)
(3.14b)

BN+1,N+1 = rSN+1

(
−1

hN

)
− rSN+1 (3.14c)

The other entries of the matrix B are zero.

Applying θ-timestepping to Equation (3.5), we have

V j − V j−1

∆τ
= θAV j + (1− θ)AV j

V j − V j−1 = θ∆τAV j + (1− θ)∆τAV j−1

V j − θ∆τAV j = V j−1 + (1− θ)∆τAV j

(I − θ∆τA)V j = (I + (1− θ)∆τA)V j−1

We solve the linear system

(I − θ∆τA)V j = (I + (1− θ)∆τA)V j−1 (3.15)

for the unknown V j at each timestep to advance from time j − 1 to time j.

Specific nonuniform grid

The nonuniform grid that we use is introduced in [11], defined by the inverse of the func-
tion

g(xi) = K

(
1 +

sinh(b(xi − a))

sinh(ba)

)
(3.16)
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on the interval [0, 1], where xi are the gridpoints, and a, b are fixed parameters. The parameter
a is a measure of concentration of gridpoints near the strike price; higher values of a have
increased number of points near the strike price. The other parameter b is used to ensure that
g(1) = 1. After we solve for the grid points, we scale this grid to the proper spatial domain
(i.e. Si = Smaxxi).

In practice, we would solve Equation (3.17) numerically for b after choosing an appropriate a.
In this thesis we set a = 0.37 for most of our problems where we use this family of nonuniform
grids.

Smax = K

(
1 +

sinh(b(1− a))

sinh(ba)

)
(3.17)

This nonuniform grid ensures that there exists a point on the only non-smooth point in the
initial conditions, which is the strike price for call, put, and straddle payoffs. This ensures that
the we converge to the correct solution [28].

However, for when we are solving the Uncertain Volatility problem, we have the Butterfly
Spread payoff function and there is no way to ensure that we can place nodes located at the
three strike prices K1, K2, and K3. Therefore, we use a uniform grid with an appropriate
number of subintervals to ensure that each of the three non-smooth points coincides with a
node.

Differentiating the function g(S) twice would show that it has a bounded second derivative.
Therefore, as we will show in the next section, the discretization of the diffusion (1

2
σ2S2VSS)

term in the Black-Scholes PDE converges in second order.

Boundary Conditions

As a result of truncating the semi-infinite spatial domain, we have to consider the two endpoints
of the interval: S = 0 and S = Smax.

For the left side of the boundary corresponding to S = 0, we always use Dirichlet boundary
conditions

V (τ, S = 0) = given constant (3.18)

They can be derived by setting S = 0 in the PDE of interest and solving for V over time. Since
the VS and VSS terms all have an S coefficient in all of our PDEs, they are zeroed out and we
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only have
Vτ = (constants)V (3.19)

which can be solved for exactly.

For the right side of the boundary, we use Dirichlet boundary conditions for some simple
problems to check agreement with linear boundary conditions

VSS(τ, S = Smax) = 0 (3.20)

in our implementations.

Linear boundary conditions are implemented by setting the diffusion term equal to zero on the
boundary and discretizing the first derivative VS according to the backward difference formula
(3.7).

For more complicated problems where we don’t necessarily want to derive Dirichlet boundary
conditions we use linear boundary conditions. In addition to verifying the correctness of linear
boundary conditions, the use of Dirichlet boundary conditions allows us to analyze properties
such as diagonal dominance of the matrix arising from discretization. This is not possible with
linear boundary conditions, because the lack of a diffusion term and the negative coefficient in
the V term make diagonal dominance impossible.

3.1.3 Order of Residual Terms

By Taylor Series expansion, we can show that for our approximations to the first deriva-
tive,

residual =
hi

hi+1(hi+1 + hi)

h3
i+1

6
VSSS(Si)−

−hi+1

hi(hi + hi+1)

h3
i

6
VSSS(Si) +O(max(hi, hi+1)2)

= O(h2)

The stencil for the second derivative is also second order, if we make assumptions on the
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spacing of the points. The residual is

residual = VSSS(Si)

[
2

hi+1(hi + hi+1)

h3
i+1

6
− 2

hi(hi + hi+1)

h3
i

6

]
+O(max(hi, hi+1)2)

= VSSS(Si)

[
h2
i+1

3(hi + hi+1)
− h2

i

3(hi + hi+1)

]
+O(max(hi, hi+1)2)

Therefore,
residual =

1

3
VSSS(Si)(hi+1 − hi) +O(max(hi, hi+1)2) (3.21)

The only term that may cause a problem for second order convergence of Equation (3.21) is
hi+1 − hi. To determine under what assumptions it is second order, let g : [0, 1]→ [0, 1] be the
mapping function; and let the original points be w − h, w, w + h. The new points are

g(w − h) = Si − hi (3.22a)

g(w) = Si (3.22b)

g(w + h) = Si + hi+1 (3.22c)

The difference can be calculated as follows:

hi+1 − hi = (Si + hi+1 − Si) + (Si − hi − Si)

= (g(w + h)− g(w)) + (g(w − h)− g(w))

=

[
hg′(w) +

h2

2
g′′(w)

]
+

[
−hg′(w) +

h2

2
g′′(w)

]
+O(h3)

= h2g′′(w) +O(h3)

Therefore, the residual is O(h2) as long as g has bounded 2nd derivative.

3.2 Policy Iteration

The policy iteration algorithm is applied to all HJB problems, making the analysis for the
problems more or less equivalent.
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Recall the HJB equation

Vτ = sup
Q
{a(S, τ,Q)VSS + b(S, τ,Q)VS + c(S, τ,Q)V + d(S, τ,Q)}

We modify the definition of A, so instead of Equation (3.13), it is now a function of the control
Q (A = A(Q)) and is defined by

A(Q) = W0(Q) +W1(Q)T1 +W2(Q)T2 +B, (3.23)

Additionally, define D(Q) by the vector that has the values Di = d(Si, Qi).

We want to solve the system

(I − θ∆τA(Qj))vj − θ∆τD(Qj) = (I + (1− θ)∆τAj−1)vj−1 + (1− θ)∆τDj−1 (3.24)

subject to
Qi = arg sup

Q∈Q̂
[Aj(Q)vj +D(Q)]i (3.25)

To solve Equation (3.24) subject to condition (3.25), we use an iterative process that alternates
between a maximization step and a solving step.

Let Qj,k be defined as the elementwise argmax of the objective function

Qj,k
i = arg sup

µ∈{0,1}

[
A(Qj,k)vj,k−1 +D(Qj,k)

]
i

(3.26)

Computing Qj,k from Equation (3.26) is known as the maximization step.

Then, we solve

(I− θ∆τA(Qj,k))vj,k = (I + (1− θ)∆τAj−1)vj−1 + θ∆τD(Qj,k) + (1− θ)∆τDj−1. (3.27)

Solving for vj,k from Equation (3.27) is known as the evaluation step.

These two steps are key to the policy iteration algorithm and can be seen in numerous sources
including [33]. Algorithm 1 gives the high-level description of the policy iteration algorithm
for all optimal control problems, including American options.
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Algorithm 1 Policy Iteration for HJB PDEs with θ timestepping

Require: Solve (I − θ∆τA(Qj,k))vj,k = gj−1 + θ∆τD(Qj,k)

subject to Qi = arg supQ∈Q̂[A(Qj)vj +D(Qj)]i

where gj−1 = (I + (1− θ)∆τAj−1)vj−1 + (1− θ)∆τDj−1

1: Initialize vj,0 = vj−1 and Qj,0 = Qj−1

2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τA(Qj,k−1))vj,k = gj−1 + θ∆τDj(Qj,k−1)

4: Compute Qj,k
i = arg supQ∈Q̂[A(Q)vj,k +D(Q)]i

5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set vj = vj,k and Qj = Qj,k

The convergence criteria that we use throughout our problems are the convergence of controls:
when

Qj,k = Qj,k+1 (3.28)

the iteration is terminated.

Using Condition (3.28) is an improvement over the algorithm described in [14] because the
stopping criterion in the latter forces a minimum of two iterations per timestep, but we can
do less without deterioration of the solution quality. We later present an improved policy
iteration algorithm that handles American exercise rights in a different way and allows variable
timestepping and stable order of convergence

The iteration is guaranteed to converge [33], however, the authors provide a worst-case example
that can take as many as the number of states to converge. This is not an issue in the problems
we are solving for because the authors assume a cold start, but in PDE problems, the solution
value does not change greatly per timestep, so we can always use the value at the previous
timestep as a warm start.

3.3 Penalty Methods

The penalty methods that we introduce are inspired by [7] and [16], which address nonlinearity
arising from valuation adjustments and American exercise rights, respectively.
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Our nonlinear PDEs from the Borrow-Lend, Stock Borrowing Fees, and Uncertain Volatility
problems are of the general form

Vτ = L(r)V + nonlinear term (3.29)

where the “nonlinear term” is either a maximum or a minimum taken over two or more linear
terms involving partial derivatives of V with respect to S.

3.3.1 American options

For American options, the discrete penalty method is introduced in [16].

Recall that the American Penalty PDE is defined as

Vτ =
σ2S2

2
VSS + rSVS − rV + ρmax(V ∗ − V, 0) (3.30)

The challenge in this is the discretization of the penalty term ρmax(V ∗ − V, 0). Everything
else is the same as for European options.

Recall for European options we solve the system

(I − θ∆τA)vj = (I + (1− θ)∆τA)vj−1 (3.31)

For American options, instead of solving a linear system we have to solve Equation (3.33),
which is nonlinear, and for that we will use an iterative method.

Define the penalty matrix PA as a diagonal matrix with the following entries:

PA
j
i,i = PA(V j)i,i =

ρ if V j
i < V ∗i

0 otherwise
(3.32)

And we solve the following nonlinear system

(I − θ∆τA)vj = (I + (1− θ)∆τA)vj−1 + PA(vj)(v∗ − vj) (3.33)

with a iterative method as described in Algorithm 2
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Algorithm 2 Penalty Iteration scheme for timestepping from j − 1 to j

Require: Solve [(I − θ∆τA) + PA(vj)]vj = gj + PA(vj)V ∗

where gj = (I + (1− θ)∆τA)vj−1

1: Initialize vj,0 = vj−1 and P j,0 = P (vj−1)

2: for k = 1, . . . ,maxit do
3: Solve [(I − θ∆τA) + P j,k−1

A ]vj,k = gj + P j,k−1
A V ∗

4: Compute P j,k
A = PA(vj,k)

5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set vj = vj,k

There are two different termination conditions. The first, from [14], is

max
i

|vk+1
i − vki |

max(1, vk+1
i )

≤ tol, (3.34)

with tol chosen to be sufficiently small such as 10−8. The other stopping criterion is

P j,k
A = P j,k+1

A . (3.35)

The benefits of Condition (3.35) is that if we have converged at the k-th iteration, we do not
need to compute the next iteration to check convergence. Only checking for equivalence of the
penalty matrix is sufficient. The first stopping criterion (Condition (3.34)) is a typical criterion
for iterative methods borrowed from [16].

The choice of ρ is determined by the relative accuracy required. We follow the analysis pro-
vided in [16]. In

[(I − θ∆τA) + P j
A]vj = gj + P j

AV
∗, (3.36)

assume that (I − θ∆τA)vj,k and gj are bounded independently of ρ. Then, as ρ→∞, for the
nodes that violate the constraint vji > v∗i , Equation (3.36) reduces to

(1 + ρ)vji = 1 + ρv∗i , (3.37)
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Then, we can write vji approximately in terms of v∗i ,

vji =
1

1 + ρ
+

ρ

1 + ρ
v∗i ≈

ρ

1 + ρ
v∗i (3.38)

Finally, we take the difference to get

v∗i − v
j
i ≈ (1− ρ

1 + ρ
)v∗i = (

1

1 + ρ
)v∗i (3.39)

Or in terms of relative precision,

v∗i − v
j
i

v∗i
≈ 1

1 + ρ
≈ ρ−1. (3.40)

Hence, the choice of ρ should be approximately the inverse of the amount of the relative accu-
racy required.

3.3.2 Borrow-Lend

Recall the PDE for short position of the Borrow-Lend problem:

Vτ = L(rb)V + (rb − rl) max(V − SVS, 0) (3.41)

The challenge in the discretization of this PDE is the max term, since L(rb)V is simply the
Black-Scholes operator. We have two algorithms for discretization, one that is a direct analogy
of the American penalty PDE problem and the other is a modification.

Recall that S0 < S1 < . . . < SN are the spatial discretization points, with S0 = 0 and
SN = Smax. Recall also that vj is the vector of approximate V (τj, ·) values computed at
Si, i = 1, . . . , N , and T1, T2 are the N + 1 × N + 1 tridiagonal matrices arising from the
discretization of VS and VSS respectively, by centered differences at Si, i = 1, . . . , N − 1, and
by backward differences at the far-end point. Note that it doesn’t matter how we compute the
derivative at S0 = 0, since during computation we would multiply it by zero anyways. Let DS

be the (N + 1)× (N + 1) diagonal matrix diag{S0, S1, . . . , SN}.
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Let P j
d = Pd(v

j) be the diagonal matrix defined by

[Pd]ii =

rb − rl if vji − [DST1v
j]i > 0

0 otherwise.‘
(3.42)

Then, Pd(V −DST1V ) calculates max(V − SVS, 0).

Define the tridiagonal penalty matrix P = Pd(I − DST1). Then, PV calculates max(V −
SVS, 0).

For the long position, the PDE is

Vτ = L(rb)V + (rl − rb) max(SVS − V, 0) (3.43)

The penalty matrix Pd is now defined as

[Pd]ii =

rl − rb if [DST1v
j]i − vji > 0

0 otherwise.‘
(3.44)

and the tridiagonal penalty matrix P has a similar definition i.e. P = Pd(DST1 − I).

Since the tridiagonal penalty iteration performs better than the diagonal penalty iteration (see
chapter 4), we only have tridiagonal penalty methods for the more complicated Stock Borrow-
ing Fee problem.

