
A

The Complexity of the Comparator Circuit Value Problem

STEPHEN A. COOK, Department of Computer Science, University of Toronto

YUVAL FILMUS, Department of Computer Science, University of Toronto

DAI TRI MAN LÊ, Department of Computer Science, University of Toronto

In 1990 Subramanian de�ned the complexity class CC as the set of problems log-space reducible to the
comparator circuit value problem (Ccv). He and Mayr showed that NL⊆CC⊆P, and proved that in addition
to Ccv several other problems are complete for CC, including the stable marriage problem, and �nding the
lexicographically �rst maximal matching in a bipartite graph. Although the class has not received much
attention since then, we are interested in CC because we conjecture that it is incomparable with the parallel
class NC which also satis�es NL⊆NC⊆P, and note that this conjecture implies that none of the CC-complete
problems has an e�cient polylog time parallel algorithm. We provide evidence for our conjecture by giving
oracle settings in which relativized CC and relativized NC are incomparable.

We give several alternative de�nitions of CC, including (among others) the class of problems computed by
uniform polynomial-size families of comparator circuits supplied with copies of the input and its negation,
the class of problems AC0-reducible to Ccv, and the class of problems computed by uniform AC0 circuits
with Ccv gates. We also give a machine model for CC, which corresponds to its characterization as log-
space uniform polynomial-size families of comparator circuits. These various characterizations show that
CC is a robust class. Our techniques also show that the corresponding function class FCC is closed under
composition. The main technical tool we employ is universal comparator circuits.

Other results include a simpler proof of NL⊆CC, a more careful analysis showing the lexicographically
�rst maximal matching problem and its variants are CC-complete under AC0 many-one reductions, and an
explanation of the relation between the Gale�Shapley algorithm and Subramanian's algorithm for stable
marriage.

This paper continues the previous work of Cook, Lê and Ye which focused on Cook-Nguyen style uniform
proof complexity, answering several open questions raised in that paper.

Categories and Subject Descriptors: F.1.3 [Complexity Measures and Classes]: Complexity Hierarchies

General Terms: Theory

Additional Key Words and Phrases: Comparator circuits, P-completeness

ACM Reference Format:
Stephen A. Cook, Yuval Filmus and Dai Tri Man Lê. 2014. The complexity of the comparator circuit value problem. ACM
Trans. Comput. Theory V, N, Article A (January YYYY), 35 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Comparator circuits are sorting networks [Batcher 1968] in which the wires carry Boolean values.
A comparator circuit is presented as a set of m horizontal lines, which we call wires. The left end

We would like to thank Yuli Ye for his contribution in the early parts of this research. A portion of this work was done
when the second and third authors received funding from the [European Community’s] Seventh Framework Programme
[FP7/2007-2013] under grant agreement no 238381. This work was also supported by the Natural Sciences and Engineering
Research Council of Canada.
Author’s addresses: Stephen A. Cook, Department of Computer Science, University of Toronto, Toronto, ON; Yuval Filmus
(Current address), School of Mathematics, Institute for Advanced Study, Princeton, NJ.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice
on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© YYYY ACM 1942-3454/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Stephen A. Cook et al.

1 x0 • 0 • 0 0 = f (x0, x1, x2)
1 x1 • 0 N 1
1 x2 1
0 ¬x0 H 1 • 0
0 ¬x1 H 1 1
0 ¬x2 H 0 0

Fig. 1

of each wire is annotated by either a Boolean constant, an input variable, or a negated input
variable, and one wire is designated as the output wire. In between the wires there is a sequence
of comparator gates, each represented as a vertical arrow connecting some wire wi with some
wire w j , as shown in Fig. 1. These arrows divide each wire into segments, each of which gets a
Boolean value. The values of wires wi and w j after the arrow are the maximum and the minimum
of the values of wires wi and w j right before the arrow, with the tip of the arrow pointing at the
position of the maximum. Every wire is initialized (at its left end) by the annotated value, and the
output of the circuit is the value at the right end of the output wire. Thus comparator circuits are
essentially Boolean circuits in which the gates have restricted fanout.

Problems computed by uniform polynomial size families of comparator circuits form the
complexity class CC, defined by Subramanian [1990] in a slightly different guise. Mayr and Sub-
ramanian [1992] showed that NL⊆CC⊆P (where NL is nondeterministic log space), and gave
several complete problems for the class, including the stable marriage problem (SM) and lexico-
graphically first maximal matching (LFMM). Known algorithms for these problems are inherently
sequential, and so they conjectured that CC is incomparable with NC, the class of problems
computable in polylog parallel time. (For the other direction, it is conjectured that the NC2 prob-
lem of raising an n ×n matrix to the nth power is not in CC.) Furthermore, they proposed that
CC-hardness be taken as evidence that a problem is not parallelizable.

Since then, other problems have been shown to be CC-complete: the stable roommate problem
[Subramanian 1994], the telephone connection problem [Ramachandran and Wang 1991], the
problem of predicting internal diffusion-limited aggregation clusters from theoretical physics
[Moore and Machta 2000], and the decision version of the hierarchical clustering problem [Green-
law and Kantabutra 2008]. The maximum weighted matching problem has been shown to be
CC-hard [Greenlaw et al. 1995] The fastest known parallel algorithms for some CC-complete
problems are listed in [Greenlaw et al. 1995, §B.8].

1.1. Our results
We have two main results. First, we give several new characterizations of the class CC, thus
showing that it is a robust class. Second, we give an oracle separation between CC and NC, thus
providing evidence for the conjecture that the two classes are incomparable.

1.1.1. Characterizations of CC. Subramanian [1990] defined CC as the class of all languages
log-space reducible to the comparator circuit value problem (CCV), which is the following prob-
lem: given a comparator circuit with specified Boolean inputs, determine the output value of a
designated wire. Cook, Lê and Ye [2011; 2011] considered two other classes, one consisting of all
languages AC0-reducible to CCV, and the other consisting of all languages AC0-Turing-reducible
to CCV, and asked whether these classes are the same as CC. We answer this in the affirmative,
and furthermore give characterizations of CC in terms of uniform circuits. Our work gives the
following equivalent characterizations of the class CC:

— All languages AC0-reducible to CCV.
— All languages NL-reducible to CCV.
— All languages AC0-Turing-reducible to CCV.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:3

— Languages computed by uniform families of polynomial size comparator circuits. (Here uniform
can be either AC0-uniform or NL-uniform.)

— Languages computed by uniform families of polynomial size comparator circuits with inverter
gates. (An inverter gate has one input and one output wire, and it inverts its input.)

This shows that the class CC is robust. In addition, we show that corresponding function class
FCC is closed under composition. The key novel notion for all of these results is our introduction
of universal comparator circuits.

The characterization of CC as uniform families of comparator circuits also allows us to define
CC via certain Turing machines with an implicit access to the input tape.

1.1.2. Oracle separations. Mayr and Subramanian [1992] conjectured that CC and NC are
incomparable. We provide evidence supporting this conjecture by separating the relativized
versions of these classes, in which the circuits have access to oracle gates. Our techniques also
separate the relativized versions of CC and SC, where SC is the class of problems which can be
solved simultaneously in polynomial time and polylog space. In fact, it appears that the three
classes NC, CC and SC are pairwise incomparable. In particular, although NL is a subclass of both
NC and CC, it is unknown whether NL is a subclass of SC.

1.1.3. Other results. The classical Gale–Shapley algorithm for the stable marriage problem [Gale
and Shapley 1962] cannot be implemented as a comparator circuit. Subramanian [1994] de-
vised a different fixed-point algorithm which shows that the problem is in CC. We provide an
interpretation of his algorithm that highlights its connection to the Gale–Shapley algorithm.

Another fixed-point algorithm is Feder’s algorithm for directed reachability (described in Subra-
manian [1990]), which shows that NL⊆CC. We interpret this algorithm as a form of depth-first
search, thus simplifying its presentation and proof. Our exposition follows [Cook et al. 2011; Lê
et al. 2011].

As part of proving the CC-completeness of the stable marriage problem, we provide a simple
proof that lexicographically first maximal matching (LFMM) is CC-complete. Our exposition again
follows [Cook et al. 2011; Lê et al. 2011].

1.2. Background
A fundamental problem in theoretical computer science asks whether every feasible problem
can be solved efficiently in parallel. Formally, is NC=P? It is widely believed that the answer is
negative, that is there are some feasible problems which cannot be solved efficiently in parallel.
One class of examples consists of P-complete problems, such as the circuit value problem. P-
complete problems play the same role as that of NP-complete problems in the study of problems
solvable in polynomial time:

If NC 6=P, then P-complete problems are not in NC.

With the goal of understanding which “tractable" problems cannot be solved efficiently in paral-
lel, during the 1980’s researchers came up with a host of P-complete problems. Researchers were
particularly interested in what aspects of a problem make it inherently sequential. Cook [1985]
came up with one such aspect: while the problem of finding a maximal clique in a graph is in
NC [Karp, R.M. and Wigderson, A. 1985], if we require the maximal clique to be the one computed
by the greedy algorithm (lexicographically first maximal clique), then the problem becomes P-
complete. His proof uses a straightforward reduction from the monotone circuit value problem,
which is a P-complete restriction of the circuit value problem [Goldschlager 1977].

Anderson and Mayr [Anderson and Mayr 1987] continued this line of research by showing
the P-completeness of other problems asking for maximal structures computed by greedy algo-
rithms, such as lexicographically first maximal path. However, one problem resisted their analysis,
lexicographically first maximal matching (LFMM), which is the same as lexicographically first

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Stephen A. Cook et al.

independent set in line graphs. While trying to adapt Cook’s proof to the case of line graphs, they
encountered difficulties simulating fanout. They conjectured that the problem is not P-complete.

Unbeknownst to Anderson and Mayr, Cook had encountered the same problem in 1983 (while
working on his paper [Cook 1985]), and was able to come up with a reduction from the comparator
circuit value problem (CCV) to LFMM. The hope was that like other variants of the circuit value
problem such as the monotone circuit value problem and the planar circuit value problem, CCV

would turn out to be P-complete. (The planar monotone circuit value problem, however, is in
NC [Yang 1991; Delcher and Kosaraju 1995; Ramachandran and Yang 1996].)

The foregoing prompted Ashok Subramanian (whose advisor was Mayr) to study the relative
strength of variants of the circuit value problem restricted by the set of allowed gates. Specifically,
Subramanian was interested in the significance of fanout. To that end, Subramanian considered
circuits without fanout, but instead allowed multi-output gates such as the COPY gate which takes
one input x and outputs two copies of x.

Subramanian classified the relative strength of the circuit value problem when the given set
of gates can be used to simulate COPY: there are seven different cases, and in each of them the
circuit value problem is either in NC or P-complete. The case when the given set of gates cannot
simulate COPY is more interesting: if all gates are monotone then the circuit value problem is
either in NC or CC-hard [Subramanian 1990, Corollary 5.22]; for the non-monotone case there is
no complete characterization. The class CC thus emerges as a natural “minimal” class above NC
for the monotone case.

Cook, Lê and Ye [2011; 2011] constructed a uniform proof theory VCC (in the style of Cook and
Nguyen [2010]) which corresponds to CC, and showed that Subramanian’s results are formalizable
in the theory. The present paper answers several open questions raised in [Cook et al. 2011; Lê
et al. 2011].

Paper organization. In Section 2 we introduce definitions of basic concepts, including com-
parator circuits and the comparator circuit value problem. We also introduce several equivalent
definitions of CC, in terms of uniform comparator circuits, and in terms of problems reducible (in
various ways) to the comparator circuit value problem.

In Section 3 we construct universal comparator circuits. These are comparator circuits which
accept as input a comparator circuit C and an input vector Y , and compute the output wires of
C when run on input Y . As an application, we prove that the various definitions of CC given at
the end of the preceding section are indeed equivalent, and we provide yet another definition in
terms of restricted Turing machines.

In Section 4 we define a notion of relativized CC and prove that relativized CC is incomparable
with relativized NC. This of course implies that relativized CC is strictly contained in relativized P.
We also argue that CC and SC might be incomparable.

In Section 5 we prove that the lexicographically first maximal matching problem and its variants
are complete for CC under AC0 many-one reductions. (Two of the present authors made a similar
claim in [Lê et al. 2011], but that proof works for log space reductions rather than AC0 reductions.)

In Section 6 we show that the stable marriage problem is complete for CC, using Subramanian’s
algorithm [Subramanian 1990; Subramanian 1994]. We show that Subramanian’s fixed-point algo-
rithm, which uses three-valued logic, is related to the Gale–Shapley algorithm via an intermediate
interval algorithm. The latter algorithm also explains the provenance of three-valued logic: an
interval partitions a person’s preference list into three parts, so we use three values {0,∗,1} to
encode these three parts of a preference list.

Section 7 includes some open problems and our concluding remarks.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:5

2. PRELIMINARIES
2.1. Notation
We use lower case letters, e.g. x, y, z, . . ., to denote unary arguments and upper case letters, e.g.
X ,Y , Z , . . ., to denote binary string arguments. For a binary string X , we write |X | to denote the
length of X , and X (i) to denote the i th bit of X .

2.2. Function classes and search problems
A complexity class consists of relations R(X), where X is a binary string argument. Given a class of
relations C, we associate a class FC of functions F (X) with C as follows. We require these functions
to be p-bounded, i.e., |F (X)| is bounded by a polynomial in |X |. Then we define FC to consist of all
p-bounded string functions whose bit graphs are in C. (Here the bit graph of F (X) is the relation
BF (i , X) which holds iff the i th bit of F (X) is 1.) For all classes C of interest here the function
class FC is closed under composition. In particular, FNL is closed under composition because NL
(nondeterministic log space) is closed under complementation.

Most of the computational problems we consider here can be expressed as decision problems
(i.e. relations). However, the stable marriage problem is an exception, because in general a given
instance has more than one solution (i.e. there is more than one stable marriage). Thus, the
problem is properly described as a search problem. A search problem QR is a multivalued function
with graph R(X , Z), so QR (X) = {

Z | R(X , Z)
}
.

The search problem is total if the set QR (X) is non-empty for all X . The search problem is a
function problem if |QR (X)| = 1 for all X . A function F (X) solves QR if F (X) ∈QR (X) for all X . We
will be concerned only with total search problems in this paper.

2.3. Reductions
Let C be a complexity class. A relation R1(X) is C many-one reducible to a relation R2(Y) (written
R1 ≤C

m R2) if there is a function F in FC such that R1(X) ↔ R2(F (X)).
A search problem QR1 (X) is C many-one reducible to a search problem QR2 (Y) if there are

functions G ,F in FC such that G(X , Z) ∈QR1 (X) for all Z ∈QR2 (F (X)).
Recall that problems in AC0 are computed by uniform families of polynomial size constant

depth circuits. (See [Barrington et al. 1990] for many equivalent definitions of uniform AC0,
including ‘First Order definable’.) We are interested in AC0 many-one reducibility, but also in
the more general notion of AC0 Turing reducibility. We say that a relation R1(X) is AC0 Turing
reducible to a relation R2(Y) if R1(X) is is computed by some AC0-uniform family of AC0 circuits
which are equipped with R2-oracle gates. Such an oracle gate takes a string Y as input and outputs
a single bit R2(Y), and is considered to have depth 1 when counting the overall depth of the circuit.
We note that standard small complexity classes, including AC0, TC0, NC1, NL and P, are closed
under AC0 Turing reductions.

In general we say that a family 〈Cn〉n of circuits is uniform if the description D(n) of Cn is a
uniform AC 0 function of n.

2.4. Comparator circuits
A comparator gate is a function C : {0,1}2 → {0,1}2 that takes an input pair (p, q) and outputs a
pair (p ∧q, p ∨q). Intuitively, the first output in the pair is the smaller bit among the two input
bits p, q , and the second output is the larger bit.

