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Propositional vs Uniform Proof Complexity

Propositional proof complexity studies the lengths of proofs of
tautology families in proof systems such as Frege and bdFrege
(bounded-depth Frege).

Uniform proof complexity studies the power of weak formal theories
such as VNC1 and V0.

Both proof systems and theories are often associated with complexity
classes.

I Frege systems and VNC1 are associated with the complexity class NC1

I bdFrege and V0 are associated with the complexity class AC0.
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Complexity Classes, Theories, and Proof Systems

A three-way connection 〈 C, VC, C-Frege 〉
Complexity class C, theory VC, and proof system C-Frege

The provably total functions in VC are those in C

C-Frege is the strongest propositional proof system whose soundness is
provable in VC

The ΣB
0 theorems of VC translate to a family {ϕn}n of propositional

tautologies which have polynomial size C-Frege proofs.
Example: VNC1 proves the Pigeonhole Principle: “For all n, n + 1
pigeons cannot be assigned to n holes with at most one pigeon per
hole.”
The corresponding tautologies {ϕn}n have polysize Frege proofs.

Examples

〈 NC1, VNC1, Frege 〉
〈 AC0, V0, bdFrege 〉
〈 P, VP, eFrege 〉
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Motivatation for our paper

1 Theorem[FPS’12]: Frege proofs can be converted to bdFrege proofs of
subexponential size.

2 That is, given 0 < ε < 1 and a family {ϕn}n of tautologies and a
family {πn}n of Frege proofs such that πn proves ϕn and has size
nO(1), there exists a family {π′n}n of Frege proofs such that π′n proves
ϕn and has size 2O(nε) and all cut formulas have depth O(1).

3 We want a uniform version of this.

4 i.e. we want a triple 〈Cε,VCε,Cε-Frege〉 where Cε-Frege is as in item
2 above.

5 Note that bdFrege and Cε-Frege are proof classes rather than proof
systems.
A Proof class associates families of proofs with families of formulas.
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What is the triple 〈Cε,VCε,Cε-Frege〉 for subexponential bdFrege?

Here ε = 1/d where d > 1 is an integer.

Let Cε = AltTime(O(1),O(nε))
(problems computable by uniform size 2O(nε) bounded-depth circuit
families).

NC1 ⊆ L ⊆ NL ⊆ Cε

What is the theory VCε.?
(We want the provably total functions of VCε to be those in Cε.)

Major Obstacle: In general the provably total functions in a theory VC
are closed under compostion. But the subexponential functions are not
closed under composition.

For example the composition of n 7→ 2n
1
2 with n 7→ n2 is 2n.

We’ll get to this in a moment.
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We follow the framework in [Cook-Nguyen ’10]

Program in Chapter 9

1 Presents a general method for associating a
theory VC with a complexity classes C,
including theories

V0 ⊆ VNC1 ⊆ VL ⊆ VNL ⊆ VP

for classes

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ P

2 Theories have two sorts: Natural numbers
x , y , z , ... and bit strings X ,Y ,Z , ....

3 Function symbols 0, 1, +, ·, | | (length)

4 Relation symbols =, ≤, and ∈
(membership/bit).
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Two-sorted relations and formulas

(Uniform)
AC0 = FO = AltTime(O(1),O(lgn)) = DepthSize(O(1), nO(1)).

A relation R(~x , ~X ) is in AC0 as above, where number arguments ~x are
presented in unary.

ΣB
0 is the class of formulas with no string quantifiers, and with all

number quantifers bounded.

ΣB
0 Representation Theorem: A relation R(~x , ~X ) is in AC0 iff it is

represented by a ΣB
0 formula ϕ(~x , ~X ).

ΣB
i and ΠB

i are classes of bounded formulas with limits on alternations
of the string quantifiers.

∃BΦ consists of formulas starting with bounded existential string
quantifiers followed by a formula in Φ.

8 / 19



Two-sorted relations and formulas

(Uniform)
AC0 = FO = AltTime(O(1),O(lgn)) = DepthSize(O(1), nO(1)).