3.3.3 Stock Borrowing Fees

Recall the PDE of interest for the short position:

Vτ = L(rl)V + max{(rb − rl)(SVS − V ),−rfSVS, 0} (3.45)

Let now A, P1 and P2 the tridiagonal matrices arising from the discretization of L(rl)V , (rb −
rl)(SVS − V ) and −rfSVS , respectively. Note that P1 = (rb − rl)(DST1 − I) and P2 =
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−rfDST1. Define the tridiagonal penalty matrix P = P (vj) by

Pi,: =


0 if [P1v

j]i ≤ 0 and [P2v
j]i ≤ 0

[P1]i,: if [P1v
j]i > 0 and [P1v

j]i > [P2v
j]i

[P2]i,: if [P2v
j]i > 0 and [P1v

j]i ≤ [P2v
j]i,

(3.46)

where the colon notation Pi,: means the entire i-th row of P and is borrowed from MAT-
LAB.

Long positions are similar: the PDE becomes

Vτ = L(rb)V + min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS, 0} (3.47)

and the nonlinear term to be discretized is

min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS, 0} (3.48)

In similar fashion as the short position, let P1 and P2 be the tridiagonal matrices arising from
the discretization of (rl − rb)(SVS − V ) and −(rb − rl + rf )SVS , respectively. Note that
P1 = (rl − rb)(DST1 − I) and P2 = −(rb − rl + rf )DST1. Define the tridiagonal penalty
matrix P = P (vj) by

Pi,: =


0 if [P1v

j]i > 0 and [P2v
j]i > 0

[P1]i,: if [P1v
j]i < 0 and [P1v

j]i < [P2v
j]i

[P2]i,: if [P2v
j]i < 0 and [P1v

j]i > [P2v
j]i,

(3.49)

For the Stock Borrowing Fee problem with American exercise rights,

Vτ = L(rl)V + max{(rb − rl)(SVS − V ),−rfSVS, 0}+ ρmax(V ∗ − V, 0) (3.50)

and we can apply both this penalty matrix and PA defined earlier.
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3.3.4 Uncertain Volatility

For the Uncertain Volatility Model, our nonlinear PDEs are

Vτ =
σ2

minS
2

2
VSS + rSVS − rV + max

{
(σ2

max − σ2
min)S2

2
VSS, 0

}
(3.51)

for the best case, and

Vτ =
σ2

maxS
2

2
VSS + rSVS − rV + max

{
(σ2

min − σ2
max)S2

2
VSS, 0

}
(3.52)

for the worst case.

The tridiagonal penalty matrix P = P (vj) is defined by

Pi,: =

1
2
(σd)[D

2
ST2]i,: if [D2

ST2v
j]i > 0

0 otherwise,
(3.53)

where σd is σ2
max− σ2

min in the case of solving for the best case, and σ2
min− σ2

max when solving
for the worst case.

3.3.5 Transaction Cost models

Although the original transaction cost model [24] is mathematically equivalent to an uncertain
volatility model, the models used in [37] differ slightly. Recall that the nonlinear term is
−κS2|VSS|.

Hence, the matrix arising from the nonlinearity in transaction costs is similar to the matrix
arising from the uncertain volatility problem. The tridiagonal penalty matrix P = P (vj) is
defined by

Pi,: =

−κ[D2
ST2]i,: if [D2

ST2v
j]i > 0

κ[D2
ST2]i,: otherwise,

(3.54)

It is easily seen that Pv computes −κS2|VSS|
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3.3.6 Algorithm Descriptions

Now, we are ready to give a general form of the penalty algorithms developed throughout the
previous section.

At the jth timestep, the PDEs (3.41), (3.45), (3.51), and (3.52) can be discretized as

(I − θ∆τ(A+ P (vj)))vj = (I + (1− θ)∆τ(A+ P (vj−1)))vj−1 (3.55)

If options with American exercise rights are involved, such as the PDEs (3.50) and the related
long position, we solve a system similar to (3.33)

(I − θ∆τ(A+ P (vj)))vj = (I + (1− θ)∆τ(A+ P (vj−1)))vj−1 + PA(vj)(v∗ − vj) (3.56)

Let P denote the penalty-like matrix arising from the max terms involving partial derivatives,
and let PA denote the penalty matrix arising from the American constraint, if considering op-
tions with American exercise rights. If not, then disregard that matrix entirely. Then, the
general form of the penalty iteration algorithm becomes Algorithm 3

Algorithm 3 General form of tridiagonal penalty iteration at step j, with θ-timestepping

Require: Solve [(I − θ∆τ(A+ P (vj))) + PA(vj)]vj = gj + PA(vj)V ∗

where gj = (I + (1− θ)∆τ(A+ P (vj−1)))vj−1

1: Initialize vj,0 = vj−1 and P j,0 = P (vj−1)

2: for k = 1, . . . ,maxit do
3: Solve [(I − θ∆τ(A+ P j,k−1)) + P j,k−1

A ]vj,k = gj + P j,k−1
A V ∗

4: if first stopping criterion satisfied then
5: Break
6: end if
7: Compute P j,k = P (vj,k), P j,k

A = PA(vj,k)

8: if second stopping criterion satisfied then
9: Break

10: end if
11: end for
12: Set vj = vj,k
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The first stopping criterion is

max
i

(
|vj,k−1
i − vj,ki |

max(scale, |vj,ki |)

)
< tol (3.57)

with scale = 1 and tol = 10−5.

The second stopping criterion is

P j,k = P j,k−1 and P j,k
A = P j,k−1

A (3.58)

When either condition is satisfied the iteration is terminated.

The second stopping criterion is analogous to the equivalence of controls for the policy itera-
tion. The first stopping criterion is borrowed from [14] and is used to prevent excess iterations
in the case of degenerate problems that behave like a simpler problem, such as a transaction
cost model with a Put payoff.

Additionally, we have a “diagonal penalty method” (Algorithm 4) which is closer in spirit to
the original penalty method as described in [16]. However, the “tridiagonal penalty method”
should be preferred due to better convergence properties. Notably, it takes far fewer itera-
tions, and is monotone except for certain cases, whereas the diagonal penalty method is never
monotone and a minimum of two iterations are required per timestep.

Algorithm 4 Diagonal penalty iteration for the Borrow-Lend problem at step j, with θ-
timestepping

Require: Solve (I − θ∆τ(A+ P j
d − P

j
dDST1))vj = gj

where gj = (I + (1− θ)∆τ(A+ P j−1
d − P j−1

d DST1))vj−1 + bndj

1: Initialize vj,0 = vj−1 and P j,0
d = Pd(v

j−1)

2: for k = 1, . . . ,maxit do
3: Solve (I − θ∆τ(A+ P j,k−1

d ))vj,k = gj − θ∆τP j,k−1
d DST1v

j,k−1

4: if stopping criterion satisfied then
5: Break
6: end if
7: Compute P j,k

d = Pd(v
j,k)

8: end for
9: Set vj = vj,k
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The single stopping criterion used is the equivalence of penalty matrices, since we do not have
degenerate cases for the Borrow-Lend problem.

3.4 Improved Policy Iteration Algorithm for American exer-
cise rights

Due to the fact that the variable timesteps for American exercise rights do not work with Al-
gorithm 1, we present a modified policy iteration algorithm specifically for problems with
American exercise rights.

The motivation can be found by analyzing the difference between the Penalty Iteration al-
gorithm [16] and the policy iteration algorithm in [14] for American Put options. It can be
determined that the maximization step is equivalent to calculating the penalty matrix; however,
the difference lies in the solution of the linear system. It can be shown that solving for the next
iterate vj,k in the policy iteration is solving

(I− θ∆τA+ P j,k−1
A )vj,k = (I + (1− θ)∆τA)vj−1 + P j,k−1

A v∗ + P j−1
A (v∗ − vj−1) (3.59)

when θ = 1/2.

In contrast, the Penalty Iteration algorithm [16] solves

(I− θ∆τA+ P j,k−1
A )vj,k = (I + (1− θ)∆τA)vj−1 + P j,k−1

A v∗ (3.60)

regardless of what the value of θ is.

Let the diagonal matrix R(µ) be defined with the diagonal elements as ρµ (recall that µ is a
vector of controls). This leads us to Algorithm 5.

The first stopping criterion is the same as in Algorithm 3 which is Condition (3.57). For the
second stopping criterion, if we use a similar condition as the one used in Algorithm (1) based
on equivalence of controls

µj,k = µj,k−1 and Qj,k = Qj,k−1 (3.61)

then we run into problems with oscillations that can lead to infinite iterations. Instead, we use
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Algorithm 5 Policy Iteration for HJB PDEs with American exercise rights with θ timestepping

Require: Solve (I− θ∆τA(Qj))vj = gj−1

subject to Qj
i = arg supQ∈Q̂[A(Qj)vj]i and µji = arg supµ∈{0,1}[R(µj)(v∗ − v)]i

where gj−1 = (I + (1− θ)∆τAj−1)vj−1

1: Initialize vj,0 = vj−1, µj,0 = µj−1, and Qj,0 = Qj−1

2: for k = 1, . . . ,maxit do
3: Solve (I− θ∆τA(Qj,k−1) +R(µj,k−1))vj,k = gj−1 +R(µj,k−1)v∗

4: if first stopping criterion satisfied then
5: Break
6: end if
7: Compute Qj,k

i = arg supQ∈Q̂[A(Q)vj,k]i, µ
j,k
i = arg supµ∈{0,1}[R(µ)(v∗ − v)]i

8: if second stopping criterion satisfied then
9: Break

10: end if
11: end for
12: Set vj = vj,k, µj = µj,k, and Qj = Qj,k

a stopping criterion similar to Condition (3.57)

µj,k = µj,k−1 and max
i

(
|A(Qj,k)vj,k − A(Qj,k−1)vj,k|

max(scale, A(Qj,k)vj,k)

)
< tol. (3.62)

The idea of this is to prevent excess iterations (that can possibly lead to infinite iterations) in
the case of degenerate problems.

3.5 Diagonal Dominance, Monotonicity, and Convergence

In this section, we prove that the matrices we use are strictly diagonally dominant (assuming
Dirichlet boundary conditions are used), with positive diagonal entries, and nonpositive off-
diagonal entries.

This shows the monotonicity [26] of the matrices, which helps to prove the monotonicity of
the iterates in the penalty method. Monotonicity of the iterates is used with stability and con-
sistency to prove convergence.
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3.5.1 Black-Scholes operator

First we consider the Black-Scholes PDE:

Vτ =
σ2S2

2
VSS + rSVS − rV ≡ L(r)V (3.63)

After we apply CN discretization, we are interested in the matrix I − θ∆τ(A + P ), where
A is the discretization matrix of L and P is the penalty matrix. By showing that A + P is
strictly diagonally dominant with negative diagonal entries, we establish that I − θ∆τ(A+P )

is strictly diagonally dominant with positive diagonal entries.

We consider a grid 0 = S0 < S1 < S2 < · · · < Sn = Smax, and define hi = Si − Si−1

Using second-order finite differences for VSS and VS , we get the following for each row i of A:

Ai,i−1 =
σ2S2

i

hi(hi + hi+1)
− rSihi+1

hi(hi + hi+1)
(3.64a)

Ai,i = − σ2S2
i

hi + hi+1

+
(hi+1 − hi)rSi

hihi+1

− r (3.64b)

Ai,i+1 =
σ2S2

i

hi+1(hi + hi+1)
+

rSihi
hi+1(hi + hi+1)

(3.64c)

Since A is tridiagonal, the strict diagonal dominance is established by showing that

|Ai,i| − |Ai,i−1| − |Ai,i+1| > 0 (3.65)

We make the assumption that
hi+1 < σ2Si/r (3.66)

which is the condition for making diagonal entries negative and the off-diagonal entries posi-
tive.

Since
hi+1 = Si+1 − Si, (3.67)

the inequality (3.66) becomes
Si+1 < (1 + σ2/r)Si (3.68)
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which states that the relative increase in each of the gridpoints cannot exceed σ2/r.

Then,

|Ai,i| − |Ai,i−1| − |Ai,i+1| = −Ai,i − Ai,i−1 − Ai,i+1

= −(Ai,i + Ai,i−1 + Ai,i+1)

Since A arises from discretization formulas involving VSS and VS , if we take their sum of the
entries, the lower-order terms which compute the derivatives sum to 0 and we just end up with
−r as the sum. Since (3.65) is satisfied, we have shown diagonal dominance of the matrix
A.

This result can also be seen from the fact that a constant function has zero derivative. This
is because computing the sum of the entries is equivalent to multiplication with a vector of
ones.

3.5.2 Diagonal/Tridiagonal Penalty Matrix for Borrow-Lend

Adding the diagonal penalty matrix P only adds rb − rl to some diagonal entries of the matrix
A, which doesn’t affect the diagonal dominance. The rows simply sum to −rl instead of
−rb.

The tridiagonal penalty matrix P is like the matrix A except with no second derivative terms
and some rows set to 0. For the nonzero rows, they still have negative entries on the diagonals
and positive entries on the non-diagonals. Since P arises from discretization, when the sum is
taken we are left only with the (rb− rl)V terms. If we add P and A, since the signs of both the
diagonal and off-diagonal entries match, the rows of A + P sum to −rb if the corresponding
row of P is zero, and sum to−rl if the corresponding row of P is nonzero. Therefore, diagonal
dominance is preserved.

3.5.3 Tridiagonal penalty matrix for Stock Borrowing Fees

We prove diagonal dominance of the linear system in the penalty method.

Recall that the PDE (3.45) is

Vτ = L(rl)V + max{(rb − rl)(SVS − V ),−rfSVS, 0}. (3.69)
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The matrix of interest is
(I − θ∆τ(A+ P (vj))) (3.70)

We need to consider the addition of the penalty term. There are 3 cases to consider, corre-
sponding to when each of the terms in the max are the largest.

We have already proved the cases for when either (rb − rl)(SVS − V ) is the largest or 0 is the
largest. They are covered in the Borrow-Lend and the plain European cases, respectively.

So there is only the case when −rfSVS is the maximum left to consider.

Since the sign is negative, the terms added to the matrix A by the penalty matrix P goes in the
opposite direction of the existing terms. Therefore, the diagonal dominance is enhanced.