We will use the graphical notation on the right to denote a
comparator gate, where x and y denote the names of the wires,
and the direction of the arrow denotes the direction to which
we move the larger bit as shown in the picture.

p x • p ∧q

q y H p ∨q

A comparator circuit consists of m wires and a sequence (i1, j1), . . . , (in , jn) of n comparator
gates. We allow “dummy” gates of the form (i , i), which do nothing. A comparator circuit computes

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Stephen A. Cook et al.

a function f : {0,1}m → {0,1}m in the obvious way (See Section 1). A comparator circuit with
negation gates additionally has negation gates N : {0,1} → {0,1} which invert their input.

An annotated comparator circuit consists of a comparator circuit with a distinguished output
wire together with an annotation of the input of each wire by an input bit xi , the negation of an
input bit ¬xi , or a constant 0 or 1. A positively annotated comparator circuit has no annotations
of the type ¬xi . An annotated comparator circuit computes a function f : {0,1}k → {0,1}, where k
is the largest index appearing in an input annotation xk .

An AC0-uniform family of annotated comparator circuits is one whose circuit descriptions are
computable by a function in FAC0. An NL-uniform family of annotated comparator circuits is one
whose circuits are computable in FNL.

Uniform annotated comparator circuits will serve as the basis of some definitions of the com-
plexity class CC. Other definitions will be based on a complete problem, the comparator circuit
value problem.

Definition 2.1. The comparator circuit value problem (CCV) is the decision problem: given
a comparator circuit and an assignment of bits to the input of each wire, decide whether a
designated wire outputs one. By default, we often let the designated wire be the 0th wire of a
circuit.

Comparator circuits can have some gates pointing up, and others pointing down. The next
result shows that in most of our proofs there is no harm in assuming that all gates point in the
same direction.

PROPOSITION 2.2. CCV is AC0 many-one reducible to the special case in which all comparator
gates point down (or all point up).

PROOF. Suppose we have a gate on the left of Fig. 2 with the arrow pointing upward. We can
construct a circuit that outputs the same values as those of x and y , but all the gates will now
point downward as shown on the right of Fig. 2.

x N
y •

x0 •
y0 • •

0 x1 H H
0 y1 H

Fig. 2

It is not hard to see that the wires x1 and y1 in this new comparator circuit will output the
same values as the wires x and y respectively in the original circuit. For the general case, we can
simply make copies of all wires for each layer of the comparator circuit, where each copy of a
wire will be used to carry the value of a wire at a single layer of the circuit. Then apply the above
construction to simulate the effect of each gate. Note that additional comparator gates are also
needed to forward the values of the wires from one layer to another, in the same way that we use
the gate 〈y0, y1〉 to forward the value carried in wire y0 to wire y1 in the above construction.

To carry this out in AC0, one way would be to add a complete copy of all wires for every
comparator gate in the original circuit. Each new wire has input 0. For each original gate g , first
put in gates copying the values to the new wires. If g points down, put in a copy of g connecting
the new wires, and if g points up, put in the construction in Fig. 2.

The class CC has many equivalent definitions. We adopt one of them as the “official” definition,
and all the rest are shown to be equivalent in Section 3.

Definition 2.3.

— CC is the class of relations computed by an AC0-uniform family of polynomial size annotated
comparator circuits.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:7

b • • • 0

x H x′

y H • H y ′

b H 1

Fig. 3: Conditional comparator gadget

0 • 0 • 0 • 0 1 • y • x ∧ y • 0

x x H x x x x H x ∨ y x ∨ y

y H y • y H y y H 1 • 0 H x ∧ y

1 1 H 1 1 0 0 H 1 1

Fig. 4: Operation of conditional comparator gadget

— CC¬ is the class of relations computed by an AC0-uniform family of polynomial size positively
annotated comparator circuits with negation gates.

— AC0-CCV is the class of relations AC0-many-one reducible to CCV.
— NL-CCV is the class of relations NL-many-one reducible to CCV.
— (AC0)CCV is the class of relations AC0-Turing reducible to CCV.

3. UNIVERSAL COMPARATOR CIRCUITS
An annotated comparator circuit UNIVm,n is universal if it can simulate any comparator circuit
with at most m wires and n gates, as precisely stated in the following theorem. Here we present
the first known (polynomial size) construction of such a universal comparator circuit family. For
simplicity, our universal circuit only simulates unannotated comparator circuits, but the idea
extends to cover annotated comparator circuits as well.

THEOREM 3.1. There is an AC0-uniform family of annotated comparator circuits UNIVm,n
which satisfy the following property: for any comparator circuit C having at most m wires and n
gates, the designated output wire of UNIVm,n fed with inputs C ,Y equals the 0th output wire of C
fed with input Y .

PROOF. The key idea is a gadget consisting of a comparator circuit with four wires and four gates
which allows a conditional application of a comparator gate to two of its inputs x, y , depending on
whether a control bit b is 0 or 1. The other two inputs are b and b (see Fig. 3). The gate is applied
only when b = 1 (see Fig. 4).

In order to simulate a single arbitrary gate in a circuit with m wires we put in m(m −1) gadgets
in a row, for the m(m−1) possible gates. Simulating n gates requires m(m−1)n gadgets. The bits of
C are the control bits for the gadgets. The resulting circuit can be constructed in an AC0-uniform
fashion.

As a consequence, we can identify the classes CC and AC0-CCV.

LEMMA 3.2. The two complexity classes CC and AC0-CCV are identical.

PROOF. We start with the easy direction CC ⊆ AC0-CCV. Suppose R is a relation computed
by AC0-uniform polynomial size annotated comparator circuits Cm . Given an input X of length
m, we can construct in uniform AC0 the circuit Cm and replace each input annotation with the
corresponding constant, bit of X or its negation. The value of R is computed by applying CCV to
this data.

We proceed to show that AC0-CCV ⊆ CC. Our first observation is that every AC0 circuit can
be converted to a polynomial size formula, and so to a comparator circuit. Every relation R in

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Stephen A. Cook et al.

R(X)

Compute F (X) UNIVmk ,nk

¬X (k −1)

¬X (k −1)

¬X (0)

¬X (0)

X (k −1)

X (k −1)

X (0)

X (0)

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 5: The construction of a comparator circuit for any relation R ∈ AC0-CCV for a fixed input
length k.

AC0-CCV is given by a uniform AC0 reduction F , such that R(X) = 1 if and only if CCV(F (X)) = 1.
Suppose that the circuit computed by F (X) on an input of size k has mk wires and nk comparator
gates. We construct an annotated comparator circuit computing R(X) by first computing F (X)
and then feeding the result into UNIVmk ,nk (see Fig. 5). The resulting circuit is AC0-uniform.

The preceding construction replaces an arbitrary AC0 function F with a corresponding com-
parator circuit. By allowing stronger functions F , we get additional characterizations of CC. In
particular, Feder [Subramanian 1990] showed that NL⊆ CC, and this allows us to replace AC0-
many-one reductions with NL-many-one reductions. For the sake of completeness, we first
reproduce a simple proof that NL⊆CC taken from [Lê et al. 2011].

THEOREM 3.3 (FEDER [SUBRAMANIAN 1990]). NL⊆CC.

PROOF. Each instance of the REACHABILITY problem consists of a directed acyclic graph G =
(V ,E), where V = {u0, . . . ,un−1}, and we want to decide if there is a path from u0 to un−1. It is
well-known that REACHABILITY is NL-complete. Since a directed graph can be converted by an
AC0 function into a layered graph with an equivalent reachability problem, it suffices to give a
comparator circuit construction that solves instances of REACHABILITY satisfying the following
assumption:

The graph G only has directed edges of the form (ui ,u j), where i < j . (3.1)

The following construction from [Lê et al. 2011] for showing that NL⊆CC is simpler than the
one in [Subramanian 1990; Mayr and Subramanian 1992]. Moreover, it reduces REACHABILITY to
CCV directly without going through some intermediate complete problem, and this was stated
as an open problem in [Subramanian 1990, Chapter 7.8.1]. The idea is to perform a depth-first
search of the nodes reachable from the source node by successively introducing n pebbles into
the source, and sending each pebble along the lexicographically last pebbled path until it reaches
an unpebbled node, where it remains. After n iterations, all nodes reachable from the source are
pebbled, and we can check whether the target is one of them.

We will demonstrate the construction through a simple example, where we have the directed
graph in Fig. 6 satisfying the assumption (3.1). We will build a comparator circuit as in Fig. 7,

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:9

where the wires ν0, . . . ,ν4 represent the vertices u0, . . . ,u4 of the preceding graph and the wires
ι0, . . . , ι4 are used to feed 1-bits into the wire ν0, and from there to the other wires νi reachable
from ν0. We let every wire ιi take input 1 and every wire νi take input 0.

We next show how to construct the gadget contained in each box. For a graph with n vertices
(n = 5 in our example), the kth gadget is constructed as follows:

1: Introduce a comparator gate from wire ιk to wire ν0
2: for i = 0, . . . ,n −1 do
3: for j = i +1, . . . ,n −1 do
4: Introduce a comparator gate from νi to ν j if (ui ,u j) ∈ E , or a dummy gate on νi otherwise.
5: end for
6: end for

Note that the gadgets are identical except for the first comparator gate.
We only use the loop structure to clarify the order the gates are added. The construction can

easily be done in AC0 since the position of each gate can be calculated exactly, and thus all gates
can be added independently from one another. Note that for a graph with n vertices, we have at
most n vertices reachable from a single vertex, and thus we need n gadgets as described above. In
our example, there are at most 5 wires reachable from wire ν0, and thus we utilize the gadget 5
times.

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

Fig. 7: A comparator circuit that solves REACHABILITY. (The dummy gates are omitted.)

The successive gadgets in the boxes each introduce a ‘pebble’ (i.e. a 1 bit) which ends up at the
next node in the depth-first search (i.e. its wire will now carry 1) and is thus excluded from the
search of the gadgets that follow. For example, the gadget from the left-most dashed box in Fig. 7
will move a value 1 from wire ι0 to wire ν0 and from wire ν0 to wire ν1. This essentially “marks”
the wire ν1 since we cannot move this value 1 away from ν1, and thus ν1 can no longer receive
any new incoming 1. Hence, the gadget from the second box in Fig. 7 will repeat the process of
finding the lex-first maximal path from v0 to the remaining (unmarked) vertices. These searches
end when all vertices reachable from v0 are marked.

An immediate corollary of NL⊆CC is the equivalence of the complexity classes AC0-CCV and
NL-CCV.

LEMMA 3.4. The two complexity classes AC0-CCV and NL-CCV are identical.

PROOF. It is clear that AC0-CCV ⊆ NL-CCV. For the other direction, let R ∈ NL-CCV be com-
puted as R(X) = CCV(F (X)), where F ∈NL. Theorem 3.3 shows that F ∈CC. We can therefore use
the construction of Lemma 3.2.

Another characterization is via AC0-Turing reductions. We require a preliminary lemma corre-
sponding to de Morgan’s laws.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Stephen A. Cook et al.

LEMMA 3.5. Given an annotated comparator circuit C computing a function F (X), we can
construct an annotated comparator circuit C ′ computing the function ¬F (X) with the same number
of wires and comparator gates. Furthermore, C ′ can be constructed from C in AC0.

PROOF. The idea is to push negations to the bottom using de Morgan’s laws. Given C , construct
C ′ by negating all inputs (switch 0 and 1, xi and ¬xi) and flipping all comparator gates: replace
each gate (i , j) with a gate (j , i) which has the same inputs but the reversed outputs. An easy
induction shows that C ′(X) =¬C (X).

LEMMA 3.6. The two complexity classes AC0-CCV and (AC0)CCV are identical.

PROOF. It is clear that AC0-CCV ⊆ (AC0)CCV. For the other direction, let R ∈ (AC0)CCV be com-
puted by a uniform AC0 family of circuits Ck with CCV oracle gates. The basic idea is to replace
each oracle gate with the corresponding universal comparator circuit (Theorem 3.1). However,
a universal comparator circuit expects each of its inputs to appear polynomially many times,
some of them negated. We will handle this by duplicating the corresponding portion of the con-
structed circuit enough times, using Lemma 3.5 to handle negations. The resulting circuit will be
polynomial size since Ck has constant depth.

We proceed with the details. For each gate g in the circuit Ck , we define a transformation T (g)
mapping it to an annotated comparator circuit computing the same function, as follows. If g = xi
then T (g) is a circuit with one wire annotated xi . If g = ¬g1 then T (g) is obtained from T (g1)
via Lemma 3.5. If g = g1 ∨·· ·∨ g` or g = g1 ∧·· ·∧ g` then T (g) is obtained by constructing fresh
copies of T (g1), . . . ,T (g`) and joining them with `−1 comparator gates. If g is an oracle gate with
inputs g1, . . . , g` then we take the universal comparator circuit from Theorem 3.1 and replace each
input bit by the corresponding copy of T (gi) or of its negation obtained via Lemma 3.5.

If r is the root gate of Ck then it is clear that T (r) is an annotated comparator circuit computing
the same function as Ck . It remains to estimate the size of T (r), and for that it is enough to
count the number of comparator gates |T (r)|. Suppose that Ck has n gates and depth d , where
n is polynomial in k and d is constant. For 0 ≤ ∆ ≤ d , we compute a bound B∆ on |T (g)| for a
gate g at depth d −∆. If d = 0 then |T (g)| = 0, and so we can take B0 = 0. For d = ∆+1 6= 0, the
costliest case is when g is an oracle gate. Suppose the inputs to g are g1, . . . , g` of depth at least
d −∆; note that `≤ n. We construct T (g) by taking `O(1) copies of T (gi) and appending to them
a comparator circuit of size `O(1). Therefore |T (g)| ≤ `O(1)(B∆+1) and so B∆+1 ≤ nO(1)(B∆+1).
Solving the recurrence, we deduce Bd ≤ nO(d) and so |T (r)| ≤ Bd is at most polynomial in k (since
n = kO(1) and d =O(1)).

To complete the proof, we observe that T (r) can be computed in AC0, and so (AC0)CCV ⊆CC=
AC0-CCV (using Lemma 3.2).

Finally, we show that the same class is obtained if we allow negation gates, using a reduction
outlined in Section 5.4.

LEMMA 3.7. The two complexity classes CC and CC¬ are identical.

PROOF. Recall that CC consists of relations computed by uniform annotated comparator
circuits, while CC¬ consists of relations computed by uniform positively annotated comparator
circuits with negation gates. It is easy to see that CC ⊆ CC¬: every negated input ¬xi can be
replaced by the corresponding positive input followed by a negation gate. For the other direction,
Section 5.4 shows how to simulate a comparator circuit with negation gates using a standard
comparator circuit.

In summary we have shown that all complexity classes listed at the end of Section 2.4 are
identical.

THEOREM 3.8. All complexity classes CC,CC¬,AC0-CCV,NL-CCV, (AC0)CCV are identical.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:11

Subramanian [1990] originally defined CC as the class of relations log-space reducible to CCV.
Theorem 3.8 shows that this class is identical to the one we consider in the present paper.

Our methods can also be used to show that the function class FCC corresponding to CC is
closed under composition. A function F mapping strings of length k to strings of polynomial
length `(k) is in FCC if the the bit graph relation BF (i , X) ↔ F (X)(i) is in CC.

THEOREM 3.9. The class FCC is closed under composition.

PROOF. Suppose that the bit graphs BF ,BG ∈FCC are given by uniform positively annotated
comparator circuits with negation gates. We describe how to compute BF◦G using uniform posi-
tively annotated comparator circuits with negation gates, where (F ◦G)(X) = F (G(X)). For a given
input length k, let `(k) be the length of G(X) for X of length k, and consider the circuit for BF (i ,Y)
for inputs Y of length `(k). Prepend to each input wire annotated Y (j) a copy of the circuit for
BG (j , X) (for inputs of length k) in which the first parameter is hard coded to be j . The result is a
uniform positively annotated comparator circuit with negation gates computing BF◦G (i , X).

Theorem 3.8 implies that CC is the class of all relations computed by L-uniform positively
annotated comparator circuits with negation gates. This characterization corresponds to the
following Turing machine model.