A relation R(~x , ~X ) is in AC0 as above, where number arguments ~x are
presented in unary.

ΣB
0 is the class of formulas with no string quantifiers, and with all

number quantifers bounded.

ΣB
0 Representation Theorem: A relation R(~x , ~X ) is in AC0 iff it is

represented by a ΣB
0 formula ϕ(~x , ~X ).

ΣB
i and ΠB

i are classes of bounded formulas with limits on alternations
of the string quantifiers.

∃BΦ consists of formulas starting with bounded existential string
quantifiers followed by a formula in Φ.

8 / 19



Two-sorted relations and formulas

(Uniform)
AC0 = FO = AltTime(O(1),O(lgn)) = DepthSize(O(1), nO(1)).

A relation R(~x , ~X ) is in AC0 as above, where number arguments ~x are
presented in unary.

ΣB
0 is the class of formulas with no string quantifiers, and with all

number quantifers bounded.

ΣB
0 Representation Theorem: A relation R(~x , ~X ) is in AC0 iff it is

represented by a ΣB
0 formula ϕ(~x , ~X ).

ΣB
i and ΠB

i are classes of bounded formulas with limits on alternations
of the string quantifiers.

∃BΦ consists of formulas starting with bounded existential string
quantifiers followed by a formula in Φ.

8 / 19



Introducing io-typed theories ioVC to limit composition

Introduce two types of variables: input type and output type

input type: a, b, c denote numbers, A,B,C denote strings.
output type: x , y , z denote numbers, X ,Y ,Z denote strings.

For fast growing f , the arugments of f have input type and are small,
while the value of f has output type and might be large.

For each 0 < ε < 1, the functions with growth rate 2O(nε) are closed
under composition with linear functions, so we allow linear terms to be
input type.

All terms (including input type terms) have output type.

Example input type term:

a + b + 1 + pd(c) + |A|+ |B|

(No output type variables allowed.)
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Theory io2Basic: Axioms have output type variables

Table: io2Basic

B1 x + 1 6= 0
B2 x + 1 = y + 1→ x = y
B3 x + 0 = x
B4 x + (y + 1) = (x + y) + 1
B5 x ·0 = 0
B6 x ·(y + 1) = x ·y + x

B7 x ≤ y ∧ y ≤ x → x = y
B8 x ≤ x + y
B9 0 ≤ x
B10 x ≤ y ∨ y ≤ x
B11 x ≤ y ↔ x < y + 1
B12 pd(0) = 0 ∧ (x 6= 0→

pd(x) + 1 = x)

L y ∈ X → y < |X |

X = Y abbreviates (|X | = |Y | ∧ ∀x ≤ |X | x ∈ X ↔ x ∈ Y ).
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Theory ioV0 for AC0

ioV0 extends io2Basic by adding the substring function X [y , z ] and the
following axioms:

x ∈ X [y , z ]↔ x < z ∧ y + x ∈ X

|X [y , z ]| = z

Ind: 0 ∈ X ,∀y < z (y ∈ X → y + 1 ∈ X )⇒ z ∈ X

ϕ-CA (Comprehension): ∃Y = z ∀x < z
(

x ∈ Y ↔ ϕ(x ,~a, ~A)
)

where ϕ(x ,~a, ~A) is in ΣB
0

oiConvnum: ∃b ≤ a b = min(a, x)

oiConvstr: ∃B = a B = X [y , a]

Theorem: The ∃BΣB
0 definable functions in ioV0 coincide with the AC0

functions.
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Theory ioVNC1 = ioV0 + ΣB
0 (MBBFE)-CA

ΣB
0 (MBBFE)-CA is the following axiom schema:

∃Y = 2s ∃Z = 2s [∀x < 2s (x ∈ Z ↔ ϕ(x ,~a, ~A))∧
“Y is the computation of Z ”]

where s has output type and ϕ ∈ ΣB
0 and “Y is the computation of Z ”

stands for

∀z < s [z+s ∈ Y ↔ z ∈ Z ]∧[(z ∈ Z → (z ∈ Y ↔ 2z ∈ Y ∧ 2z + 1 ∈ Y ))∧

(z /∈ Z → (z ∈ Y ↔ 2z ∈ Y ∨ 2z + 1 ∈ Y ))]

We think of ϕ as specifying the bit graph of an AC0 function whose output
Z is as an instance of MBBFE: its first half specifies the gates of the
formula and its second half specifies the inputs to the formula.