For the long position, the term under consideration is

min{(rl − rb)(SVS − V ),−(rb − rl + rf )SVS, 0} (3.71)

and the analysis is the same: the term−(rb−rl+rf ) is always negative since rb > rl. Therefore,
the diagonal dominance is not weakened when the other two terms are the maximum, and is
enhanced when stock borrowing fee takes effect.

3.5.4 Uncertain Volatility

For the penalty matrix arising from the uncertain volatility model, only a discretization involv-
ing the 2nd derivative VSS is computed for the nonzero rows. In the case of computing the
maximum with a positive coefficient, the coefficients sum to zero and the signs have the same
signs asA does – which ensures that diagonal dominance is preserved. In the case of a negative
coefficient, the coefficient has smaller magnitude than than that for the corresponding terms in
A, and hence, diagonal dominance is also preserved.

3.5.5 Transaction Cost model

For the penalty matrix arising from the transaction cost model, the rows all follow the same
logic as that for the matrix arising from the Uncertain Volatility model. Whether the row is
positive or negative, it does not affect the diagonal dominance of A as long as κ < σ2/2.
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3.5.6 Monotonicity and Convergence

Note that we have proved strict diagonal dominance of A or A + P with negative diagonal
entries and nonnegative off-diagonal entries for the discretization matrices used in European
options, Borrow-Lend problem, and Stock Borrowing Fees.

The linear system we are solving for is I − θ∆τA or I − θ∆τ(A+P ). Therefore, since A and
A + P are diagonally dominant with negative diagonal entries and nonnegative off-diagonal
entries, I−θ∆τA and I−θ∆τ(A+P ) are diagonally dominant with positive diagonal entries
and nonnegative off-diagonal entries. In other words, I − θ∆τA and I − θ∆τ(A + P ) are
monotone. A proof of the fact that a strictly diagonally dominant matrix with positive diagonal
entries and non-positive off-diagonal entries is monotone can be found in [5]. Using this fact,
we can show that some of the discrete penalty-like iteration converges monotonically to the
unique solution in a finite number of iterations similar to Theorem 1 of [7].

3.5.7 American Penalty Matrix

Penalty matrices arising from American options are treated differently than those which arise
from nonlinearity involving the partial derivatives such as in Borrow-Lend and Stock Borrow-
ing Fees. In particular, the matrix under question is

I − θ∆τ(A+ P ) + PA (3.72)

where PA denotes the penalty matrix arising from the American exercise feature. Since PA
is a diagonal matrix that has only positive or zero entries, it can only enhance the diagonal
dominance (and by extension, the monotonicity) of the matrix I − θ∆τ(A + P ). Therefore,
adding an American penalty matrix can only enhance the diagonal dominance of the linear
system under consideration, and the arguments about diagonal dominance and monotonicity
all hold.

3.6 Algorithm Convergence

We will show that under certain conditions, the family of tridiagonal penalty methods (Algo-
rithm 3) converge monotonically to the unique solution in a finite number of iterations.
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We make use of the fact that ifB is a diagonally dominant matrix with positive diagonal entries
and negative off-diagonal entries, then B is a monotone matrix, meaning:

1. B−1 exists

2. B−1
ij > 0 for all i, j.

Therefore, when solving the system Bx = y for x, if y < 0 then x < 0; and if y > 0 then
x > 0.

3.6.1 Monotonicity

We wish to prove the following results:

1. When we have penalty matrices that compute the maximum with a positive coefficient,
the iterates are monotone increasing.

2. Similarly, when penalty matrices compute the minimum with a positive coefficient, or
the maximum with a negative coefficient, the iterates are monotone decreasing.

3. Since the American constraint causes the iterates to be monotone increasing, the iterates
are monotone increasing if the penalty matrices compute the maximum with a positive
coefficient (in the first case).

We will prove all three statements. For the penalty iteration, we have to solve

[I − θ∆τ(A+ P j,k−1)]vj,k = gj (3.73)

at each penalty iteration for vj,k, where P is a matrix defined based on the maximum of several
terms.

We want to show that vj,k+1 ≥ vj,k. Hence, consider the next penalty iteration

[I − θ∆τ(A+ P j,k)]vj,k+1 = gj (3.74)

and write the equation in the previous iteration (3.73) as

[I − θ∆τ(A+ P j,k)]vj,k = gj + θ∆τ(P j,k−1 − P j,k)vj,k (3.75)
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Therefore,
[I − θ∆τ(A+ P j,k)](vj,k+1 − vj,k) = θ∆τ(P j,k − P j,k−1)vj,k (3.76)

Since the penalty matrix P j,k is defined based on vj,k and is the maximum with a positive
coefficient, then P j,kvj,k ≥ P j,k−1vj,k.

For the second case, we will also reach Equation (3.76). However, since P is now defined
as the minimum of the matrix-vector product P j,kvj,k over some terms (or equivalently, the
maximum over the terms with a negative coefficient), we have P j,kvj,k ≤ P j,k−1vj,k.

Since [I − θ∆τ(A+ P j,k)] is a monotone matrix, it follows that

vj,k+1 − vj,k ≥ 0 if θ∆τ(P j,k − P j,k−1)vj,k ≥ 0 (3.77)

vj,k+1 − vj,k ≤ 0 if θ∆τ(P j,k − P j,k−1)vj,k ≤ 0 (3.78)

Therefore, in the first case the iterates are monotonically increasing, and in the second case the
iterates are monotonically decreasing.

Since adding in the American penalty matrix causes the iterates to increase on each iteration
[16], it wouldn’t change the monotonicity if the iterates are monotonically increasing other-
wise, but if the iterates are monotonically decreasing otherwise then adding in the American
penalty matrix breaks the monotone conditions.

3.6.2 Proof of algorithm termination

The basic idea of the proof is to partition the nodes into two or three sets depending on the
nonlinear problem we are considering based on the penalty matrix. Since the iterates are in-
creasing/decreasing monotonically, any node that has the entry of the matrix-vector product
[Pv]i maximized/minimized does not change on the next iteration. Additionally, if no nodes
change sets, then the penalty matrices between iterations are equal, and Equation (3.35) is
satisfied, terminating the iteration.

Since there is only a finite number of nodes, and a finite number of states each node can have,
and the iterates are monotone, it follows that algorithm terminates in at most (N + 1)(m− 1)

iterations, where N is the number of subintervals and m is the number of states.

However, our empirical results show that most of the time the number of iterations taken per
timestep is one or two, with the average being closer to one for most problems.
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For problems with an additional American penalty matrix, the proof of algorithm termination
doesn’t change as long as the monotonicity arguments in Section 3.6.1 hold, since the results
regarding the algorithm termination from [16] hold as well.

3.6.3 Uniqueness of solution

Recall that we have to solve the nonlinear system

[I − θ∆τ(A+ P j,k−1)]vj,k = gj (3.79)

with emphasis on the nonlinearity between the penalty matrix P j,k−1 and vj,k

Suppose that there exist two solutions, (P1, v1) and (P2, v2). Then,

[I − θ∆τ(A+ P1)]v1 = gj (3.80)

and
[I − θ∆τ(A+ P2)]v2 = gj (3.81)

We can rewrite (3.80) as

[I − θ∆τ(A+ P2)]v1 + θ∆τ(P2 − P1)v1 = gj (3.82)

and take the difference to get

[I − θ∆τ(A+ P2)](v2 − v1) = θ∆τ(P2 − P1)v1 (3.83)

Here, we apply the results on monotonicity earlier to argue that in the case of the penalty
matrix being based on a maximum, then the RHS vector is always nonpositive, and if the
penalty matrix is based on a minimum, then the RHS vector is always nonnegative. This leads
us to conclude that v1 ≥ v2 in the former case and v1 ≤ v2 in the latter case.

Note that we could have started with (3.81) to get

[I − θ∆τ(A+ P1)](v1 − v2) = θ∆τ(P1 − P2)v2 (3.84)

and obtained the reverse conclusions, that is, v1 ≥ v2 in the former case and v2 ≥ v1 in the
latter case. Therefore, v1 = v2 and P1 = P2, and the solution to the nonlinear problem (3.79)
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is unique.

For problems with an additional American penalty matrix, the proof of uniqueness follows the
same process in [16], assuming again that the results in Section 3.6.1 hold.

To conclude this section, we note for the tridiagonal treatment of the penalty-like matrix involv-
ing derivative terms, the family of penalty-like and double penalty methods converge monoton-
ically to the unique solution in a finite number of iterations, with the exception of the double
penalty method for the long position of Stock Borrowing Fees with American options due to
the differing sign between the penalty matrices.

Additionally, where the payoff is convex, for an American Transaction Cost Model with nonzero
transaction cost, there is no guarantee of monotone convergence. However, for concave pay-
offs, the analyses in Sections 2.9 and 3.6.1 are reversed and the iterates are monotonically
increasing due to the same sign of the penalty matrix arising from transaction costs and the
American constraint.



Chapter 4

Numerical Experiments

In this chapter, we present and discuss the results from our numerical experiments. We start
off with the basic problem of European options where we have exact solutions before moving
on to more complicated problems where we don’t have exact solutions.

4.1 Introduction

We first discuss the basics of our presentation: Convergence rates, Computational cost, and
Error balancing between space and time.

4.1.1 Convergence Rates

When we have the exact solution, the observed rate of convergence is

log2

(
errorn
error2n

)
(4.1)

Since both Crank-Nicolson and centered finite differences are second-order accurate, it is im-
portant that this number is close to 2.

For the cases where an exact analytical solution is not available, we test the convergence rate

48
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based on three values, and the observed rate of convergence is

log2

(
differencen
difference2n

)
(4.2)

where
differencen = v(2n) − v(n). (4.3)

The above convergence analysis is computed at the strike price, because

1. The error as a function of the underlying S is often greatest at or near the strike price

2. The region near the strike price is of the most practical significance.

In addition to the convergence of the value, we also examine the “Greeks” which have im-
portant hedging uses. Ideally, we want the “Greeks” to be smooth, and we also test that the
“Greeks” converge in second order.

We will start by showing some results from computation over a uniform grid, but after that we
will consider only nonuniform grids due to their superior performance.

4.1.2 Error Balancing

Error balancing is when we take into consideration both the error arising from spatial dis-
cretization and temporal discretization. By finding an appropriate balance between the time
and space error, we reduce the error to an acceptable amount while not incurring excessive
computational cost due to the number of timesteps, or due to large number of gridpoints.

All problems were tested on spatial domain [0, 10K], with K = 100 and time domain [0, 1],
with the exception of the Uncertain Volatility problem.

For the problems tested, when we have an American early exercise right, we use the variable
timestepping algorithm described in [16] and used in [9].

For problems without an American early exercise, we use a constant timestep and keep the
ratio of the number of nodes to the number of timesteps at 4 : 1. Increasing the ratio beyond
that decreases the quality of the solution substantially.
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4.1.3 Total Computation Cost

Although in practice there are other costs to computing the discretized equations, we view
the solving of the linear systems arising from the implicit time discretization as the primary
computational cost. We are justified in making this assumption, as can be seen in Figure
4.1: the majority of the computation time is in the solve subroutine, which has over half of
the computational time and perhaps more importantly, scales linearly with the product of the
number of timesteps and the size of the grid.
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Figure 4.1: Code profile for European options, N = 25600 and ∆τ = 1/6400, T = 1

For linear problems such as European options, the number of linear systems we need to solve
is just the number of timesteps. For nonlinear problems such as every other problem in this
thesis, it is the total number of solves to obtain the solution in the case of the policy itera-
tion algorithms, and the total number of penalty iterations in the case of the penalty iteration
algorithms.

Since the solution of the linear systems is linear in the size of the system, we scale the number
of iterations by the size of the linear system to account for this.

We are interested in comparing the total cost to answer questions such as “What is the most effi-
cient choice of the timestep size andN to obtain a solution accurate to 5 decimal places?”.

However, for nonlinear problems solved with penalty methods, the primary source of compu-
tational time is in both the solving of linear systems and the computation of the penalty term,
as can be seen in Figure 4.2. For nonlinear problems solved with policy iteration, we have a
lot of overhead because the matrix A is dependent on the control which changes over time and
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needs updating. For both of these cases, the procedure is required every time before we solve
a new linear system, so the number of solves is still reflective of the total cost.
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Figure 4.2: Code profile from Uncertain Volatility (penalty), N = 1600 and ∆τ = 1/400,
T = 1
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Figure 4.3: Code profile from Uncertain Volatility (policy), N = 1600 and ∆τ = 1/400,
T = 1

4.2 Convergence of Solution

Here we discuss the convergence of the solution.
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4.2.1 European Put

Here, we show and discuss the results for the European options. We examine the Put option
with parameters in Table 4.1

Description Symbol Value

Maturity time T 1
Strike Price K 100

Space Truncation boundary Smax 1000
Volatility σ 0.30

Interest rate r 0.05

Table 4.1: Numerical values of parameters for pricing European Put option

Tables 4.2 and 4.3 show the comparison between the uniform and nonuniform grid. As can be
seen, the nonuniform grid reduces the error by a factor of around 27. Therefore, in the future
we will use nonuniform gridpoints for the remaining option pricing problems.

Nodes Tstep Value Error Rate Total Cost

51 52 8.643955 7.10e-01 — 2.60e+03
101 102 9.191791 1.62e-01 2.13 1.02e+04
201 202 9.314232 4.00e-02 2.02 4.04e+04
401 402 9.344243 9.95e-03 2.01 1.61e+05
801 802 9.351711 2.49e-03 2.00 6.42e+05

1601 1602 9.353576 6.21e-04 2.00 2.56e+06

Table 4.2: Numerical values at strike price for European Put option with linear boundary con-
ditions. Parameters from Table 4.1 and uniform discretization grid used

Nodes Tstep Value Error Rate Total Cost

51 52 9.331110 2.31e-02 — 2.60e+03
101 102 9.348249 5.95e-03 1.96 1.02e+04
201 202 9.352710 1.49e-03 2.00 4.04e+04
401 402 9.353825 3.72e-04 2.00 1.61e+05
801 802 9.354104 9.30e-05 2.00 6.42e+05

1601 1602 9.354174 2.32e-05 2.00 2.56e+06

Table 4.3: Numerical values at strike price for European Put option with linear boundary con-
ditions. Parameters from Table 4.1 and nonuniform discretization grid used
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Additionally, we compute a Richardson extrapolation based on values computed at successive
discretization levels. Since the order of accuracy of our numerical scheme is O(h2), we can
write the computed values at the strike price as

v
(n)
K = V (T,K) + ch2 +O(hp) (4.4)

and
v

(2n)
K = V (T,K) +

1

4
ch2 +O(hp), (4.5)

for some integer p > 2 where v(n)
K denotes the value computed at the strike price for the coarse

discretization level and v(2n)
K denotes the value computed at the strike price for the finer dis-

cretization level, V (T,K) denotes the exact solution, and h and c are generic constants.