THEOREM 3.10. Every relation in CC is computable by a Turing machine of the following type.
The machine has three tapes: a work tape with one head W , an input tape with one head I , and
a ‘comparator’ tape with two heads M1, M2. The work tape is initalized by the size of the input n
encoded in binary, and is limited to O(logn) cells. The input tape is initialized with the input, and
the comparator tape is initially blank. Additionally, the machine has a state q out of a finite set of
states Q, and starts at some starting state s ∈Q.

At each step, the machine reads the contents of the work tape at the position of W , and depending
upon the contents and the current state q, it changes the current state q, writes a symbol on the
work tape at the position of W , optionally moves each of the heads W, I , M1, M2 one step to the left
or one step to the right (separately for each head), and optionally performs one of the following
instructions:

— Write a blank cell M1 (or M2) with 0 (or 1).
— Copy the value at cell I to a blank cell M1 (or M2).
— Negate the value at cell M1 (or M2).
— “Sort” the values at cells M1 and M2.
— Output the value at cell M1 (or M2), and halt the machine.

Conversely, every relation computed by such a machine is in CC.

PROOF. For every relation R ∈ CC there is a log-space machine T that on input n outputs a
positively annotated comparator circuit with negation gates computing R on inputs of length n.
We can convert T to a machine T ′ of the type described in the theorem by thinking of each cell of
the comparator tape as one wire in the circuit. We replace each annotation by the second or third
special operation and each gate by one of the following two special operations. The final special
operation is used to single out the distinguished output wire.

For the other direction, given a machine T ′ of the type described we can construct a log-space
machine T which on input n outputs a suitable annotated comparator circuit for inputs of length
n as follows: T on input n runs T ′ with its work tape initiated to n in binary, and uses the control
signals to the input and comparator tapes to describe the circuit.

This machine model is resilient under the following changes: allowing more heads on each
of the tapes, allowing the second or third special operations to write over a non-blank cell, and
adding other operations such as swapping the values of two cells in the comparator tape. We leave
the proof to the reader.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Stephen A. Cook et al.

4. ORACLE SEPARATIONS
Here we support our conjecture that the complexity classes NC and CC are incomparable by
defining and separating relativized versions of the classes. (See Section 1 for a discussion of the
conjecture.) Problems in relativized CC are computed by comparator circuits which are allowed to
have oracle gates, as well as comparator gates and ¬ gates. (We allow ¬ gates to make our results
more general. Note that ¬ gates can be eliminated from nonrelativized comparator circuits, as
explained in Section 5.4.) Each oracle gate computes some function G : {0,1}n → {0,1}n for some
n. We can insert such an oracle gate anywhere in an oracle comparator circuit with m wires, as
long as m ≥ n, by selecting a level in the circuit, selecting any n wires and using them as inputs to
the gate (so each gate input gets one of the n distinct wires), and then the n outputs feed to some
set of n distinct output wires. Note that this definition preserves the limited fan-out property of
comparator circuits: each output of a gate is connected to at most one input of one other gate.

We are interested in oracles α : {0,1}∗ → {0,1}∗ which are length-preserving, so |α(Y)| = |Y |. We
use the notation αn to refer to the restriction of α to {0,1}n . We define the relativized complexity
class CC(α) based on the circuit-family characterization of CC¬ given in Definition 2.3. Thus a
relation R(X ,α) is in CC(α) iff it is computed by a polynomial size family of annotated comparator
circuits which are allowed comparator gates, ¬-gates, and αn oracle gates, where n = |X |. We
consider both a uniform version (in which each circuit family satisfies a uniformity condition)
and a nonuniform version of CC(α).

Analogous to the above, we define the relativized class NCk (α) to be the class of relations
R(X ,α) computed by some family of depth O(logk n) polynomial size Boolean circuits with ∧,
∨, ¬, and αn-gates (where n = |X |) in which ∧-gates and ∨-gates have fan-in at most two, and
oracle gates are nested at most O(logk−1 n) levels deep1. As above, we consider both uniform and
non-uniform versions of these classes. Also NC(α) =⋃

k NC
k (α).

As observed earlier, flipping one input of a comparator gate flips exactly one output. We can
generalize this notion to oracles α as follows.

Definition 4.1. A partial function α : {0,1}∗* {0,1}∗ which is length-preserving on its domain
is (weakly) 1-Lipschitz if for all strings X , X ′ in the domain of α, if |X | = |X ′| and X and X ′ have
Hamming distance 1, then α(X) and α(X ′) have Hamming distance at most 1.

A partial function α : {0,1}∗ * {0,1}∗ which is length-preserving on its domain is strictly 1-
Lipschitz if for all strings X , X ′ in the domain of α, if |X | = |X ′| and X and X ′ have Hamming
distance 1, then α(X) and α(X ′) have Hamming distance exactly 1.

Subramanian [1990] uses a slightly different terminology: (strictly) adjacency-preserving for
(strictly) 1-Lipschitz.

Since comparator gates compute strictly 1-Lipschitz functions, it may seem reasonable to
restrict comparator oracle circuits to strictly 1-Lipschitz oracles α. Our separation results below
hold whether or not we make this restriction.

Roughly speaking, we wish to prove CC(α) 6⊆NC(α) and NC3(α) 6⊆CC(α). More precisely, we
have the following result.

THEOREM 4.2.

(i) There is a relation R1(α) which is computed by some uniform polynomial size family of compara-
tor oracle circuits, but which cannot be computed by any NC(α) circuit family (uniform or not),
even when the oracle α is restricted to be strictly 1-Lipschitz.

1Cook [1985] defines the depth of an oracle gate of fan-in m to be logm. Our definition follows the one by Aehlig at
al. [2007], and has the advantage that it preserves classical results like NC1(α) ⊆L(α). The class NC(α) is the same under
both definitions.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:13

(ii) There is a relation R2(α) which is computed by some uniform NC3(α) circuit family which cannot
be computed by any polynomial size family of comparator oracle circuits (uniform or not), even
when the oracle α is restricted to be strictly 1-Lipschitz.

The proof of Theorem 4.2(ii) only uses the fact that comparator gates are 1-Lipschitz, and
therefore the lower bound also applies to the more general class APC considered by Subrama-
nian [1990] in which comparator gates are replaced by arbitrary 1-Lipschitz gates. Conversely, the
comparator circuit in the proof of Theorem 4.2(i) uses only oracle gates, and so the relation R1(α)
belongs to any circuit class whose depth is unrestricted.

The restriction to strictly 1-Lipschitz oracles might seem severe. However the following lemma
shows how to extend every 1-Lipschitz function to a strictly 1-Lipschitz function. As a result, it
is enough to prove a relaxed version of Theorem 4.2 where the oracles are restricted to be only
(weakly) 1-Lipschitz.

LEMMA 4.3. Suppose f is a 1-Lipschitz function. Define g (X) by adding a ‘parity bit’ in front of
f (X) as follows:

g (X) = [
parity(X)⊕parity(f (X))

]
f (X).

Then g is strictly 1-Lipschitz.

PROOF. Suppose d(X ,Y) = 1. Clearly d(g (X), g (Y)) ≤ 2. On the other hand, parity(g (X)) =
parity(X), and hence d(g (X), g (Y)) is odd. We conclude that d(g (X), g (Y)) = 1.

Given a relation S(β) which separates two relativized complexity classes even when the oracle β
is restricted to 1-Lipschitz functions, define a new relation R(α) = S(chop(α)), where chop(α)n(X)
results from αn+1(0X) by chopping off the leading bit. Given an oracle β which is 1-Lipschitz,
define a new oracle α by

αn+1(bX) = [
parity(bX)⊕parity(βn(X))

]
βn(X).

Lemma 4.3 shows that α is strictly 1-Lipschitz. Notice that R(α) = S(β). Hence R(α) separates
the two relativized complexity classes even when the oracle α is restricted to strictly 1-Lipschitz
functions.

Henceforth we will prove the relaxed version of Theorem 4.2 in which the oracles are only
restricted to be (weakly) 1-Lipschitz.

4.1. Proof that CC(α) is not contained in NC(α)

4.1.1. Proof without restricting the oracles to be 1-Lipschitz. It turns out that item (i) of Theo-
rem 4.2 is easy to prove if we require the NC(α) circuit family to work on all length-preserving
oracles α, and not just 1-Lipschitz oracles. This is a consequence of the next proposition, which
follows from the proof of [Aehlig et al. 2007, Theorem 14], and states that the `th iteration of an
oracle requires a circuit with oracle nesting depth ` to compute.

Definition 4.4. The nesting depth of an oracle gate G in an oracle circuit is the maximum
number of oracle gates (counting G) on any path in the circuit from an input (to the circuit) to G .

PROPOSITION 4.5. Let d ,n > 0 and let C (α) be a circuit with any number of Boolean gates but
with fewer than 2n αn-gates such that the nesting depth of any αn-gate is at most d. If the circuit
correctly computes the first bit of α`n (the `th iteration of αn), and this is true for all oracles αn , then
`≤ d.

The proof of Proposition 4.5 appears below. We apply the proposition with d = n, and conclude
that the first bit of αn

n cannot be computed in NC(α). But αn
n obviously can be computed in CC(α)

by placing n oracle gates αn in series. This proves item (i) of Theorem 4.2 without the 1-Lipschitz
restriction.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Stephen A. Cook et al.

For the proof of Proposition 4.5 we use the following definition and lemma from [Aehlig et al.
2007].

Definition 4.6. A partial function f : {0,1}n * {0,1}n is called `-sequential if (abbreviating 0n

by 0)

0, f (0), f 2(0), . . . , f `(0)

are all defined, but f `(0) 6∈ dom(f).

Note that in Definition 4.6 it is necessarily the case that 0, f (0), f 2(0), . . . , f `(0) are distinct.

LEMMA 4.7. Let n ∈ N and f : {0,1}n * {0,1}n be an `-sequential partial function. Let M ⊂
{0,1}n be such that |dom(f)∪M | < 2n . Then there is an (`+1)-sequential extension f ′ ⊇ f with
dom(f ′) = dom(f)∪M.

PROOF. Let Y ∈ {0,1}n \
(
M ∪dom(f)

)
. Such a Y exists by our assumption on the cardinality of

M ∪dom(f). Let f ′ be f extended by setting f ′(x) = Y for all X ∈ M \ dom(f). This f ′ is as desired.
Indeed, assume that 0, f ′(0), . . . , f ′`+1(0), f ′`+2(0) are all defined. Then, since Y 6∈ dom(f ′), it

follows that all the 0, f ′(0), . . . , f ′`+1(0) have to be different from Y . Hence these values have
already been defined in f . But this contradicts the assumption that f was `-sequential.

PROOF OF PROPOSITION 4.5. We use f to stand for the oracle function αn . Assume that such
a circuit computes f `(0) correctly for all oracles. We have to find a setting for the oracle that
witnesses `≤ d .

By induction on k ≥ 0 we define partial functions fk : {0,1}n * {0,1}n with the following proper-
ties.

— f0 ⊆ f1 ⊆ f2 ⊆ . . .
— The size |dom(fk)| of the domain of fk is at most the number of oracle gates of nesting depth k

or less.
— fk determines the values of all oracle gates of nesting depth k or less.
— fk is k-sequential.

We can take f0 to be the totally undefined function, since f 0(0) = 0 by definition, so f0 is 0-
sequential. For the induction step let M be the set of all strings Y of length n such that Y is
queried by an oracle gate at level k. Let fk+1 be a k+1-sequential extension of fk to domain
dom(fk)∪M according to Lemma 4.7.

For k = d we get the desired bound. As fd already determines the values of all gates, the output
of the circuit is already determined, but f d+1(0) is still undefined and we can define it in such a
way that it differs from the first bit of the output of the circuit.

4.1.2. Proof for 1-Lipschitz oracles. Using very similar ideas, we proceed to prove item (i) of
Theorem 4.2 as stated. The idea is to change the problem slightly by using a different function for
each iteration, say fT for the T th iteration. We “pack” these functions into one single function f
by letting the first part of the input encode T , and the second part encode the actual input. We call
the functions fT slice functions. We are now faced with two problems: first, we need each function
fT to be 1-Lipschitz; and second, we need the composite function f to be 1-Lipschitz. We handle
the two problems separately.

Maintaining the 1-Lipschitz property for the slice functions. Let XT be the input to the T th
iteration of f . Following the proof of Theorem 4.5, at stage T of the construction we will maintain
the invariant that XT is known but fT (XT) is undetermined. The idea is to pick fT (XT) to be
simultaneously of low Hamming weight and far away from all other points already determined for
fT+1. The quantitative meaning of low and far away will be chosen so that such a point always
exists. Since XT itself is simultaneously of low Hamming weight and far away from all points
already determined for fT , we can complete fT to a 1-Lipschitz function.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:15

Maintaining the 1-Lipschitz property for the composite function. Recall that the slice functions
fT are packed into a single composite function f , in which the first part of the input encodes T ,
and the second encodes the input to fT . In order to separate the different slices from each other,
we encode T by repeating each bit many times. This allows us to complete the definition of f to a
1-Lipschitz function whenever all the slice functions are 1-Lipschitz.

We proceed with the formal details.

Notation. We use T to stand for both a bit string and the number it represents in binary. The i th
bit of T is bit(T, i); the least significant bit (lsb) is bit 1. For a bit b, b(m times) is the bit b repeated
m times. The Hamming weight of a string X is ‖X ‖. The Hamming distance between X and Y is
d(X ,Y) = ‖X ⊕Y ‖. The length of X is |X |.

Definition 4.8. Let n = 2`, and define m = 2n +1. Given f : {0,1}m`+n → {0,1}n , define the
slice functions

fT (X) = f
(
bit(T,1)(m times) . . .bit (T,`)(m times) X

)
, where |T | = ` and |X | = n.

Define the iterations

X0 = 0(n times), XT+1 = fT (XT).

Finally, define

F = bit
(

Xbpnc,1
)

.

LEMMA 4.9. The function F = F (f) can be computed using a uniform family of comparator
circuits of size polynomial in n which use f as an oracle.2

PROOF. For given n, the comparator circuits consists of bpnc oracle gates connected in se-
quence. The T th oracle gate has additional constant inputs bit(T,1)(m times) . . .bit (T,`)(m times).
The output wire is the first bit of the output of the bpnc’th oracle gate.

If f ignores its first m` input bits then F is the first bit of of the
p

n-th iteration of f , and hence
by Proposition 4.5 any subexponential size circuit computing F requires depth

p
n. In the rest of

this section we will show that even if f is assumed to be 1-Lipschitz, F cannot be computed by any
circuit with only polynomially many oracle gates which are nested only polylogarithmically deep.

The first step is to reduce the problem of constructing a 1-Lipschitz f to the problem of
constructing 1-Lipschitz f0, . . . , fn−1.

Definition 4.10. Let f be a function as in Definition 4.8. Let R1 . . .R`X be an input to f , where
|Ri | = m, |X | = n. Suppose Ri contains zi zeroes and oi ones. Define ti = 0 if zi > oi and ti = 1 if
zi < oi (one of these must happen since m is odd). Let xi = min(zi ,oi) and x = maxi xi . The values
t1, . . . , t` define a string T . We say that R1 . . .R`X belongs to the blob B(T, X), and is at distance
x from the center string t (m times)

1 . . . t (m times)
`

X . Thus the blobs form a partition of the domain

{0,1}m`+n of f .
We say that f is blob-like if for all R1, . . . ,R`, X , with T as defined above,

f (R1 . . .R`X) = fT (X)∧ (
0(x times)1(n−x times)). (4.1)

(Here we use bitwise ∧.) In words, the value of f at a point R which is at distance x from the center
of some blob B is equal to the value of f at the center of the blob, with the first x bits set to zero.

We say that f is a blob-like partial function if it is a partial function whose domain is a union of
blobs, and inside each blob it satisfies (4.1).

Note that the values at centers of blobs are unconstrained by (4.1) because then x = 0.

2We can pad the output of f with m` zeros so that f has the same number of outputs as inputs.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Stephen A. Cook et al.

LEMMA 4.11. If f is blob-like and fT is 1-Lipschitz for all 0 ≤ T < n then f is 1-Lipschitz.

