New Results for Tree Evaluation

Sui Man Chan James Cook Stephen Cook Phuong Nguyen
Dustin Wehr

December 20, 2010

Work in Progress — Not for Distribution

Contents

3.2.6 __The ‘simple’ (height 2) CASE . 33
3.2.7 _Lower hound for semi-thrifty programs for the simptse . . . . . . . . . 34

5.2 Proof of TheorerﬂS ................................. 38

5.2.1 Proof of Lemm5 .............................. 39
5.3 Second ThEOIEM . . . o o v v o e e e e e 41

1



l6__Thrifty lower bound - alternative proof| 43

h ki ' - 45

1 Leaf Queries

The next two theorems show that fbr> 3, proving a lower bound of2(£¢) on the number of
states for BPs solving TEP fdi}! is essentially equivalent to proving a lower boundXf:c—2) on
the number of states making leaf queries for BPs solving TERfo'.

Theorem 1 For h > 3, any BP withs states solving the TEP fdry can be transformed to a BP
solving the TEP fofl7~" in which the number of states querying leaves is at mgkt. If the
original BP is deterministic, then so is the transformed BP.

Proof: Let B be a BP withs states which solves the TEP fof. Then for some:, »’ € [k] there
are at most/k? states which make queries of the forfy{r, ) for some node at level two (i.e.
the children ofj are leaves). Now we construct a BP with at mosts/k? states querying leaves
which solvesr~*. The idea is thaB’ will simulate B for the case in which, for each level 2 node
4, f; is 1 except possibly fof;(r,7'), and f;(r, ') is the value of the leaf in 7', and further
the children (leaves) of nodehave valuegr, r').

Start by replacing every state &f that queriesf;(r,’) by a state that queries the leafof
T7~1). Now remove every state that queriesf;(a, b) for some level 2 nodg, where(a,b) #
(r,r"), and reroute any edge intoby sending it to the destination of the outedgeydébelled 1.
Finally remove every statewhich queries a leaf df* and replace every edge infdy sending it
to the destination of the outedge-pfabelled either or r’, depending on whether the leaf is a left
child or a right child. |

Theorem 2 For h > 3, any BP which solve®, " with s states which query leaves antsk?)
states altogether can be converted to a BP which sdlfewith O(sk?) states. If the original BP
is deterministic, then so is the transformed BP.

Proof:  Simply replace every leaf query by a subprogram witt?) states which evaluates the
corresponding level 2 node . |

2 Lower Bound for BT (k)

Here we give an alternative proof for the following theoreihe earlier proof can be found in
[CMW™10].

Theorem 3 Every deterministic BP solvingT; (k) has at least?/ log, k states for sufficiently
large k.



Proof: Let B be a deterministic BP solvingT3 (k). By Theorenil it suffices to show that
has at least/ log k leaf queries, for largé (we uselog & for log, k).

We say that a statgof B is al/-stateif either ¢ queries a leab, or v3, or ¢ is an output state.
A statep is an F'-stateif p queriesf;, andB has an edge from somé-state top.

We suppose that the initial state i$/astate, by adding an extra state if necessary.

Let V be the set of/-states, and lef’ be the set of-states. Let = |V/| (the cardinality of
V). Then|F| < ks.

For eachf : [k] x [k] — {0,1} define

V[f]  F—=V

by settingy'[f](p) to be the firsi/-state encountered in the computation starting from gtatdnen
the root functionf; is f.
The number of possible distinct functioti$f| is at most

|V|\F\ S Sks

as f varies. Itis clear that distinct functionsmust give distinct functiong|f], since otherwise
the computations of two distinct functions would give thensaoutput for any pair of leaf values
(v9,v3). Since there ar@*” choices forf, this gives

Sk‘s Z 2]{}2
Thuskslog s > k?, so
s> k/logs

From this we can conclude
s>k/logk +3

for sufficiently largek. The theorem follows, sinceis at most 3 more than the number of leaf
gueries (the two output states and the initial state). |

3 Sequential BPs

Definition 4 A BP solvingF' T (k) or BT (k) is sequentialf for every computation on any in-
stance all queries to the left principle subtree (rooted atl@ 2) precede every query to the right
principle subtree.

Our goal is to prove a lower bound 8 k%) on the size of sequential deterministic BPs solving
FTy(k). We intend to prove a lower bound for the following problenhieh implies the same
lower bound for the sequential case.