Then, by Richardson extrapolation technique,

4v
(2n)
K − v(n)

K = 3V (T,K) + 4(
1

4
c1h

2)− c1h
2 +O(hp)

4v
(2n)
K − v(n)

K

3
= V (T,K) +O(hp)

Then, the numerical scheme
R

(n,2n)
K =

1

3
(4v

(2n)
K − v(n)

K ) (4.6)

has an order of accuracy of p > 2. From the results, we can see that the observed order of
accuracy is around four.

N 2N Richardson Error Convergence

51 101 9.374402 2.02e-02 —
101 201 9.355046 8.49e-04 4.57
201 401 9.354247 4.97e-05 4.09
401 801 9.354200 3.06e-06 4.02
801 1601 9.354197 1.90e-07 4.01

Table 4.4: Richardson extrapolation from the values obtained in Table 4.2. Compare to Tables
4.2 and 4.3 to see the comparison in error reduction

We also show the results in Table 4.4 in Figure 4.4 as a plot.
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Figure 4.4: Richardson extrapolation for values obtained in Table 4.4. As can be seen the
extrapolated value converges in 4th order rather than 2nd order.

Alternatively, the results from the tables are presented in Figure 4.5 which shows that both
grids have second order convergence but the nonuniform grid reduces the error by a significant
factor.
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Figure 4.5: Convergence study of European Put option, comparison of uniform and nonuniform
grid

Next, we will consider what ratio of number of timesteps to number of nodes is appropri-
ate.

In the following experiment, we keep the computational cost fixed while varying the number
of nodes and the number of timesteps. Note that since the computational cost is approximated
as

cost ≈ number of nodes× number of timesteps, (4.7)

the number of timesteps is determined by the number of nodes and the fixed computational
cost. A partial table of results is in Table 4.5 and the corresponding figure is Figure 4.6
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Figure 4.6: Plot of European Options with different ratios of timesteps to nodes. As can be
seen the minimum is approximately between 5.5 and 5.9.
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Nodes Tsteps Ratio Cost Error

4001 2002 2.00 8.01e+06 7.97e-06
5617 1426 3.94 8.01e+06 5.35e-06
5698 1406 4.05 8.01e+06 5.30e-06
6291 1273 4.94 8.01e+06 5.06e-06
6370 1256 5.08 8.01e+06 5.04e-06
6471 1238 5.23 8.01e+06 5.03e-06
6563 1221 5.37 8.01e+06 5.02e-06
6657 1203 5.53 8.01e+06 5.01e-06
6752 1187 5.69 8.01e+06 5.01e-06
6848 1170 5.85 8.01e+06 5.01e-06
6945 1154 6.02 8.01e+06 5.02e-06
7044 1137 6.19 8.01e+06 5.03e-06
7145 1121 6.37 8.01e+06 5.05e-06
8001 1002 7.98 8.02e+06 5.30e-06

Table 4.5: Parameters from Table 4.1 and nonuniform discretization grid used. Cost is fixed at
approximately 8× 106.

As can be seen, subject to a fixed cost of approximately 8 × 106, the error is approximately
minimized near a ratio of 5.5-5.9.

Another way of looking at this is examining the plots of the typical convergence plot and a plot
of the error vs. cost side by side as in Figure 4.7.

As we can see the lines showing a ratio of 4 and 8 are overlaid, which is consistent with the
results in Table 4.5 and Figure 4.6
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Figure 4.7: Side-by-side plot of error vs. N and error vs. total cost. Note that since total cost
is linear in N2, both lines are straight.
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Figure 4.8: Plot of European options with different N and ∆τ values. The ∆τ values are
chosen such that the values of ∆τ are 4/N . In other words, the greatest choice of ∆τ has a
value of 1/40 and each subsequent level halves the value.

Figure 4.8 shows the results from different runs, and 36 different cases are considered. We
want to answer the questions such as “What is the minimum computational cost required to
obtain a solution accurate to 10−4?”. As can be seen from the plot, the purple line (N = 1280)
is minimized there, and is near the fourth point in the plot. Therefore, when N = 1280 and
∆τ = 1/320, the efficiency of the solver is maximized. A similar ratio is obtained when
considering the solution accuracy to be within 10−3 or 10−2. Therefore, for European options
we check the results of the computation with a 4 : 1 ratio of the number of nodes to the number
of timesteps, and get Tables 4.6 and 4.7.
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Nodes Tstep Value Error Rate Total Cost

51 15 8.635527 7.19e-01 — 7.50e+02
101 27 9.190050 1.64e-01 2.13 2.70e+03
201 52 9.313809 4.04e-02 2.02 1.04e+04
401 102 9.344138 1.01e-02 2.01 4.08e+04
801 202 9.351685 2.51e-03 2.00 1.62e+05

1601 402 9.353569 6.28e-04 2.00 6.43e+05

Table 4.6: Numerical values at strike price for European Put option with linear boundary con-
ditions. Parameters from Table 4.1 and uniform discretization grid used

Nodes Tstep Value Error Rate Total Cost

51 15 9.324301 2.99e-02 — 7.50e+02
101 27 9.346569 7.63e-03 1.97 2.70e+03
201 52 9.352290 1.91e-03 2.00 1.04e+04
401 102 9.353720 4.77e-04 2.00 4.08e+04
801 202 9.354078 1.19e-04 2.00 1.62e+05

1601 402 9.354167 2.98e-05 2.00 6.43e+05

Table 4.7: Numerical values at strike price for European Put option with linear boundary con-
ditions. Parameters from Table 4.1 and nonuniform discretization grid used

As can be seen from the tables, when comparing the results in Tables 4.6 and 4.7 to the results
in Tables 4.2 and 4.3 for roughly the same computational cost, the error is reduced by a factor
of 4 for the uniform grid, and a factor of about 3.5 for the nonuniform grid.

4.2.2 American options

We present the results for American options with policy iteration, penalty iteration, and penalty
iteration with variable timestepping in Tables 4.8, 4.9, and 4.10 respectively:
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 60 9.842843 — — 3.00e+03 — 1.15
101 102 123 9.862481 1.96e-02 — 1.23e+04 9.869027 1.21
201 202 247 9.867954 5.47e-03 1.84 4.94e+04 9.869778 1.22
401 402 490 9.869444 1.49e-03 1.88 1.96e+05 9.869940 1.22
801 802 977 9.869868 4.24e-04 1.81 7.82e+05 9.870009 1.22

1601 1602 1938 9.869997 1.29e-04 1.71 3.10e+06 9.870040 1.21

Table 4.8: Numerical values at strike price for American Put option with linear boundary
conditions, solved with policy iteration (Algorithm 1). Nonuniform discretization grid and
constant timesteps are used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 63 9.842410 — — 3.15e+03 — 1.21
101 102 125 9.862287 1.99e-02 — 1.25e+04 9.868913 1.23
201 202 249 9.867898 5.61e-03 1.82 4.98e+04 9.869768 1.23
401 402 495 9.869417 1.52e-03 1.88 1.98e+05 9.869923 1.23
801 802 988 9.869858 4.41e-04 1.78 7.90e+05 9.870005 1.23

1601 1602 1975 9.869994 1.36e-04 1.70 3.16e+06 9.870039 1.23

Table 4.9: Numerical values at strike price for American Put option with linear boundary
conditions, solved with penalty iteration (Algorithm 2). Nonuniform discretization grid and
constant timesteps are used

As can be seen the convergence rate is not exactly at 2.0. This can be remedied by use of
variable or adaptive timesteps, as given in [16]. Unfortunately we haven’t been able to make
this timestepping work with the policy iteration algorithm.

The variable timestep selector is defined by

∆τ j+2 =

(
min
i

[
dnorm

|V (Si,τ j+∆τ j+1)−V (Si,τ j)|
max(D,|V (Si,τ j+∆τ j+1)|,|V (Si,τ j)|

])
∆τ j+1 (4.8)

In our variable timestep selector, D is chosen to be 1 and we use initial ∆τ = (1/8) × 10−3

and dnorm = 0.3 for the coarsest discretization level, and divide both quantities by 2 on each
subsequent level.



Chapter 4. Numerical Experiments 62

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 41 52 9.846729 — — 2.60e+03 — 1.27
101 76 99 9.864016 1.73e-02 — 9.90e+03 9.869778 1.30
201 144 198 9.868569 4.55e-03 1.92 3.96e+04 9.870086 1.38
401 280 437 9.869693 1.12e-03 2.02 1.75e+05 9.870067 1.56
801 552 932 9.869971 2.79e-04 2.01 7.46e+05 9.870064 1.69

1601 1097 1952 9.870041 6.94e-05 2.01 3.12e+06 9.870064 1.78

Table 4.10: Numerical values at strike price for American Put option with linear boundary
conditions, solved with penalty iteration (Algorithm 2). Nonuniform discretization grid and
variable timesteps are used

As can be seen, we now have a higher rate of convergence and very close to the expected result
of 2.0. Additionally, the predictions are much more consistent due to the consistency in the
rate of convergence and the change, a reflection of the size of the error, is also much smaller
(less than half) than that of the uniform timesteps for the same discretization level. Finally,
although the number of iterations per timestep has increased, the overall number of iterations
has decreased when we use variable timesteps, so there is less of a computational cost.

4.2.3 Borrow-Lend

In this section, we look at the results from the three different algorithms for the Borrow-Lend
problem. Since the Borrow-Lend problem, Stock Borrowing Fees, and Uncertain Volatility
have European exercise rights, and since we did not note any degradation of the order of con-
vergence, we keep the timesteps constant.

In addition, we keep the same ratio of timesteps to nodes as we had for vanilla European
options, as we tried different ratios and arrived at the same conclusions as what we got for
vanilla European options.

The additional parameters are rl = 0.03 and rb = 0.05.

We present the results using policy iteration, diagonal penalty iteration, and tridiagonal penalty
iteration in Tables 4.11, 4.13, and 4.12 respectively. The corresponding results for the long
position are in Tables 4.14, 4.16, and 4.15 respectively.
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 15 24.007537 — — 7.50e+02 — 1.00
101 27 27 24.054339 4.68e-02 — 2.70e+03 24.069940 1.00
201 52 53 24.066376 1.20e-02 1.96 1.06e+04 24.070388 1.02
401 102 106 24.069384 3.01e-03 2.00 4.24e+04 24.070387 1.04
801 202 209 24.070136 7.52e-04 2.00 1.67e+05 24.070386 1.03

1601 402 416 24.070324 1.88e-04 2.00 6.66e+05 24.070386 1.03

Table 4.11: Numerical values at strike price for short position of Borrow-Lend pricing prob-
lem with linear boundary conditions, solved with policy iteration (Algorithm 1). Nonuniform
discretization grid used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 16 24.007537 — — 8.00e+02 — 1.07
101 27 28 24.054339 4.68e-02 — 2.80e+03 24.069940 1.04
201 52 54 24.066376 1.20e-02 1.96 1.08e+04 24.070388 1.04
401 102 106 24.069384 3.01e-03 2.00 4.24e+04 24.070387 1.04
801 202 209 24.070136 7.52e-04 2.00 1.67e+05 24.070386 1.03

1601 402 417 24.070324 1.88e-04 2.00 6.67e+05 24.070386 1.04

Table 4.12: Numerical values at strike price for short position of Borrow-Lend pricing prob-
lem with linear boundary conditions, solved with tridiagonal penalty iteration (Algorithm 3).
Nonuniform discretization grid used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 52 24.007537 — — 2.60e+03 — 3.47
101 27 86 24.054339 4.68e-02 — 8.60e+03 24.069940 3.19
201 52 158 24.066376 1.20e-02 1.96 3.16e+04 24.070388 3.04
401 102 307 24.069384 3.01e-03 2.00 1.23e+05 24.070387 3.01
801 202 484 24.070136 7.52e-04 2.00 3.87e+05 24.070386 2.40

1601 402 864 24.070324 1.88e-04 2.00 1.38e+06 24.070386 2.15

Table 4.13: Numerical values at strike price for short position of Borrow-Lend pricing prob-
lem with linear boundary conditions, solved with diagonal penalty iteration (Algorithm 4).
Nonuniform discretization grid used
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 16 23.050542 — — 8.00e+02 — 1.07
101 27 28 23.094241 4.37e-02 — 2.80e+03 23.108807 1.04
201 52 53 23.105528 1.13e-02 1.95 1.06e+04 23.109290 1.02
401 102 104 23.108351 2.82e-03 2.00 4.16e+04 23.109292 1.02
801 202 205 23.109057 7.06e-04 2.00 1.64e+05 23.109293 1.01

1601 402 409 23.109234 1.76e-04 2.00 6.54e+05 23.109292 1.02

Table 4.14: Numerical values at strike price for long position of Borrow-Lend pricing prob-
lem with linear boundary conditions, solved with policy iteration (Algorithm 1). Nonuniform
discretization grid used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 15 23.050536 — — 7.50e+02 — 1.00
101 27 28 23.094240 4.37e-02 — 2.80e+03 23.108808 1.04
201 52 52 23.105528 1.13e-02 1.95 1.04e+04 23.109291 1.00
401 102 103 23.108351 2.82e-03 2.00 4.12e+04 23.109292 1.01
801 202 205 23.109057 7.06e-04 2.00 1.64e+05 23.109293 1.01