PROOF. Let R1 . . .R`, X be an input to f . We argue that if we change a bit in the input, then at
most one bit changes in the output. If we change a bit of X , then this follows from the 1-Lipschitz
property of the corresponding fT . If we change a bit of Ri without changing T , then we change x
by at most 1, and so at most one bit of the output is affected. Finally, if we change a bit of Ri and
this does change T , then we must have had (without loss of generality) zi = n,oi = n +1, and we
changed a 1 to 0 to make zi = n +1,oi = n. In both inputs, x = n, and so the output is 0 in both
cases.

The second step is to find a way to construct 1-Lipschitz functions from {0,1}n to itself, given a
small number of constraints.

LEMMA 4.12. Suppose g : {0,1}n → {0,1}n is a partial function, and g (P) = 0 for all P ∈ dom(g).
Let X be a point of Hamming distance at least d from any point in dom(g). Then for every Y of
Hamming weight at most d, we can extend g to a 1-Lipschitz total function satisfying g (X) = Y .

PROOF. Given X ,Y , define h(Z) to be Y with the first min(d(Z , X),‖Y ‖) ones changed to zeros.
We have h(X) = Y since d(X , X) = 0. For P ∈ dom(g), d(P, X) ≥ d implies h(P) = 0, using ‖Y ‖ ≤ d .
Therefore h extends g . On the other hand, h is 1-Lipschitz since changing a bit of the input Z can
change d(Z , X) by at most 1, and so at most one bit of the output is affected.

Finally, we need a technical lemma about the volume of Hamming balls.

Definition 4.13. Let n,d be given. Then V (n,d) is the number of points in {0,1}n of Hamming
weight at most d , that is

V (n,d) = ∑
k≤d

(
n

k

)
.

LEMMA 4.14. For d ≥ 0, V (n,d +1)/V (n,d) ≤ n +1.

PROOF. Each point in V (n,d +1) is either already a point of V (n,d), or it can be obtained by
taking a point of V (n,d) and changing one bit from 0 to 1. Conversely, for each point of V (n,d), a
bit can be changed from 0 to 1 in at most n different ways.

COROLLARY 4.15. If V (n,d) ≥ r ≥ 1 then there exists d ′ ≥ 0 such that

r ≤ V (n,d)

V (n,d ′)
< (n +1)r.

PROOF. Let d ′ be the maximum number satisfying r ≤ V (n,d)/V (n,d ′). Since r ≤ V (n,d) =
V (n,d)/V (n,0), such a number exists. On the other hand,

V (n,d)

V (n,d ′)
≤ (n +1)

V (n,d)

V (n,d ′+1)
< (n +1)r.

We are now ready to prove the main lower bound, which implies item (i) of Theorem 4.2.

THEOREM 4.16. Let a > 0 be given. For large enough n, every circuit C (f) with at most na

oracle gates, nested less than
p

n deep, fails to compute F for some 1-Lipschitz function f .

PROOF. Put Tmax = bpnc−1. Let d0, . . . ,dTmax be a sequence of positive integers satisfying

V (n,dT)

V (n,dT+1 −1)
> na , 0 ≤ T < Tmax. (4.2)

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:17

Such numbers exist whenever 2n ≥ (n +1)Tmax(a+1), which holds when n is large enough. Indeed,
we will construct such a sequence inductively using Corollary 4.15, keeping the invariant

V (n,dT) ≥ 2n

(n +1)T (a+1)
.

For the base case, d0 = n certainly satisfies the invariant. Given dT , use Corollary 4.15 with d = dT
and r = (n +1)a . Since V (n,dT) ≥ 2n/(n +1)T (a+1) ≥ (n +1)a+1 for large n, the corollary supplies
us with d ′ satisfying

(n +1)a ≤ V (n,dT)

V (n,d ′)
< (n +1)a+1.

Let dT+1 = d ′+1. This certainly satisfies condition (4.2), and the invariant is satisfied since

V (n,dT+1) >V (n,d ′) > V (n,dT)

(n +1)a+1 ≥ 2n

(n +1)(T+1)(a+1)
.

We will define the function f in Tmax stages, similar to the proof of Proposition 4.5, except
we use the notation f (k) instead of fk . At every stage the function f (k) will be a blob-like partial
function which defines the output of every oracle gate in C (f) of nesting depth k or less. The
starting point is f (0), which is the empty function. At stage k we will define the partial function
f (k+1), which extends f (k), keeping the following invariants:

— f (0) ⊆ f (1) ⊆ f (2) ⊆ . . .
— f (k) is a blob-like partial function.
— For T < k, f (k)

T is a total 1-Lipschitz function.

— For T ≥ k, at any point P at which f (k)
T is defined it is equal to 0 and some gate in C (f) of nesting

depth k or less has its input in the blob B(T,P). Hence |dom(f (k)
T)| ≤ na .

— Xk is defined by f (k).
— f (k)

k (Xk) is undefined.

— d(P, Xk) ≥ dk for any P ∈ dom(f (k)
k). (∗)

— f (k) determines that the output of every oracle gate of nesting depth k or less.

It is easy to verify that the empty function f (0) satisfies the invariants. The function f (Tmax) de-
termines the output of the circuit C (f). However, Xbpnc = f (Tmax)

T (XTmax) is undefined. We can

extend f (Tmax) to a 1-Lipschitz function in two different ways: Put fT = 0 for T > Tmax, and let fTmax

be either (1) the constant zero function, or (2) the function which is zero everywhere except for
fTmax (XTmax) = 0(n−1 times)1. Since F is different in these two extensions, the circuit fails to compute
F correctly in one of them.

It remains to show how to define f (k+1) given f (k). Let G be the set of oracle gates of nesting
depth exactly k +1. For any G ∈ G whose input belongs to a blob B(T, X) for T > k, if f (k)

T (X) is

undefined, then define f (k+1) so that it extends f (k) and is 0 on the entire blob B(T, X) (this is a
blob-like assignment). Let A = dom(f (k+1)

k+1); note that |A| ≤ na . Condition (4.2) implies

V (n,dk+1 −1)|A| <V (n,dk),

and so there is a point Y of Hamming weight at most dk which is of distance at least dk+1 from
each point in A. Define f (k+1)

k (Xk) = Y (so Xk+1 = Y), and extend f (k+1)
k to a total 1-Lipschitz

function using Lemma 4.12 with d = dk (use invariant (∗)). Then extend f (k+1) to a blob-like
partial function using (4.1). It is routine to verify that the invariants hold for f (k+1).

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Stephen A. Cook et al.

Remark 4.17.

— A more natural target function is F ′ = bit(Xn ,1). We can easily modify the proof of Theorem 4.16
to handle this function. We set the first n −bpnc functions f (0), . . . , f (n−bpnc−1) to be constant,
and then run the proof from that point on.

— An even more natural target function has an unstructured f as input, and F ′′ = bit
(

f (N)(0),1
)
.

We leave open the question of whether the method can be adapted to work in this case.
— In the paragraph preceding Section 4.1, we have shown how to construct F ′′′ that separates

CC and NC even under the restriction that the oracle be strictly 1-Lipschitz. The function F ′′′
basically ignores one of the outputs of the oracle while iterating it. It is possible to slightly modify
the proof of Theorem 4.16 so that it directly applies to F even under the restriction that the
oracle is strictly 1-Lipschitz.

4.2. Proof that NC(α) is not contained in CC(α)

Here we exploit the 1-Lipschitz property of comparator gates and ¬-gates by using oracles which
are weakly 1-Lipschitz, so that all gates in the relativized circuits have this property. The idea is
to use an oracle α with dn2 inputs (d ≥ 3) but only n useful outputs. We can feed the n useful
outputs back into another instance of α by using dn copies of each output bit. Because of the
1-Lipschitz property it seems as though a comparator circuit computing the mth iteration of α in
this way needs either at least 2Ω(m) copies of α, or alternatively 2n copies of α and a complicated
circuit analyzing the output. When m =Ω(log2 n), this construction requires a super-polynomial
size comparator circuit computing the mth iteration of α. On the other hand, for m =O(log2 n),
the mth iteration can be easily computed in relativized NC3 (following Aehlig et al. [2007], we
require oracle gates to be nested at most O(logk−1 n) deep in relativized NCk).

To make this argument work we initially assume that instead of computing the m-th iteration
of α we compose m different oracles A1, . . . , Am in the way just described. The crucial property of
comparator circuits we use is the flip-path property:

If one input wire is changed, then (given that each gate has the 1-Lipschitz property)
there is a unique path through the circuit tracing the effect of the original flip.

We use a Gray code to order the possible n-bit outputs of the oracle and study the effects of the
2n flip-paths generated as the definition of the oracle is successively changed. Recall that a Gray
code of length n is a list of all n-bit strings ordered so that every two adjacent strings, including
the last and the first, differ by exactly one bit. One such code is given by letting the (xn−1 . . . x0)2’th
string (counting from zero in base 2) be xn−1(xn−1 ⊕xn−2)(xn−2 ⊕xn−3) · · · (x1 ⊕x0); for example,
for n = 3 the code is

000,001,011,010,110,111,101,100.

In detail, Let n,m,d ∈N, with d ≥ 3. For each k ∈ [m] and i ∈ [n], let ak
i : {0,1}dn → {0,1} be a

Boolean oracle with dn input bits. Let Ak = (ak
1 , . . . , ak

n). We define a function y = f [A1, . . . , Am] as
follows:

xk
i = ak

i (

d times︷ ︸︸ ︷
xk+1

1 , . . . , xk+1
1 , . . . ,

d times︷ ︸︸ ︷
xk+1

n , . . . , xk+1
n), k ∈ [m], i ∈ [n], (4.3)

xm+1
i = 0, i ∈ [n], (4.4)

y = x1
1 ⊕·· ·⊕x1

n . (4.5)

As stated the oracle ak
i has dn inputs and just one output, but we can make it fit our convention

that an oracle gate has the same number of outputs as inputs simply by assuming that the gate
has an additional dn −1 outputs which are identically zero.

Note that the function computed by such an oracle is necessarily (weakly) 1-Lipschitz.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:19

Let X k = (xk
1 , . . . , xk

n) and Ak = (ak
1 , . . . , ak

n). Note that an oracle circuit of depth m+O(logn) with
mn gates can compute y simply by successively computing Xm , Xm−1, . . . , X1 and computing the
parity of X1, provided that the circuit is allowed to have gates with fan-out d . However, the fan-out
restriction for comparator circuits allows us to prove the following.

THEOREM 4.18. If n ≥ 3, then every oracle comparator circuit computing y = f [A1, . . . , Am] has
at least

min
(
2n , (d −2)m−1)

gates.

Before proving the theorem, we comment that by setting m = log2 n and d = 4 this almost
proves item (ii) of Theorem 4.2, except we need to argue that the array of oracles ak

i can be
replaced by a single oracle. Later we will show how a simple adaptation of the proof of Theorem
4.18 accomplishes this.

PROOF OF THEOREM 4.18. Fix an oracle comparator circuit C which computes y =
f [A1, . . . , Am].

Definition 4.19. We say that an input (z1, . . . , zdn) to some oracle ak
i in C is regular if it has the

form of the inputs in (4.3); that is if z(a−1)d+b = z(a−1)d+c for all a ∈ [n] and b,c ∈ [d]. We say that
an oracle ak

i is regular if ak
i (Z) = 0 for all irregular inputs Z .

Note that any irregular oracle ak
i can be replaced by an equivalent regular oracle which does

not affect (4.3).

Definition 4.20. Let g be the total number of any of the gates ak
i in the circuit C . For a given

assignment to the oracles, a particular gate ak
i is active in C if its input is as specified by (4.3,4.4).

Let gk be the expected total number of active gates ak
1 , . . . , ak

n in C under a uniformly random
regular setting of all oracles.

It is easy to see that

g1 ≥ n, (4.6)

since we need at least one active gate a1
i for each i ∈ [n].

Let k ∈ [m] be greater than 1. We will show that

gk−1 ≤
g

2n + gk

d −2
. (4.7)

We use the following consequence of the (weakly) 1-Lipschitz property of all gates in the circuit:
If we change the definition of some copy of some gate ak

i at its input in the circuit C , this generates
a unique flip-path which may end at some copy of some other gate, in which case we say that the
latter gate consumes the flip-path. (The flip-path is a path in the circuit such that the Boolean
value of each edge in the path is negated.)

Let G1, . . . ,G2n be a Gray code listing all strings in {0,1}n , where G1 = 0n . Thus the Hamming
distance between any two successive strings Gi and Gi+1, and between G2n and G1, is one. Take a
random regular setting of all the oracles, and let Z1 be the value of Xk under this setting. Shift the
above Gray code to form a new one Z1, . . . , Z2n by setting Zt =Gt ⊕Z1. Then for each t ∈ [2n], Zt

is uniformly distributed and independent of X` for ` 6= k. Thus if we change the output of Ak at
its active input to Zt , the result is again a uniformly random regular oracle setting. Let γt be the
number of active Ak gates (i.e. any active gate of the form ak

i for some i) after this change, and

let δt be the number of active Ak−1 gates after the change. Taking expectations we have for each
t ∈ [2n]

E(γt) = gk , E(δt) = gk−1. (4.8)

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Stephen A. Cook et al.

We will change the output of Ak (at its active input) successively from Z1 to Z2n , and consider
the relationship between γt and δt . The total number of flip paths generated during the process is

2n−1∑
t=1

γt .

Each time an Ak−1 gate is rendered active for the first time, we will call the gate fresh. Otherwise, it
is reused. At time t , let δ′t (δ′′t) be the number of fresh (reused) Ak−1 gates. Thus δ′′1 = 0, and

δt = δ′t +δ′′t (4.9)

Since a given gate can be fresh at most once, we have

2n∑
t=1

δ′t ≤ g (4.10)

Each time an ak−1
i gate is reused it has consumed at least d −2 flip-paths since the last time it

was active. This is because at least d consecutive inputs must be changed from all 0’s to all 1’s
(or vice versa), and since the gate is regular, its output will be constantly 0 during at least d −2
consecutive changes.

Since there must be at least as many flip-paths generated as consumed, we have

(d −2)
2n∑

t=1
δ′′t ≤

2n∑
t=1

γt . (4.11)

From (4.9), (4.10), (4.11) we have

2n∑
t=1

δt ≤ g + 1

d −2

2n∑
t=1

γt . (4.12)

Now (4.7) follows from (4.12) and (4.8) by linearity of expectations.
Hence either g > 2n or

gk ≥ (d −2)[gk−1 −1].

From this and (4.6) we have a recurrence whose solution shows

g t ≥ (d −2)t−1n − (d −2)t − (d −2)

d −3
.

If n ≥ 3 then gm ≥ (d −2)m−1, and Theorem 4.18 follows.

Now we change the setting in Theorem 4.18 so that it applies to a single oracle. The new oracle
a(k, i , x) is used in the same way as ak

i (x). The first two arguments can be encoded in binary or
unary, and we don’t care what happens when they are not "legal" (we don’t require the output
to be 0 unless the x argument is illegal). Define active ak

i gates as gates whose inputs are (k, i , x),
where x is the relevant active input. We argue as before, and again conclude that if n ≥ 3 then
gm ≥ (d −2)m−1. Hence Theorem 4.18 follows in the single oracle setting, and Theorem 4.2 (ii)
follows as explained right after the statement of Theorem 4.18.

4.3. SC vs CC

Uniform SCk is the class of problems decidable by Turing machines running in polynomial time
using O(logk n) space. Non-uniform SCk is the class of problems solvable by circuits of polynomial
size and O(logk n) width. Just as NC and CC appear to be incomparable, it seems plausible that
SC and CC are incomparable. For one direction, NL is a subclass of both CC and NC, but is

conjectured not to be a subclass of SC (Savitch’s algorithm takes 2O(log2) time). For the other
direction we can give a convincing oracle separation as follows.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:21

w0 w1 w2

v0 v1 v2 v3

Fig. 8: The thick edges form the lfm-matching of the above bipartite graph.