Definition 5 The problemRE S} (k) is the same a$' T2 (k) except the root functio is fixed to
be addition mod: and the subtree rooted at node 2 is replaced simply by the?2leAfBP solving
the problem must start by querying, and may not query, after that.

3



Lemma 6 Any sequential deterministic BP solvirdgly(k) for h > 3 can be converted to a
deterministic BP solvind: S (k) with fewer states.

Proof: Let B be a sequential deterministic BP solvifg 7 (k). Forz € [k] let I® be the input

to B in which the left-child functionf; is the constant function with value the root functionf,

is addition modk, and all other functions and leaf values are identically td. be the first state

in the computation o3 on input/® that queries some node in the right principle subtree (tbote
at node 3). We convei to a BPB’ solving RES? (k) as follows. Delete all states preceding

in the computation of3 on input/*, and add a new initial state which queries the leaf node 2 of an
input to RESH(k), whosez-th outedge leads tg,, 1 < x < k. Itis easy to see thdt’ has fewer
states thar3 and correctly solve® ES% (k). [

We can further simplify our lower bound problem to that of nbng leaf queries for height 3
trees by applying the proof of Theorém 1.

Definition 7 The problemRR3(k) is the same a® £ S; (k) except now the children of nodeg
andv; are removed, so that these two nodes become leaves. As lzeRPesolving this problem
must start by querying,, and may not query, after that.

The next lemma is proved in the same way as Thediem 1.

Lemma 8 To prove a lower bound of states for sequential BPs solving the TEP Tgrit suffices
to prove a lower bound of /k* on the number of states querying the leavgsnd v; for BPs
solving RR3(k) as in definitiorn V.

Thus to prove a lower bourd(k*) states on the size of sequential deterministic BPs solving
FT(k) it suffices to prove a lower bound bound@fk?) on the number of states queryingand
vy for deterministic BPs solving? R3(k) The next two subsections prove such lower bounds for
restricted versions aRR3(k).

3.1 f3isfixed to some random function

Here we prove lower bounds 6%(k?) for restricted versions ofRR3(k) by assuming thaf; is
a fixed random function. The restrictions involve the numiealternations betweens and v,
gueries during a computation.

NOTE: This subsection is not very promising.

Theorem 9 Let B be a deterministic BP which solves a versiomRé#3(k) under the restriction
that initially B queriesv, andvg and after that it does not query either node. Thghas at least
k? states which query, for sufficiently large.

Proof: Let B be as in the theorem, and assume fas a fixed function chosen at random. We
will show that (for sufficiently largé:), for almost all choices ofs, if B has fewer thai? states
that queryv; then B makes a mistake for some choicewgfvg, v-.

Let + denote addition mo&l.



Foru,, v € [k] let the unary functiorty,, ., taking (k] into [k] be defined by

G(vz,ve>(2) = vy + f3(vg, 2)

ThusG ., ) (v7) is the solution to the probleRR3(k).

The following result is easy to prove.

CLAIM: If f5is chosen uniformly at random, then with high probabilitgleaf thek? func-
tions g, ), fOr v, vs € [K], is distinct from the others, for sufficiently large

Note that in the computation @8 on any input inRR3, the output is determined by the last
guery towv;, sincev, andvg may not be subsequently queried, and all other query vahessxad.
Thus this last state (in effect) computes the functigp, ., (v7). It follows from the CLAIM that
there is a choice fof; (in fact almost all choices work) such that there must be atle? states
which querywvy. |

Lemma 10 Any deterministic BP solvingR3(k) has at leask states which querys;.

Proof: Assume randonfs as in the proof of Theorefd 9. For any fixeg v; € [k] let ¢, be the
first state which queries; whenwv, = x. Then the stateg, . .., ¢, must all be distinct, because
the output isv, + f3(vg, v7). [ |

Theorem 11 Let B be a deterministic BP solvingR3 (%) which has at most states which query
v7. Assume further that for each input, B queriesexactly once. The® hasQ(k?) states which
queryuvg.

Proof:  Assume thatB satisfies the assumptions in the theorem. Then by the lemdtes
exactly £ states which query,;. To prove the theorem it suffices to show thathas at least
k(k + 1)/2 states which queryj, for sufficiently largek.

Fix some random functiori;. We may assume

For eachvs € [k], f5(vs, v7) iS Ot constant i, (1)

because this happens with high probability. Note that theeé? inputs with this fixedf;, each
input is specified by the triple,, vg, v7. Note that the output function (value of) is

Out(vg, vg, v7) = v + f3(vg, v7) (2)

Letq, ..., q be thek states which query;.

