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Theorem 5.15 in the above paper is correct, but the proof needs a small correction. The state-
ment of the theorem gives a tight lower bound on the number of states in a nondeterministic thrifty
branching program solving the tree evaluation problem for binary trees of height 4. Precisely

Theorem 1 Every nondeterministic thrifty branching program solving BT 4

2
(k) has Ω(k3) states.

The proof considers YES inputsI in a certain setEr,s of inputs to a nondeterministic thrifty
branching programB, and associates a thrifty accepting computationC(I) with each suchI. The
proof also associates a tuple

U(I) = (u, γI , δI , x1, x2, x3, x4)

with I, whereγI andδI are states in the computationC(I). We use(γI , δI) to denote the segment
of C(I) betweenγI andδI .

The tagu ∈ {1, 2, 3} in U(I) specifies a partition of the middle nodes{v2, v3, v4, v5, v6, v7} of
the input tree into disjoint setsS1 andS2 with the following properties:

• Every middle node queried during the computation segment(γI , δI) is in S1.

• S1 has at most four nodes, and the values of all nodes inS1 are specified byx1, x2, x3, x4 in
U(I).

• The parent of every node inS2 is queried during(γI , δI).

Near the end of the proof is the following claim:

Claim: If I, J ∈ Er,s andU(I) = U(J), thenI = J .

The claim is correct, but the proof of the claim is wrong, since it states that ifU(I) = U(J) then
input I is consistent with the segment(γJ , δJ) of the computationC(J). (A thrifty query for J
might be nonthrifty forI, so the two answers could be different.)

To fix the proof, define a new inputI ′ as follows: For each non-leaf nodevi, let f I′

i (x, y) =
f I
i (x, y) if x, y are the correct values for the children of nodevi in input I, and otherwise let
f I′

i (x, y) = fJ
i (x, y). Let the values of the leaf nodes ofI ′ ber or s, as inEr,s.

Thus the node values forI andI ′ are the same, but some of the functions associated withI

andI ′ are different. This inputI ′ may not be in the setEr,s, but this does not matter, because we
assume thatB is a nondeterministic thrifty branching program which runscorrectly on all inputs.

The state sequence for the computationC(I) is also a possible state sequence forB on input
I ′, becauseC(I) only makes thrifty queries. We construct a different accepting computationC ′

for the inputI ′ as follows: C ′ coincides withC(I) until γI , then followsC(J) from γI to δI ,

1



and finally followsC(I) to the accept state. This is possible, because every query made byC(J)
during the segment(γJ , δJ) is either thrifty forI as well as forJ , (so the answer is specified by
(x1, x2, x3, x4) in U(I) = U(J), and is the same for all three inputsI, I ′, J), or it is not thrifty for
I, so by construction ofI ′ the answer is the same for inputsI ′ andJ .

SupposeI 6= J . Given that bothI andJ are inEr,s andU(I) = U(J), it follows thatI andJ
(and henceI ′ andJ) differ on the value of some middle nodev in the setS2 specified by the tagu.
Thus by the stated property ofS2, the computation segment(γJ , δJ) queries the parent ofv, and
this query cannot be thrifty for bothJ andI ′. But all accepting computations of a thrifty branching
program must make only thrifty queries.

This proves the claim.
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