Theorem: The ∃BΣB
0 definable functions of ioVNC1 are precisely the

NC1 functions.

12 / 19



Theory ioVNC1 = ioV0 + ΣB
0 (MBBFE)-CA

ΣB
0 (MBBFE)-CA is the following axiom schema:

∃Y = 2s ∃Z = 2s [∀x < 2s (x ∈ Z ↔ ϕ(x ,~a, ~A))∧
“Y is the computation of Z ”]

where s has output type and ϕ ∈ ΣB
0 and “Y is the computation of Z ”

stands for

∀z < s [z+s ∈ Y ↔ z ∈ Z ]∧[(z ∈ Z → (z ∈ Y ↔ 2z ∈ Y ∧ 2z + 1 ∈ Y ))∧

(z /∈ Z → (z ∈ Y ↔ 2z ∈ Y ∨ 2z + 1 ∈ Y ))]

We think of ϕ as specifying the bit graph of an AC0 function whose output
Z is as an instance of MBBFE: its first half specifies the gates of the
formula and its second half specifies the inputs to the formula.

Theorem: The ∃BΣB
0 definable functions of ioVNC1 are precisely the

NC1 functions.

12 / 19



Theory ioVNC1 = ioV0 + ΣB
0 (MBBFE)-CA

ΣB
0 (MBBFE)-CA is the following axiom schema:

∃Y = 2s ∃Z = 2s [∀x < 2s (x ∈ Z ↔ ϕ(x ,~a, ~A))∧
“Y is the computation of Z ”]

where s has output type and ϕ ∈ ΣB
0 and “Y is the computation of Z ”

stands for

∀z < s [z+s ∈ Y ↔ z ∈ Z ]∧[(z ∈ Z → (z ∈ Y ↔ 2z ∈ Y ∧ 2z + 1 ∈ Y ))∧

(z /∈ Z → (z ∈ Y ↔ 2z ∈ Y ∨ 2z + 1 ∈ Y ))]

We think of ϕ as specifying the bit graph of an AC0 function whose output
Z is as an instance of MBBFE: its first half specifies the gates of the
formula and its second half specifies the inputs to the formula.

Theorem: The ∃BΣB
0 definable functions of ioVNC1 are precisely the

NC1 functions.

12 / 19



Theory nε-ioV∞ (This is VCε)

Here ε = 1/d , where d > 1 is a constant. The theory includes the function

xε (actually bx
1
d c) with defining axiom xε = y ↔ yd ≤ x < (y + 1)d .

We call a formula ΣB
∞(nε) iff it is bounded and all of its string quantifiers

are bounded by linear terms in nε (n is the max size of its free variables).
Definition: nε-ioV∞ = ioV0 + ΣB

∞(nε)-Comprehension
We take the provably total functions in nε-ioV∞ to be the Φ-definable
functions, where Φ = ∃BΣB

∞(nε).

Theorem

The provably total functions of the theory nε-ioV∞ are exactly those of
polynomial growth rate whose graphs are in AltTime(O(1),O(nε)), where n
is the size of the arguments.

Theorem: The theories nε-ioV∞ contain the theory ioVNC1.
Proof Idea: The ΣB

∞(nε)-Comprehension axiom can formalize Buss’s
Prover-Challenger game to solve the MBBFE problem.
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Proof Systems for Quantified Propositional Calculus

1 System G for quantified propositional calculus is based on Gentzen’s
sequent calculus.

2 System PK (equivalent to Frege systems) is G restricted to
quantifier-free formulas.

3 For d > 1, system d-PK (equivalent to d-Frege) is PK with cuts
restricted to depth d formulas.

4 We say a formula family {ϕn}n has polysize bdFrege proofs if there are
constants d and m such that each ϕn has a d-Frege proof of size
O(|ϕn|m).
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Proof Class nε-bdG∞ (Quantified version of Cε-Frege)

Definition

nε-bdG∞ is the class of bdG∞ proof families with cuts restricted to bdΣq
∞

formulas with an absolute upper bound on the number of quantifier
alternations, and the total number of eigenvariables in each sequent does
not exceed nε, where n is the size of the proven formula.