Claim 1: For each state;, 1 < i < k, and for eachy € [k] there is exactly one, € [k] such
that the computation on each infut, vg, *) leads tag;.

Proof of Claim 1: By assumption, for each pair,, vs) the computation on inputv,, ve, *)
(wherex stands for any;) leads to exactly one of thee statesy,, ..., gx. Hence if the Claim is
false, then there iss € [k| and distinctv,, v € [k] such that both of the inputss, vs, *) and
(vh,vg, *) lead to the same statg. But then for anyv; the outputs fo(v, ve, v7) and (v}, ve, v7)
would be the same, which violatés (2).



Now for 1 < i < k let ¢;(vg) be the unique value of, for which the computation input
(v2, vg, %) leads to the statg. By the proof of Claim 1 we have
Claim 2: For eachys € [k]andl <i < j <k

Gi(vs) # @j(vﬁ)

Now let py, ..., p, denote the states which query. Then the pairvz, ¢;) uniquely determines
the next state of the formy in the computation aftey;, where we denote by, the ‘empty state’
in case the computation terminates without reaching anki@states, . . ., p, afterq;. Thus for
i,c € [k] we may define the functio@'; ., (vs) to be the output of the computation after stgtes
reached when; = ¢, since by assumption, aftgy the computation does not query eitheror v-.
Note that the statg, completely determines the functidéh; .,. We have

Gie(vs) = Out(gi(vs),vs,c)
= Gi(ve) + [f3(vs, c)

We will show that for large: there must be at leastk + 1) /2 different functions?; ..., asg; and
v7 vary, and hence there must be at ldggt + 1)/2 states of the formp,.
[NOTE: For this argument it may be easier to feta, b)) = (a+0)3, as in Siuman’s Read-Once

proof]
Let us abbreviatg;(vs, ¢) as a function ofys by f¢, so

G(i,c) = qu + fc

We now define a sequence
SlCSQC"'CSk

of sets of functions of the forr&'; ., as follows:
Si={Gye |1 <j<ti,celk]}

Claim 3: For largek, for randomf;, with high probability|S;| = &, and|S;1 \ Si| > k — i
fori=1,...k—1.

Proof: Sincef; is chosen uniformly at random, the unary functigilsf2, ..., f* are chosen
independently uniformly at random. Hence very likely fockeac [k] the functions

Gy, Gagys - Gk

are all distinct, so in particulds;| = k. Also for all 4, j,c,d, ¢, d" € [k] with j < i+ 1 and
(c,d) # (c',d') itis very unlikely that bothG ;1 ¢y = G j.q) @aNdG ;41,y = G ;0. SiNCE Otherwise
fe— fi=f¢ — f¢. Thus likely at most of the functions of the forn@ 1 (forc =1,...,k)
occur inS;. This proves Claim 3.

From Claim 3 it follows that likely there are at ledst: + 1) /2 distinct functions of the form
G, and hence at leastk + 1)/2 — 1 stateg, ..., p,. |



Alternative Proof of the Last Part:

We give an alternative proof that there must be at |€342 different functions of the fornd; ).
The main point is the same as before, namely:

Fact: For all i, j,c,d,d,d € [k] with i # j and(c,d) # (¢,d’) it is very unlikely that both
Gl = G andGey = Gia)

The reason is that otherwigé — ¢ = f< — f7.

It follows easily from the Fact that there can be at m@3t equal pairsG; ., Gy (for
distinct pairs(i, c), (7', ¢')). Now write (i, c) ~ (i, ') if G oy = Gy, and lets be the number of
equivalence classes among ffepairs (i, c). We want to get a lower bound on Note that given
s, the number of equal pairs is minimized when all equivaleriasses have the same size. Then
each class has’ /s members, and so there are

()
(1<

equal pairs. Thus

sos > k3/(2k — 1) > k?/2.