1601 402 408 23.109234 1.76e-04 2.00 6.53e+05 23.109292 1.01

Table 4.15: Numerical values at strike price for long position of Borrow-Lend pricing problem
with linear boundary conditions, solved with penalty iteration (Algorithm 3). Nonuniform
discretization grid used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 51 23.050536 — — 2.55e+03 — 3.40
101 27 85 23.094240 4.37e-02 — 8.50e+03 23.108808 3.15
201 52 157 23.105528 1.13e-02 1.95 3.14e+04 23.109291 3.02
401 102 268 23.108351 2.82e-03 2.00 1.07e+05 23.109292 2.63
801 202 460 23.109057 7.06e-04 2.00 3.68e+05 23.109293 2.28

1601 402 852 23.109234 1.76e-04 2.00 1.36e+06 23.109292 2.12

Table 4.16: Numerical values at strike price for long position of Borrow-Lend pricing prob-
lem with linear boundary conditions, solved with diagonal penalty iteration (Algorithm 4).
Nonuniform discretization grid used

As can be seen, for each of the algorithms the predicted values agree over different runs and also
with each other. Additionally, the rate of convergence is 2 throughout. Of notable importance
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is that the number of iterations taken by the diagonal penalty iteration is a minimum of two
each timestep, and as a result is less efficient compared to the tridiagonal algorithm, hence, for
the future problems only tridiagonal penalty iteration is considered.
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Figure 4.9: Solution curve of Borrow-Lend pricing problem and European options

4.2.4 Stock Borrowing Fees

For the Stock Borrowing Fees problem, the additional parameter is rf = − − −4. Since no
American early exercise right is involved, we again keep the ratio of timesteps to nodes from
Borrow-Lend and European options. We present results of the short position from policy and
(tridiagonal) penalty iteration algorithms in Tables 4.17 and 4.18, and the corresponding long
positions in 4.19 and 4.20.
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 19 24.071318 — — 9.50e+02 — 1.27
101 27 38 24.118360 4.70e-02 — 3.80e+03 24.134041 1.41
201 52 73 24.130491 1.21e-02 1.96 1.46e+04 24.134535 1.40
401 102 144 24.133523 3.03e-03 2.00 5.76e+04 24.134534 1.41
801 202 282 24.134280 7.57e-04 2.00 2.26e+05 24.134533 1.40

1601 402 562 24.134470 1.89e-04 2.00 8.99e+05 24.134533 1.40

Table 4.17: Numerical values at strike price for short position of Stock Borrowing Fee pricing
problem with linear boundary conditions, solved with policy iteration (Algorithm 1). Nonuni-
form discretization grid used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 18 24.071318 — — 9.00e+02 — 1.20
101 27 38 24.118360 4.70e-02 — 3.80e+03 24.134041 1.41
201 52 72 24.130491 1.21e-02 1.96 1.44e+04 24.134535 1.38
401 102 143 24.133523 3.03e-03 2.00 5.72e+04 24.134534 1.40
801 202 282 24.134280 7.57e-04 2.00 2.26e+05 24.134533 1.40

1601 402 561 24.134470 1.89e-04 2.00 8.98e+05 24.134533 1.40

Table 4.18: Numerical values at strike price for short position of Stock Borrowing Fee pricing
problem with linear boundary conditions, solved with penalty iteration (Algorithm 3). Nonuni-
form discretization grid used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 19 22.625605 — — 9.50e+02 — 1.27
101 27 37 22.669427 4.38e-02 — 3.70e+03 22.684035 1.37
201 52 71 22.680662 1.12e-02 1.96 1.42e+04 22.684407 1.37
401 102 140 22.683470 2.81e-03 2.00 5.60e+04 22.684406 1.37
801 202 278 22.684172 7.02e-04 2.00 2.22e+05 22.684406 1.38

1601 402 553 22.684347 1.75e-04 2.00 8.85e+05 22.684406 1.38

Table 4.19: Numerical values at strike price for long position of Stock Borrowing Fee pricing
problem with linear boundary conditions, solved with policy iteration (Algorithm 1). Nonuni-
form discretization grid used
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 19 22.625605 — — 9.50e+02 — 1.27
101 27 36 22.669427 4.38e-02 — 3.60e+03 22.684035 1.33
201 52 71 22.680662 1.12e-02 1.96 1.42e+04 22.684407 1.37
401 102 140 22.683470 2.81e-03 2.00 5.60e+04 22.684406 1.37
801 202 278 22.684172 7.02e-04 2.00 2.22e+05 22.684406 1.38

1601 402 553 22.684347 1.75e-04 2.00 8.85e+05 22.684406 1.38

Table 4.20: Numerical values at strike price for long position of Stock Borrowing Fee pricing
problem with linear boundary conditions, solved with penalty iteration (Algorithm 3). Nonuni-
form discretization grid used

4.2.5 Stock Borrowing Fees with American options

For American options, we use the variable timestep selector described in [16]. We present
results of the short position solved by policy iteration, penalty iteration, and penalty iteration
with variable timesteps in Tables 4.21, 4.22, and 4.23. The corresponding results for the long
position are presented in Tables 4.24, 4.25, and 4.26 respectively.

Additionally, we also present results from our modified policy iteration algorithm for the short
and long positions, with constant and variable timesteps in Tables 4.27, 4.28, 4.29, 4.30

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 65 24.271651 — — 3.25e+03 — 1.25
101 102 136 24.312760 4.11e-02 — 1.36e+04 24.326463 1.33
201 202 271 24.323903 1.11e-02 1.88 5.42e+04 24.327618 1.34
401 402 542 24.326884 2.98e-03 1.90 2.17e+05 24.327877 1.35
801 802 1091 24.327704 8.20e-04 1.86 8.73e+05 24.327977 1.36

1601 1602 2166 24.327939 2.35e-04 1.81 3.47e+06 24.328017 1.35

Table 4.21: Numerical values at strike price for short position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with policy
iteration (Algorithm 1). Nonuniform discretization grid and uniform timesteps used
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 68 24.271363 — — 3.40e+03 — 1.31
101 102 137 24.312489 4.11e-02 — 1.37e+04 24.326198 1.34
201 202 273 24.323818 1.13e-02 1.86 5.46e+04 24.327594 1.35
401 402 545 24.326851 3.03e-03 1.90 2.18e+05 24.327861 1.36
801 802 1091 24.327690 8.39e-04 1.85 8.73e+05 24.327970 1.36

1601 1602 2171 24.327933 2.43e-04 1.79 3.47e+06 24.328014 1.36

Table 4.22: Numerical values at strike price for short position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with penalty
iteration (Algorithm 3). Nonuniform discretization grid and uniform timesteps used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 30 44 24.294097 — — 2.20e+03 — 1.47
101 51 81 24.320602 2.65e-02 — 8.10e+03 24.329436 1.59
201 93 154 24.326520 5.92e-03 2.16 3.08e+04 24.328493 1.66
401 175 293 24.327677 1.16e-03 2.36 1.17e+05 24.328063 1.67
801 340 576 24.327961 2.84e-04 2.03 4.61e+05 24.328055 1.69

1601 672 1147 24.328024 6.33e-05 2.16 1.84e+06 24.328045 1.71

Table 4.23: Numerical values at strike price for short position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with penalty
iteration (Algorithm 3). Nonuniform discretization grid and variable timesteps used

The same conclusions can be drawn from the American options: the variable timesteps are
superior in every meaningful aspect.

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 67 23.027313 — — 3.35e+03 — 1.29
101 102 138 23.068124 4.08e-02 — 1.38e+04 23.081728 1.35
201 202 269 23.079505 1.14e-02 1.84 5.38e+04 23.083298 1.33
401 402 538 23.082630 3.13e-03 1.86 2.15e+05 23.083672 1.34
801 802 1080 23.083532 9.02e-04 1.79 8.64e+05 23.083832 1.35

1601 1602 2166 23.083804 2.72e-04 1.73 3.47e+06 23.083895 1.35

Table 4.24: Numerical values at strike price for long position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with policy
iteration (Algorithm 1). Nonuniform discretization grid and uniform timesteps used
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Although there is no proof that the double penalty method for the long position converges, we
have not had computational difficulties. In Tables 4.24 and 4.25 we note a small deterioration
of the ratio of convergence as the discretization becomes finer. This problem was noted in [16]
and was resolved by a variable timestep selector. We use a similar one here and stable 2nd
order of convergence is restored as shown in Table 4.26.

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 67 23.028663 — — 3.35e+03 — 1.29
101 102 136 23.068281 3.96e-02 — 1.36e+04 23.081487 1.33
201 202 268 23.079231 1.10e-02 1.86 5.36e+04 23.082881 1.33
401 402 533 23.082250 3.02e-03 1.86 2.13e+05 23.083256 1.33
801 802 1058 23.083114 8.64e-04 1.80 8.46e+05 23.083402 1.32

1601 1602 2126 23.083378 2.63e-04 1.71 3.40e+06 23.083465 1.33

Table 4.25: Numerical values at strike price for long position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with penalty
iteration (Algorithm 3). Nonuniform discretization grid and uniform timesteps used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 30 43 23.050148 — — 2.15e+03 — 1.43
101 51 80 23.076855 2.67e-02 — 8.00e+03 23.085758 1.57
201 92 148 23.082332 5.48e-03 2.29 2.96e+04 23.084157 1.61
401 173 286 23.083229 8.97e-04 2.61 1.14e+05 23.083528 1.65
801 336 561 23.083448 2.20e-04 2.03 4.49e+05 23.083521 1.67

1601 664 1115 23.083495 4.68e-05 2.23 1.78e+06 23.083511 1.68

Table 4.26: Numerical values at strike price for long position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with penalty
iteration (Algorithm 3). Nonuniform discretization grid and variable timesteps used
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 64 24.271363 0.00e+00 0.00 3.20e+03 0.000000 1.23
101 102 128 24.312474 4.11e-02 0.00 1.28e+04 24.326178 1.25
201 202 256 24.323815 1.13e-02 1.86 5.12e+04 24.327595 1.27
401 402 502 24.326848 3.03e-03 1.90 2.01e+05 24.327859 1.25
801 802 1001 24.327690 8.41e-04 1.85 8.01e+05 24.327970 1.25

1601 1602 2019 24.327933 2.43e-04 1.79 3.23e+06 24.328014 1.26

Table 4.27: Numerical values at strike price for short position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with improved
policy iteration (Algorithm 5). Nonuniform discretization grid and uniform timesteps used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 67 24.282741 0.00e+00 0.00 3.35e+03 0.000000 1.29
101 93 124 24.316341 3.36e-02 0.00 1.24e+04 24.327541 1.33
201 176 239 24.325161 8.82e-03 1.93 4.78e+04 24.328101 1.36
401 342 463 24.327331 2.17e-03 2.02 1.85e+05 24.328055 1.35
801 674 921 24.327867 5.35e-04 2.02 7.37e+05 24.328045 1.37

1601 1339 1809 24.328000 1.33e-04 2.01 2.89e+06 24.328044 1.35

Table 4.28: Numerical values at strike price for short position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with improved
policy iteration (Algorithm 5). Nonuniform discretization grid and variable timesteps used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 66 23.029142 0.00e+00 0.00 3.30e+03 0.000000 1.27
101 102 131 23.068723 3.96e-02 0.00 1.31e+04 23.081917 1.28
201 202 259 23.079676 1.10e-02 1.85 5.18e+04 23.083326 1.28
401 402 523 23.082678 3.00e-03 1.87 2.09e+05 23.083679 1.30
801 802 1034 23.083542 8.64e-04 1.80 8.27e+05 23.083830 1.29

1601 1602 2073 23.083805 2.63e-04 1.72 3.32e+06 23.083892 1.29

Table 4.29: Numerical values at strike price for long position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with improved
policy iteration (Algorithm 5). Nonuniform discretization grid and uniform timesteps used
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 51 66 23.041036 0.00e+00 0.00 3.30e+03 0.000000 1.29
101 92 123 23.073287 3.23e-02 0.00 1.23e+04 23.084038 1.34
201 174 238 23.081331 8.04e-03 2.00 4.76e+04 23.084012 1.37
401 338 471 23.083296 1.96e-03 2.03 1.88e+05 23.083950 1.39
801 666 937 23.083778 4.83e-04 2.03 7.50e+05 23.083939 1.41

1601 1323 1886 23.083897 1.18e-04 2.03 3.02e+06 23.083936 1.43

Table 4.30: Numerical values at strike price for long position of Stock Borrowing Fee pricing
problem with American exercise rights with linear boundary conditions, solved with improved
policy iteration (Algorithm 5). Nonuniform discretization grid and variable timesteps used

4.2.6 Uncertain Volatility Model

The parameters for the Uncertain Volatility problem are in Table 4.31

Description Symbol Value

Maturity time T 1/2
Strike Prices K1 = K − a 95

K2 = K 100
K3 = K + a 105

Space Truncation boundary Smax 1000
Lower bound of Volatility σmin 0.30
Upper bound of Volatility σmax 0.45

Interest rate r 0.04

Table 4.31: Numerical values of parameters used in Uncertain Volatility problem

Although it would be nice to have a suitable nonuniform grid, unfortunately the grid in [11]
cannot ensure that there are gridpoints at the three strike prices, and thus cannot promise
smooth convergence. Therefore, we will use a uniform grid, and point out that a suitable
nonuniform grid will be of interest in future work.

For the results, we start with N = 1000 to ensure that there exists a gridpoint on the three
strike pricesK1, K2, K3, because of the discontinuous derivative of the payoff function at those
points. This leads to desirable convergence properties.
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Additionally, we have tested that the penalty iterates are monotone for both the short and long
options with assertion statements in the program, so if the condition is violated the program
will halt with error.

The results for the best case solved with policy iteration and penalty iteration are in Tables 4.32
and 4.33, and the results for the worst case are in Tables 4.34 and 4.35.