We apply Theorem 4.18 to a problem with a padded input of length N , and set the ‘real’ input
n = log2 N , and also m = log2 N and d = 4. The theorem implies that every comparator circuit
solving F has size at least

2min(m−1,n) = 2log2 N ,

which is superpolynomial. Thus this padded problem is not in relativized CC.
However, a Turing machine M equipped with an oracle tape which can query 4log2 N bits

of each oracle ak
i can compute this padded version of F in linear time and O(n) = O(log2 N)

space, so this problem is in relativized SC2. The machine M proceeds by successively computing
Xm , Xm−1, . . . , X1, writing each of these Xi on its work tape and then erasing the previous one. The
machine computes X k from X k+1 bit by bit, making a query of size 4log2 N to its query tape for
each bit. (We assume that M can access its oracle in such a way that it can determine N , and
hence m and n.)

5. LEXICOGRAPHICALLY FIRST MAXIMAL MATCHING PROBLEMS ARE CC-COMPLETE
Let G = (V ,W,E) be a bipartite graph, where V = {vi }m−1

i=0 , W = {wi }n−1
i=0 and E ⊆V ×W . We require

that |V | = |W | for convenience in proving that the stable marriage problem is CC-complete in
Section 6, although the reductions in this section work even without this assumption. The lexi-
cographically first maximal matching (lfm-matching) is the matching produced by successively
matching each vertex v0, . . . , vm−1 to the least vertex available in W (see Fig. 8 for an example). We
refer to V as the set of bottom nodes and W as the set of top nodes.

In this section we will show that two decision problems concerning the lfm-matching of a
bipartite graph are CC-complete under AC0 many-one reductions. The lfm-matching problem
(LFMM) is to decide if a designated edge belongs to the lfm-matching of a bipartite graph G . The
vertex version of lfm-matching problem (VLFMM) is to decide if a designated top node is matched
in the lfm-matching of a bipartite graph G . LFMM is the usual way to define a decision problem for
lfm-matching as seen in [Mayr and Subramanian 1992; Subramanian 1994]; however, as shown in
Sections 5.1 and 5.2, the VLFMM problem is even more closely related to the CCV problem.

We will show that the following two more restricted lfm-matching problems are also CC-
complete. We define 3LFMM (3VLFMM) to be the restriction of LFMM (VLFMM) to bipartite graphs
of degree at most three.

To show that the problems defined above are equivalent under AC0 many-one reductions, it
turns out that we also need the following intermediate problem. A negation gate flips the value on
a wire. For comparator circuits with negation gates, we allow negation gates to appear on any wire
(see the left diagram of Fig. 13 below for an example). The comparator circuit value problem with
negation gates (CCV¬) is: given a comparator circuit with negation gates and input assignment,
and a designated wire, decide if that wire outputs 1.

All reductions in this section are summarized in Fig. 9.

5.1. CCV ≤AC0

m 3VLFMM

By Proposition 2.2 it suffices to consider only instances of CCV in which all comparator gates point
upward. We will show that these instances of CCV are AC0 many-one reducible to instances of
3VLFMM, which consist of bipartite graphs with degree at most three.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Stephen A. Cook et al.

VLFMM

CCV

3VLFMM

CCV¬

LFMM

3LFMM

§5.2 §5.1

§5.3

§5.5

§5.4

Fig. 9: The label of an arrow denotes the section in which the reduction is described. Arrows
without labels denote trivial reductions. All six problems are CC-complete.

The key observation is that a comparator gate on the left below closely relates to an instance of
3VLFMM on the right. We use the top nodes p0 and q0 to represent the values p0 and q0 carried by
the wires x and y respectively before the comparator gate, and the nodes p1 and q1 to represent
the values of x and y after the comparator gate, where a top node is matched iff its respective
value is one.

p0 x N p1 = p0 ∨q0

q0 y • q1 = p0 ∧q0

p0 q0 p1 q1

x y

If nodes p0 and q0 have not been previously matched, i.e. p0 = q0 = 0 in the comparator circuit,
then the edges 〈x, p0〉 and 〈y, q0〉 are added to the lfm-matching. So the nodes p1 and q1 are not
matched. If p0 has been previously matched, but q0 has not, then edges 〈x, p1〉 and 〈y, q0〉 are
added to the lfm-matching. So the node p1 will be matched but q1 will remain unmatched. The
other two cases are similar.

Thus, we can reduce a comparator circuit to the bipartite graph of a 3VLFMM instance by
converting each comparator gate into the “gadget” described above. We will describe our method
through an example, where we are given the comparator circuit in Fig. 10.

u0

u2

u1

u3

u4

Fig. 6

0 a N 1
1 b • N 1
1 c • 0

0 1 2
Fig. 10

We divide the comparator circuit into vertical layers 0, 1, 2 as
shown in Fig. 10. Since the circuit has three wires a, b, c, for each
layer i , we use six nodes, including three top nodes ai , bi and
ci representing the values of the wires a, b, c respectively, and
three bottom nodes a′

i , b′
i , c ′i , which are auxiliary nodes used to

simulate the effect of the comparator gate at layer i .
Layer 0: This is the input layer, so we add an edge {xi , x ′

i } iff the

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:23

wire x takes input value 1. In this example, since b and c are wires taking input 1, we need to add
the edges {b0,b′

0} and {c0,c ′0}.

a0 b0 c0

a′
0 b′

0 c ′0

a1 b1 c1

a′
1 b′

1 c ′1

a2 b2 c2

a′
2 b′

2 c ′2

Layer 1: We then add the gadget simulating the comparator gate from wire b to wire a as follows.
(The dashed edges are regular edges which are dashed only for emphasizing their different
function in the construction.)

a0 b0 c0

a′
0 b′

0 c ′0

a1 b1 c1

a′
1 b′

1 c ′1

a2 b2 c2

a′
2 b′

2 c ′2

Since the value of wire c does not change when going from layer 0 to layer 1, we can simply
propagate the value of c0 to c1 using the pair of dashed edges in the picture.
Layer 2: We proceed very similarly to layer 1 to get the following bipartite graph.

a0 b0 c0

a′
0 b′

0 c ′0

a1 b1 c1

a′
1 b′

1 c ′1

a2 b2 c2

a′
2 b′

2 c ′2

Finally, we can get the output values of the comparator circuit by looking at the “output” nodes
a2,b2,c2 of this bipartite graph. We can easily check that a2 is the only node that remains un-
matched, which corresponds exactly to the only zero produced by wire a of the comparator circuit
in Fig. 10.

It remains to argue that the construction above is an AC0 many-one reduction. We observe that
each gate in the comparator circuit can be independently reduced to exactly one gadget in the
bipartite graph that simulates the effect of the comparator gate; furthermore, the position of each
gadget can be easily calculated from the position of each gate in the comparator circuit using very
simple arithmetic.

5.2. VLFMM ≤AC0

m CCV

Consider the instance of VLFMM consisting of the bipartite graph in Fig. 11. Recall that we find
the lfm-matching by matching the bottom nodes x, y, z successively to the first available node
on the top. Hence we can simulate the matching of the bottom nodes to the top nodes using the
comparator circuit on the right of Fig. 11, where we can think of the moving of a 1, say from wire x
to wire a, as the matching of node x to node a in the original bipartite graph. In this construction,
a top node is matched iff its corresponding wire in the circuit outputs 1.

a b c d

x y z

0 a N N 1
0 b N N 1
0 c N N 1
0 d N 0
1 x • • • • 0
1 y • • • • 0
1 z • • • • 0

Fig. 11

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Stephen A. Cook et al.

Note that we draw bullets without any arrows going out from them in the circuit to denote
dummy gates, which do nothing. These dummy gates are introduced for the following technical
reason. Since the bottom nodes might not have the same degree, the position of a comparator gate
really depends on the structure of the graph, which makes it harder to give a direct AC0 reduction.
By using dummy gates, we can treat the graph as if it is a complete bipartite graph, the missing
edges represented by dummy gates. This can easily be shown to be an AC0 reduction from VLFMM

to CCV. Together with the reduction from Section 5.1, we get the following theorem.

THEOREM 5.1. The problems CCV, 3VLFMM and VLFMM are equivalent under AC0 many-one
reductions.

5.3. CCV ≤AC0

m 3LFMM

We start by applying the reduction CCV ≤AC0

m 3VLFMM of Section 5.1 to get an instance of 3VLFMM,
and notice that the degrees of the top “output” nodes of the resulting bipartite graph, e.g. the
nodes a2,b2,c2 in the example of Section 5.1, have degree at most two. Now we show how to
reduce such instances of 3VLFMM (i.e. those whose designated top vertices have degree at most
two) to 3LFMM. Consider the graph G with degree at most three and a designated top vertex
b of degree two as shown on the left of Fig. 12. We extend it to a bipartite graph G ′ by adding
an additional top node wt and an additional bottom node wb , alongside two edges {b, wb} and
{wt , wb}, as shown in Fig. 12. Observe that the degree of the new graph G ′ is at most three.

a b c

x y z

a b c wt

x y z wb

Fig. 12

We treat the resulting bipartite graph G ′ and the edge {wt , wb} as an instance of 3LFMM. It is
not hard to see that the vertex b is matched in the lfm-matching of the original bipartite graph G
iff the edge {wt , wb} is in the lfm-matching of the new bipartite graph G ′.

5.4. CCV¬≤AC0

m CCV

Recall that a comparator circuit value problem with negation gates (CCV¬) is the task of deciding,
given a comparator circuit with negation gates and an input assignment, whether a designated
wire outputs one. It should be clear that CCV is a special case of CCV¬ and hence AC0 many-one

reducible to CCV¬. Here, we show the nontrivial direction that CCV¬ ≤AC0

m CCV. Our proof is
based on Subramanian’s idea from [Subramanian 1994].

0 x N 1
1 y • N 1

1 z • ¬ 1

0 x N 1
1 x̄ • 0
1 y • N 1

0 ȳ H • 0

1 z • • N 1
0 z̄ H • N 0
0 t H • 0

Fig. 13: Successive gates on the left circuit correspond to successive boxes of gates on the right
circuit.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:25

The reduction is based on “double-rail” logic, which can be traced to Goldschlager’s proof of the
P-completeness of the monotone circuit value problem [Goldschlager 1977]. Given an instance of
CCV¬ consisting of a comparator circuit with negation gates C with its input I and a designated
wire s, we construct an instance of CCV consisting of a comparator circuit C ′ with its input I ′ and
a designated wire s′ as follows. For every wire w in I we put in two corresponding wires, w and
w , in C ′. We define the input I ′ of C ′ such that the input value of w is the negation of the input
value of w . We want to fix things so that the value carried by the wire w at each layer is always the
negation of the value carried by w . For any comparator gate 〈y, x〉 in C we put in C ′ the gate 〈y, x〉
followed by the gate 〈x, y〉. It is easy to check using De Morgan’s laws that the wires x and y in C ′
carry the corresponding values of x and y in C , and the wires x and y in C ′ carry the negations of
the wires x and y in C .

The circuit C ′ has one extra wire t with input value 0 to help in translating negation gates. For
each negation gate on a wire, says z in the example from Fig. 13, we add three comparator gates
〈z, t〉, 〈z, z〉, 〈t , z〉 as shown in the right circuit of Fig. 13. Thus t as a temporary “container” that
we use to swap the values carried by the wires z and z. Note that the swapping of values of z and z
in C ′ simulates the effect of a negation in C . Also note that after the swap takes place, the value of
t is restored to 0. (The more straightforward solution of simply switching the wires z and z does
not result in an AC0 many-one reduction.)

Finally note that the output value of the designated wire s in C is 1 iff the output value of the
corresponding wire s in C ′ with input I ′ is 1. Thus we set the designated wire s′ in I ′ to be s.

5.5. LFMM ≤AC0

m CCV¬
Consider an instance of LFMM consisting of the bipartite graph on the left of Fig. 14, and a
designated edge {y,c}. Without loss of generality, we can safely ignore all top vertices occurring
after c, all bottom vertices occurring after y , and all the edges associated with them, since they
are not going to affect the outcome of the instance. Using the construction from Section 5.2, we
can simulate the matching of the bottom nodes to the top nodes using the comparator circuit in
the upper box on the right of Fig. 14.

a b c

x y

0 a N N 1
0 b N 0
0 c N N 1
1 x • • • 0
1 y • • • 0
0 a′ N N 1
0 b′ N 0

0 c ′ ¬ • 1

1 x′ • • • 0

1 y ′ • • 1

Fig. 14

We keep another running copy of this simulation on the bottom (see the wires labelled
a′,b′,c ′, x ′, y ′ in Fig. 14). The only difference is that the comparator gate 〈y ′,c ′〉 corresponding to
the designated edge {y,c} is not added. Finally, we add a negation gate on c ′ and a comparator
gate 〈c ′,c〉. We let the desired output of the CCV instance be the output of c, since c outputs 1 iff
the edge {y,c} is added to the lfm-matching. It is not hard to generalize this construction to an
arbitrary bipartite graph and designated edge.

Combined with the constructions from Sections 5.1 and 5.2, we have the following corollary.

COROLLARY 5.2. The problems CCV, 3VLFMM, VLFMM, CCV¬, 3LFMM and LFMM are equiva-
lent under AC0 many-one reductions.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Stephen A. Cook et al.

6. THE SM PROBLEM IS CC-COMPLETE
An instance of the stable marriage problem (SM), proposed by Gale and Shapley [1962] in the
context of college admissions, is given by a number n (specifying the number of men and the
number of women), together with a preference list for each man and each woman specifying a
total ordering on all people of the opposite sex. The goal of SM is to produce a perfect matching
between men and women, i.e., a bijection from the set of men to the set of women, such that the
following stability condition is satisfied: there are no two people of opposite sex who like each
other more than their current partners. Such a stable solution always exists, but it may not be
unique. Thus, SM is a search problem rather than a decision problem.

However there is always a unique man-optimal and a unique woman-optimal solution. In the
man-optimal solution each man is matched with a woman whom he likes at least as well as any
woman that he is matched with in any stable solution. Dually for the woman-optimal solution.
Thus we define the man-optimal stable marriage decision problem (MOSM) as follows: given an
instance of the stable marriage problem together with a designated man-woman pair, determine
whether that pair is married in the man-optimal stable marriage. We define the woman-optimal
stable marriage decision problem (WOSM) analogously.

We show here that the search version and the decision versions are computationally equivalent,
and each is complete for CC. Section 6.1 shows how to reduce the lexicographically first maximal
matching problem (which is complete for CC) to the SM search problem, and Section 6.3 shows
how to reduce both the MOSM and WOSM problems to CCV, using Subramanian’s algorithm [Sub-
ramanian 1990; Subramanian 1994].

6.1. 3LFMM is AC0 many-one reducible to SM, MOSM and WOSM

We start by showing that 3LFMM is AC0 many-one reducible to SM when we regard both 3LFMM

and SM as search problems. (Of course the lfm-matching is the unique solution to 3LFMM formu-
lated as a search problem, but it is still a total search problem.) Our treatment follows [Cook et al.
2011].

THEOREM 6.1. 3LFMM is AC0 many-one reducible to SM, MOSM and WOSM.

PROOF. Let G = (V ,W,E) be a bipartite graph from an instance of 3LFMM, where V is the set of
bottom nodes, W is the set of top nodes, and E is the edge relation such that the degree of each
node is at most three (see the example in the figure on the left below). Without loss of generality,
we can assume that |V | = |W | = n. To reduce it to an instance of SM, we double the number of
nodes in each partition, where the new nodes are enumerated after the original nodes and the
original nodes are enumerated using the ordering of the original bipartite graph, as shown in the
diagram on the right below. We also let the bottom nodes and top nodes represent the men and
women, respectively.

w0

m0

w1

m1

w2

m2

w3

m3

w4

m4

w5

m5

It remains to define a preference list for each person in this SM instance. The preference list of
each man mi , who represents a bottom node in the original graph, starts with all the women w j
(at most three of them) adjacent to mi in the order that these women are enumerated, followed
by all the women wn , . . . , w2n−1; the list ends with all women w j not adjacent to mi also in
the order that they are enumerated. For example, the preference list of m2 in our example is
w2, w3, w4, w5, w0, w1. The preference list of each newly introduced man mn+i simply consists of
w0, . . . , wn−1, wn , . . . , w2n−1, i.e., in the order that the top nodes are listed. Preference lists for the
women are defined dually.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:27

We defined the preference lists so that there is a unique stable marriage corresponding to the
lfm-matching of G in the following way: for each i < n, if mi is matched with w j then mi must
marry w j in any stable marriage, and if mi is unmatched then he must marry the first available
woman in wn , . . . , w2n−1; a dummy man mi for i ≥ n must marry the first available woman in
w0, . . . , w2n−1. We proceed to prove this fact by induction on i .