Generalizing Theorem11
Now suppose that instead bfstates learning; we havet statesy,, .. ., ¢; learningv;, where

t=k"¢
for somee > 0. Then we can define the function
@i(vﬁ) = V3

as before (because the pairvg determiness), but nowg; is a partial function in general. If we
set
D; = domain(g;)

then[k| x [k] (think the set of all pairgvg, v2)) is the disjoint union of set&; where

E; = {(ve,Gi(ve)) | v6 € D;}

SO
t

> IDi| =k €)

=1
Assumption:
We partition[k] into k'~ blocks of sizek¢, and each domaif; is equal to one of these blocks.
Now pick any of these block®, and let

[={i| D, =D}

7



Then|I| > k, since for any fixeds € D, ¢;(vs) ranges over alt values ofv, asi ranges over.
In fact|I| = k, sinceD x [k] is the disjoint union of the set&;, : € I (see proof of[(B)
Now reasoning as in the proof of Theorén 11 there must be sitAé#2 functions in the set

{Gliey | i€ 1,c€[k]}

and hence there must be at lel%t2 statesp;.
QED

Discussion:In the above we sét= k2~¢, which in general is not an integer. We will think bfas
the independent variable, and other parameters suchrasunctions of.. Then we should write

t ~ k?—s
instead oft = k*~<, wheref (k) ~ g(k) means

lim £ (k)/g(k) = 1

Lemma 12 Fix ¢ > 0. Given subset®,, ..., D; of [k], wheret ~ k>, such that every: € [k]
occurs in exactly; of the subsets, the average siecint(k) of intersectiondD; N D;,i # j is

Avelnt(k) ~ 1)k
Proof: For eachy, € [t| we have
> IDin Dyl = (k= 1) Dyl
i#jo
since eaclr € Dj, occurs in exactly; sets. Hence
dIDinD;| = (k=1))_|Dl
i#j J
= K(k-1)
by (3). Since there ardt — 1) pairsi, j with ¢ # j, the average intersection size is
Avelnt(k) = K*(k — 1) /t(t — 1) ~ K* /(K> 9)* = 1 /K>

|
Observation: Consider the setup of Theorem 6, except instead of allowisig:jatates which
querywv; we allow some large numbeirstatesy,, . . ., ¢; which queryv;. As before, each compu-

tation must query; exactly once. Assume further that none of the states. . ¢; distinguishes

betweernvs = 1 andvg = 2. (Thatis, ifvg € {1,2} then the state; reached depends only en.)

Then there existg; such that there must be at leaststates (aftey, . . . , ¢) which queryus.
Proof: We designfs(vs, v7) S0 that there arg? output function®Out,, .. of the form

Outy, v, (V6) = v2 + f3(vg, v7)

restricted tovs € {1,2}, as the paifv,, v7) varies. For example, we can takgvg, v7) = 1 +
(v — 1) - v7. Then there must be a distinct state which querigfor each painw,, vr.
QED



3.2 The inputincludesf;

Here we prove lower bounds ©f(k2) on the number of states querying the leasgandv; for BPs
which solveRR3(k) (Definition[4) under various restrictions concerning theralations of states
guerying leavess andv; and states querying; during a computation. Recall that by Lemira 8
a lower bound of)(%?) on the number of states queryingandv, for deterministic BPs solving
RR3(k) (with no such restriction on the alternations) implies adowound of(k?) for sequential
deterministic BPs solving'T3 (k).

Here we assume that our BPs are dags in which the states arezedjanto layers. Each dag
has a single source node which querigsand after that each layer consists either of states which
query leaf nodes (i.evg andwv;) (calledV-layer9 or states which query; (called f;-layersor
F-layerg. Our goal is to prove a lower bound on the total number oestat all V-layers (i.e. the
total number of ‘V-states’).

3.2.1 The VF, FV, and VFV cases

Theorem 13 Any deterministic BP solvin@R3(k) which consists only of a V-layer followed by
a fs layer has at least? V-states.

Proof: Foreach tripldvs, vg, v7) associate the first state in the computation with ifpsttvg, v7, f3)
(for any f3) which queriesf;. These states must all be distinct since for any two distiiyles
there is somef; which gives different output values for the two. Hence therest be at least?
such initial f; states. It follows that there must be at leas\/-states, because each such V-state
has onlyk outedges and each initi@} state is reached by at least one outedge from a V-stiike.

Theorem 14 Any deterministic BP solving R3 (k) which consists only of afi; layer followed by
a V-layer has at least*” V-states.

Proof:  The proof is similar to the proof of the previous theorem. Fix= 1. There arg:*’
possible functionfs. For each such functiofi; the computation on inpuf; must reach a distinct
initial V-state, since any two distinct functiorfs differ on some argumeriws, v7), SO the output
differs. |

Theorem 15 Any deterministic BP solving R3(k) which consists only of a V-layer followed by
an fs-layer followed by a V-layer has at leakt V-states.