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

101 52 59 0.885623 — — 5.90e+03 — 1.13
201 102 116 0.809679 -7.59e-02 — 2.32e+04 0.784365 1.14
401 202 232 0.803512 -6.17e-03 3.62 9.28e+04 0.801457 1.15
801 402 461 0.802303 -1.21e-03 2.35 3.69e+05 0.801900 1.15

1601 802 927 0.801841 -4.62e-04 1.39 1.48e+06 0.801687 1.16
3201 1602 1865 0.801736 -1.05e-04 2.14 5.97e+06 0.801701 1.16

Table 4.32: Numerical values at strike price for best case of Uncertain Volatility problem with
linear boundary conditions, solved with policy iteration (Algorithm 1). Uniform discretization
grid used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

101 52 62 0.113637 — — 6.20e+03 — 1.19
201 102 120 0.120442 6.80e-03 — 2.40e+04 0.122711 1.18
401 202 240 0.125163 4.72e-03 0.53 9.60e+04 0.126737 1.19
801 402 478 0.125636 4.73e-04 3.32 3.82e+05 0.125794 1.19

1601 802 958 0.125804 1.68e-04 1.49 1.53e+06 0.125860 1.19
3201 1602 1920 0.125840 3.54e-05 2.25 6.14e+06 0.125851 1.20

Table 4.33: Numerical values at strike price for best case of Uncertain Volatility problem with
linear boundary conditions, solved with penalty iteration (Algorithm 3). Uniform discretization
grid used
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

101 52 59 0.885623 — — 5.90e+03 — 1.13
201 102 116 0.809679 -7.59e-02 — 2.32e+04 0.784365 1.14
401 202 232 0.803512 -6.17e-03 3.62 9.28e+04 0.801457 1.15
801 402 461 0.802303 -1.21e-03 2.35 3.69e+05 0.801900 1.15

1601 802 927 0.801841 -4.62e-04 1.39 1.48e+06 0.801687 1.16
3201 1602 1865 0.801736 -1.05e-04 2.14 5.97e+06 0.801701 1.16

Table 4.34: Numerical values at strike price for worst case of Uncertain Volatility problem with
linear boundary conditions, solved with policy iteration (Algorithm 1). Uniform discretization
grid used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

101 52 63 0.113637 — — 6.30e+03 — 1.21
201 102 121 0.120442 6.80e-03 — 2.42e+04 0.122711 1.19
401 202 240 0.125163 4.72e-03 0.53 9.60e+04 0.126737 1.19
801 402 478 0.125636 4.73e-04 3.32 3.82e+05 0.125794 1.19

1601 802 958 0.125804 1.68e-04 1.49 1.53e+06 0.125860 1.19
3201 1602 1949 0.125840 3.54e-05 2.25 6.24e+06 0.125851 1.22

Table 4.35: Numerical values at strike price for worst case of Uncertain Volatility problem with
linear boundary conditions, solved with penalty iteration (Algorithm 3). Uniform discretization
grid used

The solution looks like Figure 4.10:
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Figure 4.10: Solution of Uncertain Volatility Model with parameters from Table 4.31, calcu-
lated with Smax = 800 and N = 1600

Interestingly, when we do not use Rannacher Smoothing, we are able to get results similar to
that found in Figure 5 of [17] in Figure 4.11. Note that, like in [17], we have a “nonsense”
solution: the negative value of the solution for the worst case.
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Figure 4.11: Solution of Uncertain Volatility Model, computed with no Rannacher smoothing,
calculated with Smax = 800 and N = 1600

4.2.7 Transaction cost models – Put payoff

As described earlier, the results from the transaction cost models differ based on the payoff and
based on the type of exercise right given.

Since the put payoff is convex, the model linearizes and is reduced to Equation (2.37) for
European options, or Equation (2.38) for American options.
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Nodes Tstep Iter Value Error Rate Total Cost avg iter

51 47 61 14.420762 3.11e-02 — 3.05e+03 1.30
101 89 118 14.444983 6.92e-03 2.17 1.18e+04 1.33
201 173 269 14.450173 1.73e-03 2.00 5.38e+04 1.55
401 342 562 14.451472 4.33e-04 2.00 2.25e+05 1.64
801 681 1254 14.451798 1.08e-04 2.00 1.00e+06 1.84

1601 1361 2652 14.451879 2.71e-05 2.00 4.24e+06 1.95

Table 4.36: European Transaction Model with Put payoff, with values computed at the strike
price K. Parameters: σ = 1.0, r = 0.1, T = 0.25, κ = 0.18, K = 100. Note that the values
clearly converge to the exact solution of 14.451906, matching our expectations.

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 15 21 14.616135 0.00e+00 0.00 1.05e+03 0.000000 1.40
101 27 40 14.660480 4.43e-02 0.00 4.00e+03 14.675262 1.48
201 52 85 14.672650 1.22e-02 1.87 1.70e+04 14.676707 1.63
401 102 173 14.676668 4.02e-03 1.60 6.92e+04 14.678008 1.70
801 202 359 14.678055 1.39e-03 1.53 2.87e+05 14.678517 1.78

1601 402 716 14.678536 4.81e-04 1.53 1.15e+06 14.678697 1.78

Table 4.37: American Transaction Model with Put payoff, with values computed at the strike
price K. Parameters: σ = 1.0, r = 0.1, T = 0.25, κ = 0.18, K = 100. Note that the values
are very close to those in Table 11.1 of [16], matching our expectations. Constant timesteps
used.

Nodes Tstep Iter Value Change Rate Total Cost avg iter

51 47 101 14.644326 — — 5.05e+03 2.15
101 89 200 14.671158 2.68e-02 — 2.00e+04 2.25
201 173 394 14.676948 5.79e-03 2.21 7.88e+04 2.28
401 343 757 14.678397 1.45e-03 2.00 3.03e+05 2.21
801 683 1389 14.678758 3.61e-04 2.01 1.11e+06 2.03

1601 1364 2744 14.678848 9.00e-05 2.00 4.39e+06 2.01

Table 4.38: American Transaction Model with Put payoff, with values computed at the strike
priceK. Parameters: σ = 1.0, r = 0.1, T = 0.25, κ = 0.18,K = 100. Note that the values are
very close to those in Table 11.1 of [16], matching our expectations. Also, variable timesteps
are used, following the description in [16]
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Figure 4.12: American put option with and without transaction cost.

4.2.8 Transaction cost models – Butterfly payoff

A butterfly spread payoff shows the nonlinearity in Equations (2.35) and (2.36).

Nodes Tstep Iter Value Change Rate Total Cost avg iter

51 52 66 0.110787 — — 3.30e+03 1.27
101 102 129 0.117863 7.08e-03 — 1.29e+04 1.26
201 202 254 0.124574 6.71e-03 0.08 5.08e+04 1.26
401 402 507 0.125135 5.61e-04 3.58 2.03e+05 1.26
801 802 1005 0.125270 1.36e-04 2.05 8.04e+05 1.25

1601 1602 2003 0.125301 3.11e-05 2.12 3.20e+06 1.25

Table 4.39: Penalty method for Transaction Cost Model with Butterfly Spread payoff, value
computed at the strike price K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1, K = 100.
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 53 7.919782 0.00e+00 0.00 2.65e+03 0.000000 1.02
101 102 105 7.930563 1.08e-02 0.00 1.05e+04 7.934157 1.03
201 202 208 7.933152 2.59e-03 2.06 4.16e+04 7.934015 1.03
401 402 417 7.933792 6.39e-04 2.02 1.67e+05 7.934005 1.04
801 802 832 7.933949 1.58e-04 2.02 6.66e+05 7.934002 1.04

1601 1602 1666 7.933986 3.72e-05 2.08 2.67e+06 7.933999 1.04

Table 4.40: Penalty method for American Transaction Cost Model with Butterfly Spread pay-
off, value computed at 0.9K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1, K = 100.

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 52 53 8.548380 0.00e+00 0.00 2.65e+03 0.000000 1.02
101 102 105 8.556495 8.11e-03 0.00 1.05e+04 8.559199 1.03
201 202 208 8.558486 1.99e-03 2.03 4.16e+04 8.559149 1.03
401 402 417 8.558984 4.99e-04 2.00 1.67e+05 8.559150 1.04
801 802 832 8.559112 1.28e-04 1.96 6.66e+05 8.559155 1.04

1601 1602 1666 8.559146 3.43e-05 1.90 2.67e+06 8.559158 1.04

Table 4.41: Penalty method for American Transaction Cost Model with Butterfly Spread pay-
off, value computed at 1.1K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1, K = 100.

We do not compute the convergence rate for American transaction cost model at the center
strike price, because the constraint from the American early exercise right causes the price to
stay at approximately the same value. Instead, we compute the convergence rate at the two
other strike prices, shown in Tables 4.40 and 4.41.

Although different behaviour at the central strike price is shown in [37], we have reason to
believe in the correctness of our algorithm. The convergence rate is very clearly 2.0 as seen in
Tables 4.40, 4.41; in addition, [37] uses a Padé scheme [23] which imposes certain smoothness
requirements on the solution that do not hold for American options. For one very well-known
example, the solution of the American Put option has a discontinuous second derivative [16],
which makes precise computation of a solution using a Padé scheme impossible. In addition,
our results are supported by analysis in [21], indicating that the solution at S = K stays
constant at a for Butterfly spread payoffs.

It is also possible to implement variable timesteps [16], to fix the very small decrease of quality
in the convergence rate at 1.1K. Results are included in Tables 4.42 and 4.43
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 44 45 7.920952 0.00e+00 0.00 2.25e+03 0.000000 1.02
101 88 93 7.930826 9.87e-03 0.00 9.30e+03 7.934118 1.06
201 177 188 7.933215 2.39e-03 2.05 3.76e+04 7.934012 1.06
401 353 390 7.933802 5.87e-04 2.03 1.56e+05 7.933998 1.10
801 703 818 7.933946 1.44e-04 2.02 6.54e+05 7.933995 1.16

1601 1402 1680 7.933980 3.41e-05 2.08 2.69e+06 7.933992 1.20

Table 4.42: Penalty method for American Transaction Cost Model with Butterfly Spread pay-
off, value computed at 0.9K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1, K = 100.
Variable timestepping used.

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

51 44 45 8.549498 0.00e+00 0.00 2.25e+03 0.000000 1.02
101 88 93 8.556754 7.26e-03 0.00 9.30e+03 8.559173 1.06
201 177 188 8.558555 1.80e-03 2.01 3.76e+04 8.559155 1.06
401 353 390 8.559003 4.48e-04 2.01 1.56e+05 8.559152 1.10
801 703 818 8.559115 1.13e-04 1.99 6.54e+05 8.559153 1.16

1601 1402 1680 8.559144 2.84e-05 1.99 2.69e+06 8.559153 1.20

Table 4.43: Penalty method for American Transaction Cost Model with Butterfly Spread pay-
off, value computed at 1.1K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1, K = 100.
Variable timestepping used.

The above was for penalty iteration algorithms. We present the results for Algorithm 5 in
Tables 4.44, 4.45, 4.46, 4.47 for constant and variable timesteps with the solution computed at
0.9K and 1.1K.

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

101 102 103 7.919891 0.00e+00 0.00 1.03e+04 0.000000 1.01
201 202 205 7.930590 1.07e-02 0.00 4.10e+04 7.934157 1.01
401 402 408 7.933160 2.57e-03 2.06 1.63e+05 7.934016 1.01
801 802 816 7.933794 6.34e-04 2.02 6.53e+05 7.934005 1.02

1601 1602 1629 7.933950 1.56e-04 2.02 2.61e+06 7.934003 1.02

Table 4.44: Policy Iteration (Algorithm 5) for American Transaction Cost Model with Butterfly
Spread payoff, value computed at 0.9K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1,
K = 100. Constant timesteps used
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Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

101 102 103 8.548485 0.00e+00 0.00 1.03e+04 0.000000 1.01
201 202 205 8.556521 8.04e-03 0.00 4.10e+04 8.559200 1.01
401 402 408 8.558495 1.97e-03 2.03 1.63e+05 8.559153 1.01
801 802 816 8.558990 4.95e-04 2.00 6.53e+05 8.559155 1.02

1601 1602 1629 8.559117 1.26e-04 1.97 2.61e+06 8.559159 1.02

Table 4.45: Policy Iteration (Algorithm 5) for American Transaction Cost Model with Butterfly
Spread payoff, value computed at 1.1K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1,
K = 100. Constant timesteps used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

101 42 43 7.920866 0.00e+00 0.00 4.30e+03 0.000000 1.02
201 87 91 7.930837 9.97e-03 0.00 1.82e+04 7.934160 1.05
401 176 187 7.933215 2.38e-03 2.07 7.48e+04 7.934008 1.06
801 353 373 7.933802 5.87e-04 2.02 2.98e+05 7.933998 1.06

1601 704 743 7.933946 1.44e-04 2.02 1.19e+06 7.933995 1.06

Table 4.46: Policy Iteration (Algorithm 5) for American Transaction Cost Model with Butterfly
Spread payoff, value computed at 0.9K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1,
K = 100. Variable timesteps used

Nodes Tstep Iter Value Change Rate Total Cost Richardson avg iter

101 42 43 8.549417 0.00e+00 0.00 4.30e+03 0.000000 1.02
201 87 91 8.556764 7.35e-03 0.00 1.82e+04 8.559213 1.05
401 176 187 8.558554 1.79e-03 2.04 7.48e+04 8.559151 1.06
801 353 373 8.559003 4.49e-04 2.00 2.98e+05 8.559152 1.06

1601 704 743 8.559115 1.13e-04 1.99 1.19e+06 8.559153 1.06

Table 4.47: Policy Iteration (Algorithm 5) for American Transaction Cost Model with Butterfly
Spread payoff, value computed at 1.1K. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1,
K = 100. Variable timesteps used



Chapter 4. Numerical Experiments 81

Figure 4.13: Butterfly spread payoff, with transaction cost κ = 0.2. Colormap: Blue indicates
low value (0) and yellow indicates high value (10). Note the cusp at the strike price (K = 100),
a feature of the American early exercise right.

4.3 Solution Agreement

It is important for us to show that both the penalty and policy algorithms agree on the result,
and that both types of boundary conditions on the far side of the boundary lead to numerically
similar solutions. First, we will show the results for different types of boundary condition, and
then we show the results of penalty and policy algorithms.

4.3.1 Dirichlet vs Linear Boundary Conditions

Note that the equations here are the same except for the last node. We test with two different
types of problems: one where the value at the last node is expected to be almost zero, and one
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where it is expected to be clearly positive.

For the case where the value at the last node is zero, we test with European Put option, and
for the case where the value at the last node is positive, we test with the Borrow-Lend problem
solved with tridiagonal penalty method. We report the maximum difference, which is expected
to be very small, over the entire time and space domain.