Remark: It follows that the total number of quantified variables in any
formula in any proof does not exceed nε, assuming that this is true of
formulas that are proved.
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Translating two-sorted terms to sequences of
propositional formulas
The translation context σ : Var → N assigns number (size) to each variable.
σ(x) is the value of x and σ(X ) is the length of X . σ naturally extends to
assign a size to every term.

Table: Extended Translation Context σ and Translation of Terms

σ(0) = 0
σ(1) = 1
σ(t + s) = σ(t) + σ(s)
σ(t·s) = σ(t)·σ(s)
σ(pd(t)) = pd(σ(t))
σ(|T |) = σ(T )

σ(f (~t, ~T )) = f σ(σ(~t), σ(~T ))

σ(F (~t, ~T )) = F σ(σ(~t), σ(~T ))

[[n]]σ = (>,
n times︷ ︸︸ ︷
⊥, . . . ,⊥), n ∈ N

[[t]]σ = [[σ(t)]]σ
[[X ]]σ = (pX

σ(X )−1, . . . , p
X
0 )

[[F (~t, ~T )]]σ = (F
σ(F (~t,~T ))−1([[~t]]σ, [[~T ]]σ), . . . ,F0([[~t]]σ, [[~T ]]σ))
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Translating two-sorted formulas to quantified
propositional formulas

Table: Translation of Formulas

[[s = t]]σ =

{
> [[s]]σ = [[t]]σ

⊥ o.w .

[[s ≤ t]]σ =

{
> [[s]]σ ≤ [[t]]σ

⊥ o.w .

[[t ∈ T ]]σ = ([[T ]]σ)[[t]]σ

[[⊥]]σ = ⊥
[[>]]σ = >
[[¬ϕ]]σ = ¬[[ϕ]]σ
[[ψ ∧ ϕ]]σ = [[ψ]]σ ∧ [[ϕ]]σ
[[ψ ∨ ϕ]]σ = [[ψ]]σ ∨ [[ϕ]]σ
[[∃x ≤ t ϕ]]σ =

∨
i≤σ(t)

[[x ≤ t ∧ ϕ]]σ[x 7→i ]

[[∀x ≤ t ϕ]]σ =
∧

i≤σ(t)
[[x ≤ t → ϕ]]σ[x 7→i ]

[[∃X = t ϕ]]σ = ∃[[X ]]τ [[X = t ∧ ϕ]]τ
[[∀X = t ϕ]]σ = ∀[[X ]]τ [[X = t → ϕ]]τ .
where τ = σ[X 7→ σ(t)]
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Translating Proofs to Propositional Proofs

Old results (e.g. [Cook/Nguyen])

Theorem

If ϕ ∈ ΣB
0 is provable in V0 (resp. VNC1) then {[[ϕ]]~n}~n has polynomial-size

bdFrege (resp. Frege) proofs.

New results:

Theorem

If ϕ ∈ ΣB
0 is provable in nε-ioV∞ (i.e. VCε) then {[[ϕ]]~n}~n has

polynomial-size nε-bdG∞ proofs.

Corollary

If ϕ ∈ ΣB
0 is provable in nε-ioV∞ (i.e. VCε) then {[[ϕ]]~n}~n has size 2O(nε)

bdFrege proofs.
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Main Results

Theorem

ioVNC1 proves the soundness of Frege.

Corollary

nε-ioV∞ proves the soundness of Frege

Corollary

Frege proofs can be effectively translated to polynomial size nε-bdG∞
proofs, and to size 2O(nε) size bdFrege proofs.

See our websites for updated versions of these results.
THANK YOU
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