Proof:  Let us refer to the three layers as layer I, layer I, and lditerespectively. We will
show that either layer | or layer Ill has at le&stV-states.

Suppose there are fewer thiahstates in layer I. Then there exist distinct triples, v, v7) and
(vh, vg, v4) such that the computations on both triples lead to the saitied Btatep of layer Il (see
the proof of Theorerh 13). Note that the two pdirs, v;) and(vg, v4;) cannot be the same, since
otherwisev, # v}, so the two outputs, + f3(vs, v7) andv), + f3(vg, v7) would be different for any
f3, but no query in either of the layers Il and Il could distimgluthem.



Note that the computation from stgteto the first statey of layer Il depends only orfs. It
suffices to prove the following.

Claim: There must be a distinct initial stajef layer IIl for each of the:? possibilities for the
pair of outputs(vy + f3(vs, vr), vy + f3(vg, %)) asfs varies.

For otherwise there exists functiorfs and f; such that bothf; and f; end up in the same
stateq starting from state and eitherv, + fs(vg, v7) # vs + fs(vg, v7) OF vh + fa(vh,vl) #
v+ f3(vl, v4). Inthe first case the BP cannot distinguish between the twatsrip, , vg, v7, f3) and
(va, vg, v7, f3) and in the second case it cannot distinguish between therpuds (v}, v}, v%, f3)
and (v}, v}, v., f3), but in either case it should distinguish. |

Definition 16 TheBooleanRR3(k) problem is the same a8R3(k) except the output is to deter-
mine whether the value of the root is 1.

The next two results show thé&t(k?/log k) V-states are necessary and sufficient for a three-
layer (V-f3-V) deterministic BP to solve the BooledtR3(k) problem.

Theorem 17 The Booleari R3(k) problem can be solved by a deterministic BP wiitfi:? / log k)
V-states, where the BP has three layers as in Thedrém 15: geér-fallowed by andf;-layer
followed by a V-layer.

Proof: The idea is to divide thé? possible pairgvs, v7) into O(k?/log k) equivalence classes
of size aboutog k£ each. Layer | remembets, queriesvg andv;, and passes oty together with
the equivalence class 6fg, v7) to the initial states of Layer Il. Thus there apgk?/ log k) initial
states of Layer Il, and Layer | has a total@fk?/ log k) states.

Layer Il evaluateds at (vg, v7) for each paifvg, v7) in the relevant equivalence class, remem-
bers the subset of pairs which make+ f3;(vg, v7) = 1, and passes this subset to one of the initial
states of Layer Il

We assume that there are at mog}, £ — log, log k members of each equivalence class, so
there are at most/ log k initial states of Layer Ill. For each initial state (i.e. éasubset) the BP
queriesvs and therny; and determines whethérg, v7) is in the accepting subset and hence whether
to accept the input. Thus Layer Il hag log k initial states which querys andk?/log k states
which queryv;, making a total ofD(k?/ log k) states. |

We can improve the constant in the above bound by arguing nawedully.

Theorem 18 The Boolear? R3(k) problem can be solved by a deterministic BP with log, & V-
states, for sufficiently largk, where the BP has three layers as in Theorein 15: a V-layenfeitb
by andf;-layer followed by a V-layer.

Proof: The proof is similar to that of the previous theorem. Now wad# thek possible values
of vg into k/(log, k + 1) equivalence classes (“bins”) of sike, k + 1 each. Layer | remembers
V9, queriesg anduvr, and passes oy andv; and the bin number afs to the initial states of Layer
Il. There arek?/(log, k + 1) states in Layer I.

Layer Il evaluatesfs(vg, v7) for each pairvg, v7 in the relevant bin, remembers the subset of
pairs which make, + f3(vg, v7) = 1, and passes this subset to one of the initial states of Lyer |

10



In fact this initial state of Layer Il only needs to know whisubset of théog, k£ + 1 possible
values in the bin fors makesv, + f3(vg, v7) = 1. Hence there are

210g2 k+1 _ 2k

states of Layer Ill. Each state querigsto determine whether the actual valuevgis in the good
subset, and outputs 0 or 1 accordingly.

The total number of/-states in Layers | and Il i$?/(log, k + 1) + 2k, which is at most
k?/ log, k for sufficiently largek. |

Theorem 19 Any deterministic BP with three layers (/-V) solving the Booleak R3(k) prob-
lem has more thah?/(21log, k) V-states.