For European Put option:

testing agreement between Dirichlet and linear boundary conditions

European Put: 7.81022e-07

For Borrow-Lend Problem:

testing agreement between Dirichlet and linear boundary conditions

Borrow-Lend Short: 7.81022e-07

4.3.2 Policy vs Penalty Methods

Here, due to the differing treatment of the American penalty term, we do not expect that the
results for the penalty and policy methods would work the same when American style exercise
rights are used, especially since the variable timestepping algorithm used in [16, 9] does not
work with the policy iteration algorithm. Nevertheless, we can still test the agreement for those
with European-style exercise rights, and we again compute the maximum difference over the
entire time and space grid.

Borrow-Lend Problem:

Borrow-Lend comparison

Difference between policy and tridiag penalty: 2.715756e-07

Difference between policy and diag penalty: 2.715756e-07

Difference between tridiag penalty and diag penalty: 3.988090e-08

Stock Borrowing Fee Problem:

Stock Borrowing Fee comparison

max difference between policy and tridiag penalty: 1.692797e-10

Uncertain Volatility Problem:

Uncertain Volatility comparison
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max difference between policy and tridiag penalty: 1.459388e-13

Therefore, as we can see, we have numerical agreement between the penalty and policy algo-
rithms.

4.4 Smoothness of Greeks

In addition to the numerical convergence, we also test for the smoothness of the Greeks, which
are important for hedging purposes and other practical applications. We have already seen
cases where seemingly reasonable solution curves can lead to large oscillations in the plot of
the Greeks (Figure 3.1).

A summary of the plots can be seen in Figure 4.14. Of particular interest is the Gamma (VSS)
for American put options: Without the variable timesteps there are oscillations in the solution
(see Figure 4.15).
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Figure 4.14: Left: Delta; right: Gamma. From top to bottom: European, American, Borrow-
Lend, Stock Borrowing Fee, Stock Borrowing Fee (American), Uncertain Volatility problems.
As can be seen the Greeks are smooth with the exception of options with American exercise
rights, which is a natural feature due to the nonlinear constraint
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Figure 4.15: Left: Variable timesteps. Right: Constant timesteps. Top: American Put option.
Bottom: Stock Borrowing Fee problem with American early exercise right

We also compare with the Greeks computed from policy iteration:
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Figure 4.16: Left: Delta; right: Gamma. From top to bottom: American, Borrow-Lend, Stock
Borrowing Fee, Stock Borrowing Fee (American), Uncertain Volatility solved with policy iter-
ation
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4.5 Convergence of Greeks

Note that the successive differences between different levels of discretization can go down to
small values such as 10−7 or even lower. We do not consider the rate of convergence beyond
that point as long as the error does not increase dramatically.

4.5.1 European Put option

It is also important that the Greeks converge. Unfortunately, if we only use Rannacher Smooth-
ing over one ordinary timestep (corresponding to two Rannacher steps; recall that each Ran-
nacher step is 1/2 that of a normal timestep), as was suggested in the original paper [30], then
the Gamma only shows first-order convergence in Table 4.48.

Nodes Error (Delta) Convergence (Delta) Error (Gamma) Convergence (Gamma)

51 4.18e-04 — -2.08e-04 —
101 1.05e-04 2.00 -1.54e-04 0.43
201 2.60e-05 2.01 7.88e-05 0.96
401 6.50e-06 2.00 3.93e-05 1.01
801 1.63e-06 2.00 1.96e-05 1.00

1601 4.07e-07 2.00 9.79e-06 1.00

Table 4.48: Numerical values of Greeks at strike price for European Put option, computed with
Rannacher Smoothing over one timestep

To remedy this, we can have Rannacher smoothing over two or even three timesteps, as seen
in Tables 4.49 and 4.50.

Nodes Error (Delta) Convergence (Delta) Error (Gamma) Convergence (Gamma)

51 4.68e-04 — -1.05e-05 —
101 1.17e-04 2.00 -1.32e-06 2.98
201 2.93e-05 2.00 -4.20e-07 1.65
401 7.34e-06 2.00 -1.01e-07 2.05
801 1.83e-06 2.00 -2.48e-08 2.03

1601 4.59e-07 2.00 -6.15e-09 2.01

Table 4.49: Numerical values of Greeks at strike price for European Put option, computed with
Rannacher Smoothing over two timesteps
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Nodes Error (Delta) Convergence (Delta) Error (Gamma) Convergence (Gamma)

51 5.22e-04 — -2.86e-05 —
101 1.31e-04 2.00 -5.65e-06 2.34
201 3.27e-05 2.00 -1.41e-06 2.01
401 8.16e-06 2.00 -3.51e-07 2.00
801 2.04e-06 2.00 -8.78e-08 2.00

1601 5.10e-07 2.00 -2.20e-08 2.00

Table 4.50: Numerical values of Greeks at strike price for European Put option, computed with
Rannacher Smoothing over three timesteps

This is in agreement with the results in [10], which states that taking four Rannacher timesteps
instead of two ordinary timesteps is best for convergence.

For the remaining problems, thanks to numerical agreement between the penalty and policy
methods for problems with European-style exercise rights, we do not need to show both re-
sults. However, since the problems with American-style exercise rights do have differences,
we need to show both the penalty and policy methods for the American Put and American
Stock Borrowing Fee problems.

4.5.2 American Put option

We present the results for the American Put option solved with Policy Iteration, Penalty Iter-
ation, and Penalty Iteration with variable timestepping in Tables 4.51, 4.52, and 4.53 respec-
tively. As can be seen, the penalty iteration with variable timesteps is the only algorithm where
the difference is of the same sign over different discretization levels.

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

101 -3.19e-04 — -1.39e-05 —
201 -8.05e-05 1.99 -9.89e-07 3.81
401 -2.29e-05 1.82 -1.07e-08 6.53
801 -6.38e-06 1.84 1.04e-07 -3.28

1601 -1.82e-06 1.81 6.60e-08 0.66

Table 4.51: Numerical values of Greeks at strike pricefor American Put option, computed with
policy iteration and constant timesteps
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Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

101 -3.16e-04 — -1.37e-05 —
201 -8.02e-05 1.98 -7.43e-07 4.20
401 -2.28e-05 1.82 3.60e-08 4.37
801 -6.42e-06 1.83 1.33e-07 -1.88

1601 -1.85e-06 1.79 7.68e-08 0.79

Table 4.52: Numerical values of Greeks at strike price for American Put option, computed
with penalty iteration and constant timesteps

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

101 -3.18e-04 — -2.03e-05 —
201 -7.23e-05 2.14 -4.20e-06 2.28
401 -2.01e-05 1.85 -9.86e-07 2.09
801 -5.23e-06 1.94 -2.22e-07 2.15

1601 -1.33e-06 1.98 -5.49e-08 2.02

Table 4.53: Numerical values of Greeks at strike price for American Put option, computed
with policy iteration and variable timesteps

4.5.3 Borrow Lend

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

101 -6.43e-04 — 1.49e-05 —
201 -1.65e-04 1.97 3.79e-07 5.30
401 -4.10e-05 2.01 2.73e-07 0.48
801 -1.02e-05 2.01 6.49e-08 2.07

1601 -2.53e-06 2.01 2.59e-08 1.32

Table 4.54: Numerical values of Greeks at strike price for Borrow-Lend problem, short position



Chapter 4. Numerical Experiments 90

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

101 -6.56e-04 — 1.87e-05 —
201 -1.66e-04 1.98 1.99e-06 3.24
401 -4.11e-05 2.02 7.36e-07 1.43
801 -1.03e-05 1.99 1.76e-07 2.07

1601 -2.59e-06 2.00 3.80e-08 2.21

Table 4.55: Numerical values of Greeks at strike price for Borrow-Lend problem, long position

4.5.4 Stock Borrowing Fees

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

101 -6.35e-04 — 1.41e-05 —
201 -1.62e-04 1.97 4.15e-07 5.09
401 -4.03e-05 2.01 3.37e-07 0.30
801 -9.97e-06 2.02 9.40e-08 1.84

1601 -2.53e-06 1.98 7.74e-09 3.60

Table 4.56: Numerical values of Greeks at strike price for Stock Borrowing Fee problem, short
position

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

101 -6.21e-04 — 1.71e-05 —
201 -1.59e-04 1.97 1.90e-06 3.17
401 -3.96e-05 2.00 5.71e-07 1.73
801 -9.92e-06 2.00 1.44e-07 1.99

1601 -2.48e-06 2.00 3.33e-08 2.11

Table 4.57: Numerical values of Greeks at strike price for Stock Borrowing Fee problem, long
position
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4.5.5 American Stock Borrowing Fees

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

201 -9.94e-05 — -5.81e-06 —
401 -2.41e-05 2.04 -1.10e-06 2.40
801 -6.25e-06 1.95 -2.18e-07 2.33

1601 -1.59e-06 1.97 -1.37e-08 4.00
3201 -4.17e-07 1.94 1.36e-08 0.01

Table 4.58: Numerical values of Greeks at strike price for Stock Borrowing Fees problem
with American exercise rights (short position), computed with policy iteration and constant
timesteps

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

201 -9.61e-05 — -5.64e-06 —
401 -2.34e-05 2.04 -1.04e-06 2.43
801 -6.06e-06 1.95 -1.96e-07 2.41

1601 -1.54e-06 1.97 -3.13e-09 5.97
3201 -4.04e-07 1.93 1.79e-08 -2.52

Table 4.59: Numerical values of Greeks at strike price for Stock Borrowing Fees problem
with American exercise rights (short position), computed with penalty iteration and constant
timesteps

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

201 -3.66e-05 — -3.42e-05 —
401 -3.67e-06 3.32 -1.06e-05 1.69
801 -3.77e-07 3.28 -2.83e-06 1.91

1601 -2.33e-09 7.34 -7.50e-07 1.91
3201 1.92e-08 -3.04 -1.93e-07 1.96

Table 4.60: Numerical values of Greeks at strike price for Stock Borrowing Fees problem
with American exercise rights (short position), computed with penalty iteration and variable
timesteps
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Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

201 -7.35e-05 — -4.44e-06 —
401 -1.70e-05 2.11 -1.01e-06 2.14
801 -3.74e-06 2.19 -1.70e-07 2.57

1601 -1.01e-06 1.88 1.70e-08 3.33
3201 -3.00e-07 1.76 2.67e-08 -0.65

Table 4.61: Numerical values of Greeks at strike price for Stock Borrowing Fees problem with
American exercise rights (long position), computed with policy iteration and constant timesteps

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

201 -1.02e-04 — -3.03e-06 —
401 -2.63e-05 1.95 -4.88e-07 2.63
801 -7.04e-06 1.90 2.13e-08 4.52

1601 -1.97e-06 1.84 7.29e-08 -1.77
3201 -5.80e-07 1.76 4.39e-08 0.73

Table 4.62: Numerical values of Greeks at strike price for Stock Borrowing Fees problem
with American exercise rights (long position), computed with penalty iteration and constant
timesteps

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

201 -3.00e-05 — -3.20e-05 —
401 -2.00e-06 3.91 -1.10e-05 1.54
801 7.40e-07 1.43 -2.94e-06 1.90

1601 2.95e-07 1.33 -7.90e-07 1.90
3201 9.14e-08 1.69 -2.04e-07 1.95

Table 4.63: Numerical values of Greeks at strike price for Stock Borrowing Fees problem
with American exercise rights (long position), computed with penalty iteration and variable
timesteps
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4.5.6 Uncertain Volatility

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

201 3.50e-04 — -1.39e-04 —
401 4.06e-05 3.11 -1.41e-05 3.30
801 1.07e-05 1.92 -3.01e-06 2.23

1601 3.82e-06 1.49 -9.98e-07 1.59
3201 7.69e-07 2.31 -2.32e-07 2.11

Table 4.64: Numerical values of Greeks at strike price for Uncertain Volatility problem (best
case)

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

201 -6.39e-06 — 8.83e-06 —
401 -5.63e-06 0.18 6.57e-06 0.43
801 -1.98e-07 4.83 6.00e-07 3.45

1601 -8.33e-08 1.25 2.22e-07 1.43
3201 -5.11e-09 4.03 4.58e-08 2.28

Table 4.65: Numerical values of Greeks at strike price for Uncertain Volatility problem (worst
case)

4.5.7 Transaction cost models

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

100 0.00e+00 0.00 0.00e+00 0.00
200 -8.25e-05 0.00 -1.49e-06 0.00
400 -2.06e-05 2.00 -3.73e-07 2.00
800 -5.16e-06 2.00 -9.33e-08 2.00

1600 -1.29e-06 2.00 -2.33e-08 2.00
3200 -3.22e-07 2.00 -6.00e-09 1.96

Table 4.66: Numerical values of Greeks at strike priceK = 100 for European Put with σ = 1.0,
r = 0.1, T = 0.25, κ = 0.18
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Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

100 0.00e+00 0.00 0.00e+00 0.00
200 -4.68e-05 0.00 -4.44e-06 0.00
400 -1.26e-05 1.89 -1.72e-06 1.37
800 -3.14e-06 2.01 -5.65e-07 1.60

1600 -8.15e-07 1.95 -8.86e-09 5.99
3200 -2.05e-07 1.99 -5.13e-08 -2.54

Table 4.67: Numerical values of Greeks at strike price K = 100 for American Put using
variable timesteps with σ = 1.0, r = 0.1, T = 0.25, κ = 0.18

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

100 0.00e+00 0.00 0.00e+00 0.00
200 -2.59e-05 0.00 2.26e-06 0.00
400 -2.12e-05 0.29 1.82e-06 0.31
800 -2.57e-06 3.05 2.45e-07 2.90

1600 -8.85e-07 1.54 8.12e-08 1.59
3200 -1.90e-07 2.22 1.77e-08 2.20

Table 4.68: Numerical values of Greeks at strike price K = 100 for European Transaction cost
model with butterfly payoff. Parameters: σ = 0.65, r = 0.05, T = 1, κ = 0.1

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

100 0.00e+00 0.00 0.00e+00 0.00
200 1.36e-04 0.00 2.40e-05 0.00
400 3.51e-06 5.28 3.18e-06 2.91
800 6.50e-06 -0.89 1.70e-06 0.91