Suppose first that i < n and that mi is matched with w j in the lfm-matching. The induction
hypothesis shows that all neighbors of mi preceding w j in G must be married to some men
preceding mi in G , and so mi cannot be married to a woman preceding w j in his preference order.
Similarly, the induction hypothesis shows that all neighbors of w j preceding mi in G must be
married to some women preceding w j in G , and so w j cannot be married to a man preceding mi
in her preference order. Therefore the marriage can only be stable if mi is married to w j .

Suppose next that i < n and that mi is unmatched in the lfm-matching. The induction hypoth-
esis shows that all neighbors of mi must be married to some men preceding mi in G , and so mi
must be married either to some dummy woman wt (where t ≥ n) or to some real woman wt
(where t < n) who doesn’t neighbor him in G . The induction hypothesis prescribes that some of
the dummy women be married to some real men. Let wt (where t ≥ n) be the first dummy woman
which is not married to any man preceding mi in G ; there must be such a woman since at most
i −1 < n dummy women can be married to men preceding mi in G . By definition, wt cannot be
married to any man preceding mi in G , and so to any man preceding mi in her preference order.
Similarly, mi cannot be married to any woman preceding wt in his preference order. Therefore
the marriage can only be stable if mi is married to wt .

Finally, suppose that i ≥ n. The induction hypothesis postulates certain marriages. Let wt be
the first among w0, . . . , w2n−1 which is not prescribed in this way. Since the induction hypothesis
prescribes who m1, . . . ,mi−1 are married to, we see that wt cannot be married to any man preced-
ing mi in her preference order (we need to consider separately the two cases t < n and t ≥ n). A
similar fact is true for mi by the definition of wt , and so in any stable marriage, mi is married to
wt .

We conclude that the construction gives us a many-one reduction from 3LFMM to SM as search
problems. Moreover, the reduction can be done in AC0 since the degree of each node is at most
three (without this restriction, the reduction requires counting beyond the power of AC0). Since
the stable marriage is unique, the construction also shows that the decision version of 3LFMM is
AC0 many-one reducible to either of the decision problems MOSM and WOSM.

6.2. THREE-VALUED CCV is CC-complete
In the remainder of the section, we will be occupied with developing an algorithm due to Subra-
manian [1990; 1994] that finds a stable marriage using comparator circuits, thus furnishing an
AC0 reduction from SM to CCV. To this end, it turns out to be conceptually simpler to go through
a new variant of CCV, where the wires are three-valued instead of Boolean. This variant already
appears in Subramanian [1990], and our treatment follows [Cook et al. 2011].

We define the THREE-VALUED CCV problem similarly to CCV, i.e., we want to decide, on a given
input assignment, if a designated wire of a comparator circuit outputs one. The only difference is
that each wire can now take either value 0, 1 or ∗, where a wire takes value ∗ when its value is not
known to be 0 or 1. The output values of the comparator gate on two input values p and q will be
defined as follows.

p ∧q =


0 if p = 0 or q = 0

1 if p = q = 1

∗ otherwise.

p ∨q =


0 if p = q = 0

1 if p = 1 or q = 1

∗ otherwise.

Clearly every instance of CCV is also an instance of THREE-VALUED CCV. We will show that every
instance of THREE-VALUED CCV is AC0 many-one reducible to an instance of CCV by using a pair

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Stephen A. Cook et al.

of Boolean wires to represent each three-valued wire and adding comparator gates appropriately
to simulate three-valued comparator gates.

THEOREM 6.2 (SUBRAMANIAN [1990]). THREE-VALUED CCV and CCV are equivalent under
AC0 many-one reductions.

PROOF. Since each instance of CCV is a special case of THREE-VALUED CCV, it only remains
to show that every instance of THREE-VALUED CCV is AC0 many-one reducible to an instance of
CCV.

First, we will describe a gadget built from standard comparator gates that simulates a three-
valued comparator gate as follows. Each wire of an instance of THREE-VALUED CCV will be rep-
resented by a pair of wires in an instance of CCV. Each three-valued comparator gate on the left
below, where p, q, p ∧q, p ∨q ∈ {0,1,∗}, can be simulated by a gadget consisting of two standard
comparator gates on the right below.

p x • p ∧q
q y H p ∨q

p1 x1 • p1 ∧q1

p2 x2 • p2 ∧q2

q1 y1 H p1 ∨q1

q2 y2 H p2 ∨q2

The wires x and y are represented using the two pairs of wires 〈x1, x2〉 and 〈y1, y2〉, and three
possible values 0, 1 and ∗ will be encoded by 〈0,0〉, 〈1,1〉, and 〈0,1〉 respectively. The fact that our
gadget correctly simulates the three-valued comparator gate is shown in the following table.

p q 〈p1, p2〉 〈q1, q2〉 p ∧q p ∨q 〈p1 ∧q1, p2 ∧q2〉 〈p1 ∨q1, p2 ∨q2〉
0 0 〈0,0〉 〈0,0〉 0 0 〈0,0〉 〈0,0〉
0 1 〈0,0〉 〈1,1〉 0 1 〈0,0〉 〈1,1〉
0 ∗ 〈0,0〉 〈0,1〉 0 ∗ 〈0,0〉 〈0,1〉
1 0 〈1,1〉 〈0,0〉 0 1 〈0,0〉 〈1,1〉
1 1 〈1,1〉 〈1,1〉 1 1 〈1,1〉 〈1,1〉
1 ∗ 〈1,1〉 〈0,1〉 ∗ 1 〈0,1〉 〈1,1〉
∗ 0 〈0,1〉 〈0,0〉 0 ∗ 〈0,0〉 〈0,1〉
∗ 1 〈0,1〉 〈1,1〉 ∗ 1 〈0,1〉 〈1,1〉
∗ ∗ 〈0,1〉 〈0,1〉 ∗ ∗ 〈0,1〉 〈0,1〉

Using this gadget, we can reduce an instance of THREE-VALUED CCV to an instance of CCV

by doubling the number of wires, and replacing every three-valued comparator gate of the
THREE-VALUED CCV instance with a gadget with two standard comparator gates simulating it.

The above construction shows how to reduce the question of whether a designated wire outputs
1 for a given instance of THREE-VALUED CCV to the question of whether a pair of wires of an
instance of CCV output 〈1,1〉. However for an instance of CCV we are only allowed to decide
whether a single designated wire outputs 1. This technical difficulty can be easily overcome since
we can use an ∧-gate (one of the two outputs of a comparator gate) to test whether a pair of wires
outputs 〈1,1〉, and output the result on a single designated wire.

Subramanian [1990, §6.2.6] generalizes the construction of Theorem 6.2 to 1-Lipschitz gates
which are uniparous: if the input to a gate contains at most one non-star, then the output contains
at most one non-star.

6.3. Algorithms for solving stable marriage problems
In this section, we develop a reduction from SM to CCV due to Subramanian [1990; 1994], and later
extended to a more general class of problems by Feder [1992; 1995]. Subramanian did not reduce
SM to CCV directly, but to the network stability problem built from the less standard X gate, which
takes two inputs p and q and produces two outputs p ′ = p ∧¬q and q ′ =¬p ∧q . It is important
to note that the “network” notion in Subramanian’s work denotes a generalization of circuits by

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:29

allowing a connection from the output of a gate to the input of any gate including itself, and thus
a network in his definition might contain cycles. An X-network is a network consisting only of X
gates under the important restriction that each X gate has fan-out exactly one for each output it
computes. The network stability problem for X gates (XNS) is then to decide if an X-network has a
stable configuration, i.e., a way to assign Boolean values to the wires of the network so that the
values are compatible with all the X gates of the network. Subramanian showed in his dissertation
[Subramanian 1990] that SM, XNS and CCV are all equivalent under log space reductions.

We do not work with XNS in this paper since networks are less intuitive and do not have a nice
graphical representation as comparator circuits. By utilizing Subramanian’s idea, we give a direct
AC0 reduction from SM to CCV, using the three-valued variant of CCV developed in Section 6.2.

We will describe a sequence of algorithms, starting with Gale and Shapley’s algorithm, which
is historically the first algorithm solving the stable marriage problem, and ending with Subra-
manian’s algorithm. All algorithms other than the Gale–Shapley algorithm and Subramanian’s
algorithm were invented specifically for the sake of this work.

6.3.1. Notation. Let M denote the set of men, and W denote the set of women; both are of size
n. The preference list for a person p is given by

π1(p) Âp π2(p) Âp · · · Âp πn(p) Âp ⊥.

The last place on the list is taken by the placeholder ⊥ which represents p being unmatched, a
situation less preferable than being matched. If p is a man then π1(p), . . . ,πn(p) are women, and
vice versa.

The preference relation Âp is defined by πi (p) Âp π j (p) whenever i < j ; we say that p prefers
πi (p) over π j (p). For a set of women W0 and a man m, the woman m prefers the most is maxm W0;
if W0 is empty, then maxm W0 =⊥. Let S be a set, then we write q Âp S to denote that p prefers q
to any person in S; similarly, q ≺p S denotes that p prefers any person in S to q .

A marriage P is a set of pairs (m, w) which forms a perfect matching between the set of men
and the set of women. In a marriage P , we let P (p) denote the person p is married. A marriage is
stable if there is no unstable pair (m, w), which is a pair satisfying w Âm P (m) and m Âw P (w),
i.e.m and w prefer each other more than their current partner.

6.3.2. Gale–Shapley algorithm. Gale and Shapley’s algorithm [Gale and Shapley 1962] proceeds
in rounds. In the first round, each man proposes to his top woman among the ones he hasn’t
proposed, and each woman selects her most preferred suitor. In each subsequent round, each
rejected man proposes to his next choice, and each woman selects her most preferred suitor
(including her choice from the previous round). The situation eventually stabilizes, resulting in
the man-optimal stable marriage.

There are many ways to implement the algorithm. One of them is illustrated below in Algo-
rithm 1. The crucial object is the graph G , which is a set of possible matches. Each round, each
man m selects the top woman top(m) currently available to him. Among all men who chose her
(if any), each woman w selects the best suitor best(w). Whenever any man m is rejected by his
top woman w , we remove the possible match (m, w) from G .

Algorithm 1 Gale–Shapley algorithm

G ← {(m, w) : m ∈ M , w ∈W }
repeat

top(m) ← maxm{w : (m, w) ∈G} for all m ∈ M
best(w) ← maxw {m : top(m) = w} for all w ∈W
Remove (m, top(m)) from G whenever best(top(m)) 6= m

until G stops changing
return

{
(m, top(m)) : m ∈ M

}

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Stephen A. Cook et al.

LEMMA 6.3. Algorithm 1 returns the man-optimal stable matching, and terminates after at
most n2 rounds.

We present the well-known proof of this lemma in full since the analysis of the other algorithms
parallels the analysis of the Gale–Shapley algorithm.

PROOF. Admissibility: If a pair (m, w) is removed from G , then no stable marriage contains the
pair (m, w). This is proved by induction on the number of pairs removed. A pair (m, w) is removed
when w = top(m) = top(m′) for some other man m′, and m′ Âw m. Suppose for a contradiction
that P is a stable marriage and if P (m) = w . By the induction hypothesis, we know that m′ can
never be married to any woman w ′ such that w ′ Âm′ w since that edge (m′, w ′) was removed
previously. Thus w ºm′ P (m′). But then (m′, w) would be an unstable pair, a contradiction.

Definiteness: For all men m and at all times, top(m) 6= ⊥. For any man m, (m,πn(m)) is never
removed from G , and so top(m) is always well-defined. Indeed, for each w , after each iteration
best(w) is non-decreasing in the preference order of w . So if (m, w) ∉G , best(w) Âw m. On the
other hand, for any two women w and w ′, if best(w),best(w ′) 6= ⊥ then best(w) 6= best(w ′). Thus,
if (m, w) ∉G for all w ∈W , then best is a injective mapping from W into M \ {m}, contradicting
the pigeonhole principle.

Completeness: The output of the algorithm is a marriage. The algorithm ends when
best(top(m)) = m for every m, which implies that best and top are mutually inverse bijections.

Stability: The output of the algorithm is a stable marriage. Suppose (m, w) were an unstable
pair, so at the end of the algorithm, m Âw best(w) and w Âm top(m) (we’re using the fact that top
and best are inverses at the end of the algorithm). However, m Âw best(w) implies top(m) 6= w ,
which implies top(m) Âm w .

Optimality: The output of the algorithm is the man-optimal stable marriage. This is obvious,
since each man gets his best choice among all possible stable marriages.

Runtime: The algorithm terminates in n2 iterations since at most n2 edges can be deleted from
G .

The Gale–Shapley algorithm has one disadvantage: it only computes the man-optimal stable
matching. This is easy to rectify by symmetrizing the algorithm, resulting in Algorithm 2. While in
the original algorithm, only the men propose (select their top choices), and only the women accept
or reject (choose the most promising suitor), in the symmetric algorithm, both sexes participate
in both tasks in parallel. The algorithm returns both the man-optimal and the woman-optimal
stable marriages.

Algorithm 2 Symmetric Gale–Shapley algorithm

G ← {(m, w) : m ∈ M , w ∈W }
repeat

top(m) ← maxm{w : (m, w) ∈G} for all m ∈ M
top(w) ← maxw {m : (m, w) ∈G} for all w ∈W
best(w) ← maxw {m : top(m) = w} for all w ∈W
best(m) ← maxm{w : top(w) = m} for all m ∈ M
Remove (m, top(m)) from G whenever best(top(m)) 6= m
Remove (top(w), w) from G whenever best(top(w)) 6= w

until G stops changing
return

{
(m, top(m)) : m ∈ M

}
and

{
(top(w), w) : w ∈W

}
as the man-optimal and the woman-

optimal stable marriages respectively

LEMMA 6.4. Algorithm 2 returns the man-optimal and woman-optimal stable matchings, and
terminates after at most n2 rounds.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:31

PROOF. The analysis is largely analogous to the analysis of the original algorithm. Every pair
(m, w) removed from G belongs to no stable marriage. Furthermore, since a stable marriage exists,
top(m) and top(w) are always defined after the algorithm finishes. At the end of the algorithm, top
and best are mutually inverse bijections on M ∪W , hence the outputs are marriages. The same
arguments as before show that the marriages returned by the algorithm are man-optimal and
woman-optimal stable marriages respectively. Finally, the algorithm terminates in n2 iterations
since we can only remove at most n2 edges G .

6.3.3. Interval algorithms. At the end of Algorithm 2, for each man m, his partner in the man-
optimal stable marriage is top(m), while his partner in the woman-optimal stable marriage is
best(m). The same holds for women (with the roles of the sexes reversed). This prompts our next
algorithm, Algorithm 3, which explicitly keeps track of an interval J(p) of possible matches for
each person p (these are intervals in the person’s preference order).

At each round, each person p first picks their top choice top(p). Then each person q picks their
top suitor best(q), if any. People over whom best(q) is preferred are removed from J(q). If p was
rejected by his top choice top(p), then top(p) is removed from J (p). These update rules maintain
the contiguous nature of the intervals. The situation eventually stabilizes, and the algorithm
returns the man-optimal and the woman-optimal stable marriages.