1600 -4.75e-07 3.77 8.42e-09 7.65
3200 6.05e-07 -0.35 1.65e-07 -4.30

Table 4.69: Numerical values of Greeks at strike price K2 = 90 for American Transaction cost
model using constant timesteps with butterfly payoff. Parameters: σ = 0.65, r = 0.05, T = 1,
κ = 0.1
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Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

100 0.00e+00 0.00 0.00e+00 0.00
200 -4.24e-04 0.00 1.16e-05 0.00
400 -1.05e-04 2.01 2.82e-06 2.04
800 -2.67e-05 1.98 7.06e-07 2.00

1600 -6.92e-06 1.95 1.80e-07 1.97
3200 -1.86e-06 1.90 4.71e-08 1.94

Table 4.70: Numerical values of Greeks at strike price K3 = 110 for American Transaction
cost model using constant timesteps with butterfly payoff. Parameters: σ = 0.65, r = 0.05,
T = 1, κ = 0.1

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

100 0.00e+00 0.00 0.00e+00 0.00
200 7.73e-05 0.00 2.15e-05 0.00
400 -1.37e-05 2.49 2.59e-06 3.05
800 2.36e-06 2.54 1.59e-06 0.70

1600 -1.57e-06 0.59 -3.22e-08 5.63
3200 3.43e-07 2.19 1.58e-07 -2.29

Table 4.71: Numerical values of Greeks at strike price K2 = 90 for American Transaction cost
model using variable timesteps with butterfly payoff. Parameters: σ = 0.65, r = 0.05, T = 1,
κ = 0.1

Nodes Diff (Delta) Convergence (Delta) Diff (Gamma) Convergence (Gamma)

100 0.00e+00 0.00 0.00e+00 0.00
200 -3.66e-04 0.00 9.63e-06 0.00
400 -8.93e-05 2.04 2.31e-06 2.06
800 -2.26e-05 1.98 6.00e-07 1.94

1600 -5.69e-06 1.99 1.43e-07 2.07
3200 -1.45e-06 1.98 3.72e-08 1.94

Table 4.72: Numerical values of Greeks at strike price K3 = 110 for American Transaction
cost model using variable timesteps with butterfly payoff. Parameters: σ = 0.65, r = 0.05,
T = 1, κ = 0.1
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4.6 Montonicity tests of Iterates

As stated in the proofs earlier, the iterates are monotone for our penalty methods with the ex-
ception of the diagonal penalty method for Borrow-Lend and the double penalty method for
Stock Borrowing Fees with American exercise rights and a long position. In our implemen-
tations, we use assertion statements and if the condition fails, then the program halts with an
error. Since this is never triggered, then we confirmed that the iterates are monotone.

Due to the fact that numerical computation inherently comes with errors, we do not test for
monotonicity but for ε-monotonicity (see [15]); that is, monotonicity up to a specified toler-
ance. In our numerical tests we pick ε = 10−8, and as mentioned earlier, this condition is never
triggered.

Next, we will show some plots which help us understand the nonmonotonicity of the penalty
iteration for the Stock Borrowing Fee problem with American exercise rights. We plot the
difference between the solution curves for the short and long positions between the first and
second iterations, where monotonicity is expected for the short position and not for the long
position. Near the strike price, as can be seen in Figure 4.17, the effects of the American penalty
matrix PA can be seen, and show that the iterates are both increasing in this region.
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Figure 4.17: Plot of difference of iterates vj,2− vj,1 for j = 2 to demonstrate monotonicity test
for Stock Borrowing Fees with American exercise rights near the strike price
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Figure 4.18: Plot of difference of iterates vj,2− vj,1 for j = 2 to demonstrate monotonicity test
for Stock Borrowing Fees with American exercise rights near the endpoint

Near the endpoint in Figure 4.18, the effects of the penalty matrix involving derivatives P can
be seen, and hence, the iterates are increasing for the short position and are decreasing for
the long position, due to the fact that the matrix from the short position is calculating a max-
imum and the matrix from the long position is calculating a minimum. Hence, monotonicity
doesn’t hold for the long position with American options for the entire interval; however, it
may hold for certain subdomains of the interval, which explains the good convergence that we
nevertheless obtain from our penalty method.

4.7 Summary

To summarize the results in this chapter, we list the main points that we found though our
numerical experiments:
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• For the time and space domain specified and constant timesteps used, a ratio of 4 : 1

for the number of nodes to the number of timesteps balances the error in time and space
when we have European exercise rights.

• When we have American exercise rights, we need variable timestepping to maintain
second-order accuracy of solutions and smoothness of Greeks.

• Both tridiagonal penalty and policy formulations require a comparable number of itera-
tions, and on average between one and two iterations per timestep.

• The diagonal penalty iteration (Algorithm 4) takes far more iterations than the tridiagonal
penalty iteration (Algorithm 3).

• We verified numerical agreement between Dirichlet and linear boundary conditions, and
also between policy and penalty iteration algorithms where applicable.

• We verified that the iterates are monotone, where applicable.

• The versatility of Algorithm 3 is shown by applying it uniformly to a large set of prob-
lems.
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Conclusions and Future Work

Many problems in financial option pricing can be written as control problems expressed by HJB
or related equations and as nonlinear PDE problems, often with penalty terms. In this thesis,
we have considered a number of these problems. For some of them, we developed new penalty
iteration algorithms for their penalized PDE formulations. For all the problems considered, we
carried a comparison between policy iteration algorithms applied to the HJB formulations and
penalty iteration algorithms applied to the penalized PDE formulations.

In contrast to the original paper [14] on the policy iteration algorithms which take a minimum
of two iterations before testing for convergence, we have modified the algorithm such that the
minimum number of iterations we calculate before testing convergence is one. This is more of a
fair comparison, because as we have shown in our results, the average number of iterations per
timestep required for convergence is between one and two for the policy iteration algorithms
even for the most extreme of the nonlinear problems.

Additionally, we have shown numerical convergence for the second-order Crank-Nicolson
timestepping methods for the HJBI equation arising from the long position of Stock Borrow-
ing Fees problem combined with an American early exercise feature and for the Uncertain
Volatility model, which were not numerically shown in [14] and [17] respectively.

For the new penalty-like algorithms that we have introduced, we use tridiagonal penalty-like
matrices for the discretization of nonlinearities involving partial derivatives for all of the prob-
lems that we have examined. As we have seen, they have better convergence properties com-
pared to the diagonal penalty-like matrices. The tridiagonal penalty-like matrices that we use
can be combined with penalty matrices such as those used in [16] and for some of the penalty-
like algorithms we have proved their monotonic convergence. The monotonically convergent

100
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algorithms are the family of tridiagonal penalty methods for the Borrow Lend, Stock Borrow-
ing Fees, and Uncertain Volatility/Transaction cost models. Moreover, for the Stock Borrow-
ing Fee problem with American exercise rights, we have shown monotonic convergence for the
short position. Although the convergence is not monotone for the long position, the penalty it-
eration algorithm has similar behaviour in terms of number of iterations taken and convergence
criteria to that of the policy iteration, and the numerical values are in agreement with the policy
iteration.

As mentioned earlier, the motivation for examining the Uncertain Volatility problem is that it
is a highly nonlinear problem, with a reasonably large number of iterations taken per timestep.
This allows us to more thoroughly test the monotonicity of the iterates, which gives us extra
validation in the correctness of our proofs.

When comparing the policy and the penalty iteration methods, we found the number of iter-
ations and accuracy comparable. An important advantage of the penalty iteration methods is
that they avoids enumeration of all cases of combinations of control variables to pick set that
produces the minimum (or maximum) of the considered quantity, thus leading to less compu-
tational cost per iteration.

In addition to extending the algorithms introduced here to higher dimensions, there is plenty
of other interesting future work that can be done. As noted earlier, we did not know of a
nonuniform grid that ensures the presence of points on all three cusps of the Butterfly Spread
payoff function, which is why we used a uniform grid. It would be nice in the future to work
on a grid that has the properties of the grid used in [11] while also ensuring the existence of
points on the three cusps.

Another interesting area to work on is the fact that despite the negative results in [17] on the
use of Crank-Nicolson discretization for the Uncertain Volatility problem, we have not had
numerical difficulties in the implementation, and not only do our policy and penalty methods
agree with each other on the numerical solution, but our results also agree with the correct
results obtained with fully implicit timestepping in [17], as long as Rannacher smoothing is
applied. We also proved convergence for the penalty iteration algorithm for this problem. It
would be worth revisiting this problem from the HJB perspective and try to prove convergence
with Crank-Nicolson-Rannacher timestepping.

For longer term research, we are interested in extending the penalty methods to more general
problems in finance. For example, the problem considered in [32] is a quite general HJB vari-
ational inequality, which involves a minimization (or maximization) and within the minimized
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quantity there is a nonlinear term involving the unknown function and its first spatial derivative,
as well as other terms. The authors of [32] handle the minimization by policy iteration and the
nonlinear term by diagonal penalty matrices. It would be interesting to consider tridiagonal
penalty matrices as well as writing the problem without minimization quantities, but with extra
penalty terms, and use a penalty iteration for its solution. This technique will avoid the explicit
minimization over all possible control cases, and potentially lead to a more efficient solution
technique.
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schemes, Journal of Banking & Finance, 31 (2007), pp. 3438–3461.

[24] H. E. LELAND, Option pricing and replication with transactions costs, The Journal of
Finance, 40 (1985), pp. 1283–1301.

[25] H. E. LELAND ET AL., Comments on “Hedging errors with Leland’s option model in the

presence of transactions costs”, Finance Research Letters, 4 (2007), pp. 200–202.

[26] O. MANGASARIAN, Characterizations of real matrices of monotone kind, SIAM Review,
10 (1968), pp. 439–441.

[27] C. PARKINSON, D. ARNOLD, A. BERTOZZI, Y. T. CHOW, AND S. OSHER, Optimal

human navigation in steep terrain: A Hamilton-Jacobi-Bellman approach, arXiv preprint
arXiv:1805.04973, (2018).

[28] D. POOLEY, K. VETZAL, AND P. FORSYTH, Convergence remedies for non-smooth

payoffs in option pricing, Journal of Computational Finance, 6 (2003), pp. 25–40.

[29] D. M. POOLEY, P. A. FORSYTH, AND K. R. VETZAL, Numerical convergence proper-

ties of option pricing PDEs with uncertain volatility, IMA Journal of Numerical Analysis,
23 (2003), pp. 241–267.

[30] R. RANNACHER, Finite element solution of diffusion problems with irregular data, Nu-
merische Mathematik, 43 (1984), pp. 309–327.

[31] C. REISINGER AND P. A. FORSYTH, Piecewise constant policy approximations to

Hamilton–Jacobi–Bellman equations, Applied Numerical Mathematics, 103 (2016),
pp. 27–47.

[32] C. REISINGER AND Y. ZHANG, A penalty scheme and policy iteration for nonlocal HJB

variational inequalities with monotone drivers, arXiv preprint arXiv:1805.06255, (2018).

[33] M. S. SANTOS AND J. RUST, Convergence properties of policy iteration, SIAM Journal
on Control and Optimization, 42 (2004), pp. 2094–2115.

[34] R. TAKEI, R. TSAI, H. SHEN, AND Y. LANDA, A practical path-planning algorithm for

a simple car: a Hamilton-Jacobi approach, in Proceedings of the 2010 American control
conference, IEEE, 2010, pp. 6175–6180.



Chapter 6. Bibliography 106

[35] P. WILMOTT, T. HOGGARD, AND A. E. WHALLEY, Hedging option portfolios in the

presence of transaction costs, Advances in Futures and Options Research, 7 (1994),
pp. 21–35.

[36] P. WILMOTT, S. HOWISON, AND J. DEWYNNE, The mathematics of financial deriva-

tives: a student introduction, Cambridge university press, 1995.

[37] M. YOUSUF, A. KHALIQ, AND B. KLEEFELD, The numerical approximation of nonlin-

ear Black–Scholes model for exotic path-dependent American options with transaction

cost, International Journal of Computer Mathematics, 89 (2012), pp. 1239–1254.

[38] Y. ZHAO AND W. T. ZIEMBA, Hedging errors with Leland’s option model in the presence

of transaction costs, Finance Research Letters, 4 (2007), pp. 49–58.


	List of Tables
	List of Figures
	Introduction
	Problem Description
	Introduction to Financial Options
	Black-Scholes and European options
	American Options
	Optimal Control
	Borrow-Lend
	Borrow-Lend with Stock Borrowing Fees
	Adding American Early Exercise
	Uncertain Volatility
	Transaction cost Models
	Greeks

	Numerical Methods
	Time and Space Discretization
	Temporal Discretization
	Spatial Discretization
	Order of Residual Terms

	Policy Iteration
	Penalty Methods
	American options
	Borrow-Lend
	Stock Borrowing Fees
	Uncertain Volatility
	Transaction Cost models
	Algorithm Descriptions

	Improved Policy Iteration Algorithm for American exercise rights
	Diagonal Dominance, Monotonicity, and Convergence
	Black-Scholes operator
	Diagonal/Tridiagonal Penalty Matrix for Borrow-Lend
	Tridiagonal penalty matrix for Stock Borrowing Fees
	Uncertain Volatility
	Transaction Cost model
	Monotonicity and Convergence
	American Penalty Matrix

	Algorithm Convergence
	Monotonicity
	Proof of algorithm termination
	Uniqueness of solution


	Numerical Experiments
	Introduction
	Convergence Rates
	Error Balancing
	Total Computation Cost

	Convergence of Solution
	European Put
	American options
	Borrow-Lend
	Stock Borrowing Fees
	Stock Borrowing Fees with American options
	Uncertain Volatility Model
	Transaction cost models – Put payoff
	Transaction cost models – Butterfly payoff

	Solution Agreement
	Dirichlet vs Linear Boundary Conditions
	Policy vs Penalty Methods

	Smoothness of Greeks
	Convergence of Greeks
	European Put option
	American Put option
	Borrow Lend
	Stock Borrowing Fees
	American Stock Borrowing Fees
	Uncertain Volatility
	Transaction cost models

	Montonicity tests of Iterates
	Summary

	Conclusions and Future Work
	Bibliography