Algorithm 3 Interval algorithm

J0(m) ←W for all m ∈ M
J0(w) ← M for all w ∈W
t ← 0
repeat

topt (p) ← maxp Jt (p) for all p ∈ M ∪W
bestt (q) ← maxq {p : q = topt (p)} for all q ∈ M ∪W
Remove p from Jt (q) whenever p ≺q bestt (q), for all p, q of opposite sex
Remove topt (p) from Jt (p) if p 6= bestt (topt (p))
t ← t +1

until Jt+1(p) = Jt (p) for all p ∈ M ∪W
return

{
(m,maxm Jt (m)) : m ∈ M

}
and

{
(maxw Jt (w), w) : w ∈W

}
as the man-optimal and the

woman-optimal stable marriages respectively

LEMMA 6.5. Algorithm 3 returns the man-optimal and woman-optimal stable matchings,
and terminates after at most 2n2 rounds. Furthermore, the man-optimal and woman-optimal
matchings are given by{

(m,max
m

Jt (m)) : m ∈ M
}

and
{
(max

w
Jt (w), w) : w ∈W

}
respectively.

PROOF.
Admissibility: In every stable marriage, every person p is matched to someone from J(p).

This is proved by induction on the number of rounds. A person q can be removed from J(p) for
one of two reasons: either q ≺p best(p), or q = top(p) and p 6= best(q). In the former case, if p
were matched to q , then (p,best(p)) would be an unstable pair, since p = top(best(p)) implies
that best(p) prefers p to any other partner in J(best(p)). In the latter case, if p were matched to
q = top(p), then (q,best(q)) would be an unstable pair, since q prefers best(q) over p by definition,
and best(q) prefers q as in the former case.

The remaining analysis of this algorithm is similar to the analysis of the Gale–Shapley algorithm.
The outputs of the algorithm are marriages, since the algorithm ends when best(top(p)) = p for all
p, hence top and best are inverse bijections. The marriages are stable for the same reason given

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Stephen A. Cook et al.

for the Gale–Shapley algorithm. They are man-optimal and woman-optimal for the same reason.
The number of iterations is at most 2n2 since there are 2n intervals, each of initial length n.

Finally, at the termination of the algorithm, best(q) = maxq J (q). Since top and best are inverses,
this explains the dual formulas for the man-optimal and woman-optimal matchings.

Our next algorithm introduces a new twist. Instead of removing top(p) from J(p) whenever
p 6= best(top(p)), we remove top(p) from J(p) whenever p ∉ J(top(p)) as shown in Algorithm 4.
The idea is that if at some point p 6= best(top(p)), then best(top(p)) Âtop(p) p, so p is removed
from J(top(p)). At the following iteration, top(p) will be removed from J(p) in reciprocity. Thus,
Algorithm 4 emulates Algorithm 3 with a delay of one round. We will later show that the advantage
of this strange rule is the nice representation of the same algorithm in three-valued logic which
can then be transformed to Subramanian’s algorithm, implementable by comparator circuits.

Algorithm 4 Delayed interval algorithm

J0(m) ←W for all m ∈ M
J0(w) ← M for all w ∈W
t ← 0
repeat

topt (p) ← maxp J (p) for all p ∈ M ∪W
bestt (q) ← maxq {p : q = topt (p)} for all q ∈ M ∪W
Remove p from Jt (q) whenever p ≺q bestt (q), for all p, q of opposite sex
Remove topt (p) from Jt (p) if p ∉ Jt (topt (p))
t ← t +1

until Jt+1(p) = Jt (p) for all p ∈ M ∪W
return

{
(m,maxm Jt (m)) : m ∈ M

}
and

{
(maxw Jt (w), w) : w ∈W

}
as the man-optimal and the

woman-optimal stable marriages respectively

LEMMA 6.6. Algorithm 3 returns the man-optimal and woman-optimal stable matchings,
and terminates after at most 2n2 rounds. Furthermore, the man-optimal and woman-optimal
matchings are given by{

(m,max
m

Jt (m)) : m ∈ M
}

and
{
(max

w
Jt (w), w) : w ∈W

}
respectively.

PROOF. Clearly Algorithm 4 is admissible, that is p is matched to someone from J(p) in any
stable matching. Furthermore, at the end of the algorithm, p = best(top(p)). Otherwise, there are
two cases. If p ∈ J(top(p)), then p would be removed from J(top(p)), and the algorithm would
continue. If p ∉ J(top(p)), then top(p) would be removed from J(p), and the algorithm would
continue; note that by definition, at the beginning of the round, top(p) ∈ J (p).

The rest of the proof follows the one for Algorithm 3.

COROLLARY 6.7. The intervals at the end of Algorithm 3 coincide with the intervals at the end
of Algorithm 4.

PROOF. That follows immediately from the two formulas for the output.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:33

The delayed interval algorithm can be implemented using three-valued logic. The key is the
following encoding of the intervals using matrices, which we call the matrix representation.

M (m, w) =


1 if w ºm maxm J (m)

∗ if maxm J (m) Âm w ºm minm J (m)

0 if minm J (m) Âm w

W (w,m) =


0 if m ºw maxw J (w)

∗ if maxw J (w) Âw m ºw minw J (w)

1 if minw J (w) Âw m

In other words, for every man m, the array M (m,π1(m)), . . . ,M (m,πn(m)) has the form

1 · · · 1 ∗ ·· · ∗ 0 · · · 0

where the men whose corresponding values are contained in the box are precisely the men in
J (m).

For every woman w , the array W (w,π1(w)), . . . ,W (w,πn(w)) has the form

0 · · · 0 ∗ ·· · ∗ 1 · · · 1

where the women whose corresponding values are contained in the box are precisely the women
in J (w).

Algorithm 5 is an implementation of Algorithm 4 using three-valued logic. We will show, in a
sequence of steps, that at each point in time, the matrices representing the intervals in Algorithm 4
equal the matrices in Algorithm 5.

Algorithm 5 Delayed interval algorithm, three-valued logic formulation

M0(m, w) =
{

1 if w =π1(m)

∗ otherwise

W0(w,m) =
{

0 if m =π1(w)

∗ otherwise
t ← 0
repeat

Mt+1(m,πi (m)) =
{

1 if i = 1

Mt (m,πi−1(m))∧∧
j≤i−1 Wt (π j (m),m) otherwise

Wt+1(w,πi (w)) =
{

0 if i = 1

Wt (w,πi−1(w))∨∨
j≤i−1 Mt (π j (w), w) otherwise

t ← t +1
until Mt =Mt−1 and Wt =Wt−1
SM ← {

(m, w) : Mt (m, w) = 1 and Wt (w,m) ∈ {0,∗}
}

% man-optimal stable marriage
SW ← {

(m, w) : Wt (w,m) = 0 and Mt (m, w) ∈ {1,∗}
}

% woman-optimal stable marriage
return SM ,SW

First, we show that the matrices properly encode intervals.

LEMMA 6.8. At each time t in the execution of Algorithm 5, and for each man m, the sequence

Mt (m,π1(m)), . . . ,Mt (m,πn(m))

is non-increasing (with respect to the order 1 >∗> 0). Similarly, for each woman w, the sequence

Wt (w,π1(w)), . . . ,Wt (w,πn(w))

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Stephen A. Cook et al.

is non-decreasing

PROOF. The proof is by induction. The claim is clearly true at time t = 0. For the inductive
case, it suffices to analyze M since W can be handled dually. Furthermore, at each iteration, we
“shift” each sequence M (m, ·) one step to the right and add a 1 to the left end to get the following
non-increasing sequence

1,Mt−1(m,π1(m)),Mt−1(m,π2(m)), . . . ,Mt−1(m,πn−1(m))

Then we take a component-wise AND of the above sequence with the non-increasing sequence

1,Wt−1(π1(m),m),
(
Wt−1(π1(m),m)∧Wt−1(π2(m),m)

)
, . . . ,

(
Wt−1(π1(m),m)∧·· ·∧Wt−1(πn−1(m),m)

)
.

It’s not hard to check that the result is also a non-increasing sequence by the properties of three-
valued logic.

Second, we show that the intervals encoded by the matrices can only shrink. This is the same as
saying that whenever an entry gets determined (to a value different from ∗), it remains constant.

LEMMA 6.9. If for some time t, for some man m and some woman w, Mt (m, w) ∈ {0,1}, then
Ms (m, w) =Mt (m, w) for s ≥ t . A similar claim holds for W .

PROOF. We prove the claim by induction on t . Let w =πi (m). If i = 1, then the claim is trivial.
Now suppose i > 1. If Mt (m,πi (m)) = 1, then

Mt−1(m,πi−1(m)) =Wt−1(π1(m),m) = ·· · =Wt−1(πi−1(m),m) = 1.

The induction hypothesis shows that all these elements retain their values in the next iteration
and hence Mt+1(m,πi+1(m)) = 1. If Mt (m,πi (m)) = 0, then at least one of these elements is equal
to zero; this element retains its value in the next iteration by the induction hypothesis; hence
Mt+1(m,πi+1(m)) = 0.

It remains to show that the way that the underlying intervals are updated matches the update
rules of Algorithm 4.

LEMMA 6.10. At each time t, the matrix representation of the intervals in Algorithm 4 is the
same as the matrices Mt ,Wt in the execution of Algorithm 5. Furthermore, both algorithms return
the same marriages.

PROOF. The proof is by induction on t . The base case t = 0 is clear by inspection.
We now compare the update rules in some round t of both algorithms. There are two ways an

interval J(m) can be updated: either a woman is removed from the bottom of the interval, or a
woman is removed from the top of the interval.

In the former case, a woman πi (m) is removed from Jt+1(m) since πi (m) ≺m bestt (m). Suppose
bestt (m) =π j (m), where j < i . Since m = topt (π j (m)), we know that Wt (π j (m),m) = 0, and so

Mt+1(m,πi (m)) =Mt (m,πi−1(m))∧ ∧
j≤i−1

Wt (π j (m),m) = 0. (6.1)

Conversely, suppose Mt+1(m,πi (m)) = 0 while Mt (m,πi (m)) = ∗. Since Mt (m, ·) is non-
increasing, we have Mt (m,πi−1(m)) 6= 0. Thus for Mt+1(m,πi (m)) = 0, we must have
Wt (π j (m),m) = 0 for some j < i . Now suppose m 6= topt (π j (m)), then that equation (6.1) were true
at an earlier time s < t , at which Ms (m,πi (m)) would have become 0. Hence m = topt (π j (m)),
and πi (m) is removed from Jt+1(m).

In the latter case, a woman πi (m) is removed from Jt+1(m) since πi (m) = topt (m) and m ∉
Jt (πi (m)). We claim that m ≺πi (m) J(πi (m)), since otherwise m Âπi (m) J(πi (m)). Thus (m,πi (m))
would be an unstable pair in any marriage produced by the algorithm (m will be matched to a
woman inferior to topt (m) = πi (m), and πi (m) will be matched to a man from J(πi (m)) whom
πi (m) doesn’t like as much as m), and this contradicts that the algorithm produces some stable

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:35

marriage. Hence we have m ≺πi (m) J(πi (m)) and so Wt (πi (m),m) = 1. For j ≤ i −1, the woman
π j (m) must have been removed from J(m) in the past (since women can only be removed from
the top of J(m) one at a time), and at that time W (π j (m),m) = 1 (just as at the current time,
Wt (πi (m),m) = 1); by Lemma 6.9, this value stays 1. Hence

Mt+1(m,πi+1(m)) =Mt (m,πi (m))∧ ∧
j≤i

Wt (π j (m),m) = 1.

Conversely, suppose Mt+1(m,πi+1(m)) = 1 while Mt (m,πi+1(m)) = ∗. Since Mt (m,πi (m)) = 1,
we must have πi (m) = topt (m). Further, Wt (πi (m),m) = 1 shows that m ∉ Jt (πi (m)). Therefore
πi (m) is removed from Jt+1(m).

Finally, we conclude that the two algorithms return the same man-optimal and woman-optimal
stable marriages by Lemma 6.8.

Let us illustrate the workings of Algorithm 5. The following diagram illustrates a
situation in which a man’s interval shrinks from the bottom. The diagram illustrates
Wt (w, ·),Mt (m, ·),Mt+1(m, ·), respectively, where m = topt (w). The two elements in red form
a pair M (m, w),W (w,m).

m
Wt (w, ·) 0 0 ∗ ∗ ∗ ∗ ∗ 1 1

w
Mt (m, ·) 1 1 1 ∗ ∗ ∗ 0 0 0

⇓
Mt+1(m, ·) 1 1 1 ∗ 0 0 0 0 0

The next diagram illustrates a situation in which a man’s interval shrinks from the top. This
time w = topt (m).

m
Wt (w, ·) 0 0 ∗ ∗ ∗ ∗ ∗ 1 1

w
Mt (m, ·) 1 1 1 ∗ ∗ ∗ 0 0 0

⇓
Mt+1(m, ·) 1 1 1 1 ∗ ∗ 0 0 0

6.3.4. Subramanian’s algorithm. Subramanian’s algorithm is very similar to Algorithm 5. The
latter algorithm is not implementable using comparator circuits, since (for example) the value
Wt (π1(m),m) is used in the update rule of

Mt+1(m,π2(m)), . . . ,Mt+1(m,πn(m)).

Subramanian’s algorithm, displayed as Algorithm 6, corrects this issue by retaining only the most
important term in each conjunction and disjunction.

In the analysis of Algorithm 5, we already saw that Subramanian’s update rule works when
an entry of M is set to 1. When Algorithm 5 sets an entry to 0, say Mt+1(m,πi (m)) = 0, it is due
to Wt (π j (m),m) = 0 for some j ≤ i −1. If j = i −1, then Subramanian’s algorithm will also set
Mt+1(m,πi (m)) = 0. Otherwise, Subramanian’s algorithm will set Mt+1(m,π j+1(m)) = 0, and this
zero will propagate, so that Mt+i− j (m,πi (m)) = 0. This shows that in some sense, Subramanian’s
algorithm mimics Algorithm 5. It remains to show that Subramanian’s algorithm computes the
same final M and W as Algorithm 5.

First, we notice that the termination conditions of both algorithms are really the same. For
Subramanian’s algorithm, the conditions are that for i > 1,

M (m,πi (m)) =M (m,πi−1(m))∧W (πi−1(m),m),

W (w,πi (w)) =W (w,πi−1(w))∨M (πi−1(w), w).
(6.2)

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Stephen A. Cook et al.

Algorithm 6 Subramanian’s algorithm

M0(m, w) =
{

1 if w =π1(m)

∗ otherwise

W0(w,m) =
{

0 if m =π1(w)

∗ otherwise
t ← 0
repeat

Mt+1(m,πi (m)) =
{

1 if i = 1

Mt (m,πi−1(m))∧Wt (πi−1(m),m) otherwise

Wt+1(w,πi (w)) =
{

0 if i = 1

Wt (w,πi−1(w))∨Mt (πi−1(w), w) otherwise
t ← t +1

until Mt =Mt−1 and Wt =Wt−1
SM ← {

(m, w) : Mt (m, w) = 1 and Wt (w,m) ∈ {0,∗}
}

% man-optimal stable marriage
SW ← {

(m, w) : Wt (w,m) = 0 and Mt (m, w) ∈ {1,∗}
}

% woman-optimal stable marriage
return SM ,SW

For Algorithm 5, the termination conditions are

M (m,πi (m)) =M (m,πi−1(m))∧ ∧
j≤i−1

W (π j (m),m),

W (w,πi (w)) =W (w,πi−1(w))∨ ∨
j≤i−1

M (π j (w), w).
(6.3)

LEMMA 6.11. The matrices M ,W at the end of Subramanian’s algorithm satisfy the termination
conditions of Algorithm 5, and vice versa. Moreover, these are always matrix representations of
intervals.

PROOF. We observe in both algorithms the update rules guarantee that M (m, ·) is monotone
non-increasing and that W (w, ·) is monotone non-decreasing, which implies

M (πi−1(w), w) = ∨
j≤i−1

M (π j (w), w), W (πi−1(m),m) = ∧
j≤i−1

W (π j (m),m).

Thus, these two termination conditions are equivalent.

We call a pair of matrices (M ,W) a feasible pair if they satisfy the equations in (6.2) or equiva-
lently in (6.3)o, and furthermore M (m,π1(m)) = 1 and W (w,π1(w)) = 0 for all man m and woman
w . The following lemma shows that, in some sense, Subramanian’s algorithm is admissible.

LEMMA 6.12. Let M ,W be the matrices at the end of Subramanian’s algorithm. If M (m, w) =
c 6= ∗ for some m, w, then M ′(m, w) = c for any feasible pair (M ,W). Same for W .

PROOF. The proof is by induction on the time t in which Mt (m, w) is set to c. If t = 0, then the
claim follows from the definition of feasible pair. Otherwise, for some i we have Mt (m,πi (m)) =
Mt−1(m,πi−1(m))∧Wt−1(πi−1(m),m). If c = 1 then Mt−1(m,πi−1(m)) = Wt−1(πi−1(m),m) = 1,
and by induction these entries get the same value in all feasible pairs. The definition of feasible
pair then implies that M ′(m,πi (m)) = 1 in any feasible pair M ′,W ′. The case when c = 0 can be
shown similarly.

The following lemma shows that we can uniquely extract a stable marriage from each 0/1-valued
feasible pair, i.e. both of the matrices in the pair have 0/1 values, and vice versa.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:37

LEMMA 6.13. Suppose (M ,W) is a 0/1-valued feasible pair. If we marry each man m to
minm{w : M (m, w) = 1}, and each woman w to minw {m : W (m, w) = 0}, then the result is a
stable marriage.

Conversely, every stable marriage P can be encoded as a 0/1-valued feasible pair, as follows: For
each man m, we put M (m, w) = 1 if w ºm P (m), and M (m, w) = 0 otherwise. For each woman w,
we put W (w,m) = 0 if m ºw P (w), and W (w,m) = 1 otherwise.

The two mappings are inverses of each other.

PROOF. Feasible pair implies stable marriage. Suppose (M ,W) is a 0/1-valued feasible pair.
We start by showing that the mapping P in the statement of the lemma is indeed a marriage.

We call a person desperate if he or she is married to the last choice in his or her preference list.
If a man m is not desperate then for some 1 ≤ i < n, M (m,πi (m)) = 1 and M (m,πi+1(m)) = 0.

This can only happen if W (πi (m),m) = 0, and furthermore if m Âπi (m) m′, then W (πi (m),m′) = 1
due to M (m,πi (m)) = 1. This shows that whenever a man m is not desperate, m is married to
someone in the marriage P .

If m is desperate and W (πi (m),m) = 0, then m is married as before. Otherwise, no woman
is desperate, and so similarly to the previous argument, it can be shown that every woman w
is married in P . However, the fact that P (w) 6= m for all women w contradicts the pigeonhole
principle. Thus, we conclude that P is a marriage.

It remains to show that P is stable. Suppose that (m, w) were an unstable pair in P . Then
M (m, w) = 1 and W (w,m) = 0, and moreover M (m, w ′) = 1 for some w ′ ≺m w . Yet (6.3) shows
that M (m, w ′) ≤W (w,m), and we reach a contradiction.

Stable marriage implies feasible pair. Suppose m is matched to πk (m). Consider first the case
i ≤ k. Then M (m,πi (m)) = M (m,πi−1(m)) = 1, and we have to show that W (πi−1(m),m) = 1.
If the latter weren’t true then (m,πi−1(m)) would be an unstable pair, since πi−1(m) Âm πi (m)
while W (πi−1(m),m) = 0 implies that πi−1(m) prefers m to every other man which is matched to
her. If i = k +1 then M (m,πi (m)) = 0 and also W (πi−1(m),m) = 0. If i > k then M (m,πi (m)) =
M (m,πi−1(m)) = 0.

The mappings are inverses of each other. It is easy to check directly from the definition that if
we start with a stable marriage P , convert it to a feasible pair (M ,W), and convert it back into a
stable marriage P ′, then P = P ′.

For the other direction, Lemma 6.11 shows that if (M ,W) is a 0/1-valued feasible pair then
for each man m, M (m, ·) consists of a positive number of 1s followed by 0s, and dually for each
woman w , W (w, ·) consists of a positive number of 0s followed by 1s. Thus, given the fact that
our rule of converting (M ,W) to a stable marriage P indeed results in a marriage, it is clear that
converting P back to a feasible pair results in (M ,W).

LEMMA 6.14. Subramanian’s algorithm returns the man-optimal and woman-optimal stable
marriages. Furthermore, the matrices M ,W at the end of Subramanian’s algorithm coincide with
the matrices M ,W at the end of Algorithm 5.

PROOF. The monotonicity of ∧ and ∨ shows that if we replace every ∗ in M ,W with 0, then
the resulting (M ,W) is still a feasible pair; the same holds if we replace every ∗ with 1.

Lemma 6.12 and Lemma 6.13 together imply that the first output is the man-optimal stable
matching, and the second output is the woman-optimal stable matching. Lemma 6.11 shows
that at termination, the matrices M ,W are matrix representations of intervals, hence they must
coincide with the matrices at the end of Algorithm 5.

LEMMA 6.15. Subramanian’s algorithm terminates after at most 2n2 iterations.

PROOF. Since there are 2n2 entries in both matrices, and at each iteration at least one entry
changes from ∗ to 0 or 1, the algorithm terminates after at most 2n2 iterations.

A formal correctness proof of Subramanian’s algorithm can be found in [Lê et al. 2011].

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Stephen A. Cook et al.

6.3.5. MOSM and WOSM are AC0 many-one reducible to CCV. In the remaining section, we will
show that Subramanian’s algorithm can be implemented as a three-valued comparator circuit.

First, since for each man m, the pair of values Mt (m,πi−1(m)) and Wt (πi−1(m),m) is only
used once to compute the two outputs Mt (m,πi−1(m))∧Wt (πi−1(m),m) and Mt (m,πi−1(m))∨
Wt (πi−1(m),m), and then each output is used at most once when updating Mt+1(m,πi (m)) and
Wt+1(m,πi (m)). Thus the whole update rule can be easily implemented using comparator gates.

Second, we know that the algorithm converges within 2n2 iterations to a fixed point. Therefore,
if we run the loop for exactly 2n2 iterations, the result would be the same. Hence, we can build a
comparator circuit to simulate exactly 2n2 iterations of Subramanian’s algorithm.

Finally, we can extract the man-optimal stable matching using a simple comparator circuit
with negation gates. Recall that the logical values 0,∗,1 are represented in reality by pairs of wires
with values (0,0), (0,1), (1,1). In the man-optimal stable matching, a man m is matched to πi (m) if
M (m,πi (m)) = 1 and either i = n or M (m,πi+1(m)) ∈ {0,∗}. In the latter case, if the corresponding
wires are (α,β) and (γ,δ), then the required information can be extracted as α∧β∧¬γ.

THEOREM 6.16. MOSM and WOSM are AC0 many-one reducible to CCV¬.

PROOF. We will show only the reduction from MOSM to CCV¬ since the reduction from WOSM

to CCV¬ works similarly.
Following the above construction, we can define an AC0 function that takes as input an in-

stance of MOSM with preference lists for all the men and women, and produces a three-valued
comparator circuit that implements 2n2 iterations of Subramanian’s algorithm, and then extracts
the man-optimal stable matching.

Corollary 5.2 and Theorems 6.2, 6.1 and 6.16 give us the following corollary.

COROLLARY 6.17. The ten problems MOSM, WOSM, SM, CCV, CCV¬, THREE-VALUED CCV,
3LFMM, LFMM, 3VLFMM and VLFMM are all equivalent under AC0 many-one reductions.

PROOF. Corollary 5.2 and Theorem 6.2 show that CCV, CCV¬, THREE-VALUED CCV, 3LFMM,
LFMM, 3VLFMM and VLFMM are all equivalent under AC0 many-one reductions.

Theorem 6.16 shows that MOSM and WOSM are AC0 many-one reducible to
THREE-VALUED CCV. Theorem 6.1 also shows that 3LFMM is AC0 many-one reducible to
MOSM, WOSM, and SM. Hence, MOSM, WOSM, and SM are equivalent to the above problems
under AC0 many-one reductions.

7. CONCLUSION
Although we have shown that there are problems in relativized NC but not in relativized CC
(uniform or nonuniform), it is quite possible that some of the standard problems in NC2 that
are not known to be in NL might be in (nonuniform) CC . Examples are integer matrix powering
and context free languages (or more generally problems in LogCFL). Of particular interest is
matrix powering over the field GF (2). We cannot show this is in CC, even though we know that
Boolean matrix powering is in CC because NL⊆CC. Another example is the matching problem
for bipartite graphs or general undirected graphs, which is in RNC2 [Karp et al. 1986; Mulmuley
et al. 1987] and hence in nonuniform NC2. It would be interesting to show that some (relativized)
version of any of these problems is, or is not, in (relativized) (nonuniform) CC.

Let SucCC be the class of problems p-reducible to succinct CC (where a description of an
exponential size comparator circuit is given using linear size Boolean circuits). It is easy to show
that SucCC lies between PSPACE and EXPTIME, but we we are unable to show that it is equal to
either class3. We are not aware of other complexity classes which appear to lie properly between
PSPACE and EXPTIME.

3Thanks to Scott Aaronson for pointing this out.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

The complexity of the comparator circuit value problem A:39

We have defined CC in terms of uniform families comparator circuits, analogously to the way
that complexity classes such as uniform ACi and NCi are defined. The latter also have machine
characterizations:NCi is the class of relations computable by alternating Turing machines in space
O(logn) and O(logi n) alternations, and also the class of relations computable by polynomially
many processors in time O(logi n). Similarly,P can be defined either as those relations computable
in polynomial time, or as those relations computable by AC0-uniform polynomial size circuits.
An important open question, appearing already in Subramanian’s thesis [1990], is to come up
with a similar machine model for CC. While we do outline some machine characterization in
Theorem 3.10, the machine model we use is not as natural as the ones for P and NC, and so it is
still an open question to come up with a natural machine model for CC.

We believe that CC deserves more attention, since on the one hand it contains interesting
complete problems, on the other hand the limitation of fanout restriction of comparator gates has
not yet been studied outside this paper. Furthermore, CC provides us another research direction
for separating NL from P by analyzing the limitation of the fanout restriction.

REFERENCES
K. Aehlig, S. Cook, and P. Nguyen. 2007. Relativizing Small Complexity Classes and Their Theories. In Computer Science

Logic, Jacques Duparc and Thomas Henzinger (Eds.). Lecture Notes in Computer Science, Vol. 4646. Springer Berlin /
Heidelberg, 374–388.

R. Anderson and E. Mayr. 1987. Parallelism and greedy algorithms. In Parallel and distributed computing (Advances in
computing research), Vol. 4. JAI Press, 17–38.

David A. Mix Barrington, Neil Immerman, and Howard Straubing. 1990. On uniformity within {NC1}. J. Comput. System
Sci. 41, 3 (1990), 274–306. DOI:http://dx.doi.org/10.1016/0022-0000(90)90022-D

K.E. Batcher. 1968. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint Computer Conference
32. ACM, 307–314.

S. Cook and P. Nguyen. 2010. Logical foundations of proof complexity. Cambridge University Press.

Stephen A. Cook. 1985. A taxonomy of problems with fast parallel algorithms. Information and Control 64, 1-3 (1985), 2–22.
DOI:http://dx.doi.org/10.1016/S0019-9958(85)80041-3

S. A. Cook, D. T. M. Lê, and Y. Ye. 2011. Complexity Classes and Theories for the Comparator Circuit Value Problem. arXiv
abs/1106.4142 (2011).

A. L. Delcher and S. Rao Kosaraju. 1995. An NC Algorithm for Evaluating Monotone Planar Circuits. SIAM J. Comput. 24, 2
(April 1995), 369–375. DOI:http://dx.doi.org/10.1137/S0097539792226278

T. Feder. 1992. A new fixed point approach for stable networks and stable marriages. J. Comput. System Sci. 45, 2 (1992),
233–284.

T. Feder. 1995. Stable Networks and Product Graphs. American Mathematical Society, Boston, MA, USA.

D. Gale and L.S. Shapley. 1962. College admissions and the stability of marriage. The American Mathematical Monthly 69,
1 (1962), 9–15.

Leslie M. Goldschlager. 1977. The monotone and planar circuit value problems are log space complete for P. SIGACT News
9, 2 (July 1977), 25–29. DOI:http://dx.doi.org/10.1145/1008354.1008356

R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. 1995. Limits to parallel computation: P-completeness theory. Oxford University
Press.

R. Greenlaw and S. Kantabutra. 2008. On the parallel complexity of hierarchical clustering and CC-complete problems.
Complexity 14, 2 (2008), 18–28.

R.M. Karp, E. Upfal, and A. Wigderson. 1986. Constructing a perfect matching is in random NC. Combinatorica 6, 1 (1986),
35–48.

Karp, R.M. and Wigderson, A. 1985. A fast parallel algorithm for the maximal independent set problem. J. ACM 32, 4 (1985),
762–773.

D. T. M. Lê, S. A. Cook, and Y. Ye. 2011. A Formal Theory for the Complexity Class Associated with the Stable Marriage
Problem. In Computer Science Logic (CSL’11) - 25th International Workshop/20th Annual Conference of the EACSL
(Leibniz International Proceedings in Informatics (LIPIcs)), Marc Bezem (Ed.), Vol. 12. Dagstuhl, Germany, 381–395.

E.W. Mayr and A. Subramanian. 1992. The complexity of circuit value and network stability. J. Comput. System Sci. 44, 2
(1992), 302–323.

C. Moore and J. Machta. 2000. Internal Diffusion-Limited Aggregation: Parallel Algorithms and Complexity. Journal of
Statistical Physics 99 (2000), 661–690. Issue 3.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1137/S0097539792226278
http://dx.doi.org/10.1145/1008354.1008356

A:40 Stephen A. Cook et al.

K. Mulmuley, U.V. Vazirani, and V.V. Vazirani. 1987. Matching is as easy as matrix inversion. Combinatorica 7, 1 (1987),
105–113.

V. Ramachandran and L.-C. Wang. 1991. Parallel algorithm and complexity results for telephone link simulation. In
Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing. 378 –385.

Vijaya Ramachandran and Honghua Yang. 1996. An Efficient Parallel Algorithm for the General Planar Monotone Circuit
Value Problem. SIAM J. Comput. 25, 2 (Feb. 1996), 312–339. DOI:http://dx.doi.org/10.1137/S0097539793260775

A. Subramanian. 1990. The computational complexity of the circuit value and network stability problems. Ph.D. Dissertation.
Dept. of Computer Science, Stanford University.

A. Subramanian. 1994. A new approach to stable matching problems. SIAM J. Comput. 23, 4 (1994), 671–700.

Honghua Yang. 1991. An NC algorithm for the general planar monotone circuit value problem. In
Parallel and Distributed Processing, 1991. Proceedings of the Third IEEE Symposium on. 196–203.
DOI:http://dx.doi.org/10.1109/SPDP.1991.218279

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1137/S0097539793260775
http://dx.doi.org/10.1109/SPDP.1991.218279

	Introduction
	Our results
	Characterizations of CC
	Oracle separations
	Other results

	Background

	Preliminaries
	Notation
	Function classes and search problems
	Reductions
	Comparator circuits

	Universal comparator circuits
	Oracle separations
	Proof that CC() is not contained in NC()
	Proof without restricting the oracles to be 1-Lipschitz
	Proof for 1-Lipschitz oracles

	Proof that NC() is not contained in CC()
	SC vs CC

	Lexicographically first maximal matching problems are CC-complete
	Ccv is AC0 many-one reducible to 3vLfmm
	vLfmm is AC0 many-one reducible to Ccv
	Ccv is AC0 many-one reducible to 3Lfmm
	Ccv with negation gates is AC0 many-one reducible to Ccv
	Lfmm is AC0 many-one reducible to Ccv with negation gates

	The Sm problem is CC-complete
	 3Lfmm is AC0 many-one reducible to Sm, MoSm and WoSm
	 Three-valued Ccv is CC-complete
	Algorithms for solving stable marriage problems
	Notation
	Gale–Shapley algorithm
	Interval algorithms
	Subramanian's algorithm
	 MoSm and WoSm are AC0 many-one reducible to Ccv

	Conclusion