Proof: The proof is similar to the proof of Theorem]15. Suppose thate are at most
k*/(21og, k) states in Layer I. Then there are at mé$t(2log, k) initial states of Layer II, and
hence there is a set of at le@dbg, k distinct triples(vi, v, v%),1 < i < r,r > 2log, k of triples
such that the computation on input any one of of these trijglads to the same initial stateof
Layer II. As in the earlier proof, it is easy to see thati# j then the pairgvi, v%) and (v}, v2) are
distinct.

Let Outy, (i) be the Boolean predicate dn, ..., r} which is true iffvl + f3(vg, vi) = 1; i.e.
the input(v, vi, vi, f3) leads to the output TRUE. Note that there 2fre> 221°s2% = k2 possible
choices for the predicateut, as f; varies.

Claim: There must be a distinct initial stageof layer Il for each of the> £? possibilities for
Outy, as fs varies.

The proof of the Claim is as before, and the theorem follows. |

3.2.2 The FVF case

The FVF case is much more difficult than the VFV case, and we ggveral different proofs. The
second proof (Theorem 8) is the simplest, but the final pfblegorent 3B, in the next subsection)
stands a better chance of generalizing to the VFVF case.

We will name the three layers,, V, F;. The goal (as before) is to show that the total number
of VV-states must be at least. We approach this problem by restricting the number ofahiti-
states. The initial’-states are those that have an edge from l@&ydeading to them, and hence
they are the only states that carry information fréim

Let F' be the set of all functiong; : [k] x [k] — [k].

In the following we fix a BPB with three layers, V., Fs.

Let@ = {q, ... q/} be the set of initial/-states inB.

We assumé < k2, since we are trying to prove the numbenofstates is at most®.

Lety = ¢p : [k] x F — Q be defined byy(vs, f3) = ¢; if an input(uvy, vg, v7, f3) to B reaches
the statey;. (Note thatvg, v; are irrelevant.)

For eachfs, definepy, (ve) = p(va, f3)

Lemma 20 For eachfs, the functionyy, : [k] — Q is injective.

11



Proof: This is because for fixedks, vg, v; the outputv, + f5(vs, v7) varies withvs. [ ]

It follows that there are at leastinitial V' -states, sd > k.
We now give a simple proof for the case in which there are énhyjtial /-states.

Theorem 21 If there are exactly: initial V-states, ther3 has at leas? V/-states.

Proof: The proofis similar to the case of two layérsF’ (Theoreni IB). Recal),, . . ., g, are the
initial V -states. It suffices to show that there are at |&éasnitial F, states, since then there must
be at leask? V-states to generate thié edges leading to the initidl, states. We show this by
showing that each distinct triple;, vs, v7) leads to a distinct initiaF state. (Note thafy;, vg, v7)
determines the initiak; state.)

Suppose to the contrary th@t, vs, v7) # (g;, vg, v7) but both triples lead to the same initi&l
state.

Caset ¢, = g¢;.
Choose anyf; such thatfs(vs, v7) # f3(vg, vh). Choosev, such thatpy, (v2) = ¢; = g, (See
Lemmd20). Then the inputs,, vg, v7, f3) and(uvs, vg, V4, f3) both lead to the same initidk, state
but have different outputs, 98 makes a mistake on one of them.

Case ll: ¢; # q;.
Choose anyfs S0 fa(vs,v7) = fa(vj,v4). ChOOSEvs, vy SOy (vs) = q; andipy,(vh) = gj,
Sowvy # vy Then(vq, vg, v7, f3) and (vh, vg, v4, f3) lead to the same initial state &, but have
different outputs. |

To handle the generdl’}-V-F; case it suffices to show that if the set of initidtstates is
{q1,...,q} andl < k%, then the number of initiak,-states is at leagt®. The intuition is that the
layer F; has no knowledge aofg, v7, and hence it cannot summarize useful information alfput
using justk? output states. Thus some version of the proof forithé” case should give us the
required lower bound for the number Btstates.

The next two results will be used in the proof of Theorem 24 &b a lower bound on the
number of initial F;-states.

NOTE: The next result is useful, but then skip to Theokein 28.

Lemma 22 Iftriples (g;, vs, v7) and(g;, vg, v7) lead to the same initiak,-state then for alb,, v5, f3,
if p(vg, f3) = g andp(vy, f3) = g; then

vy + f3(ve, v7) = v + f3(vg, v7)

Proof: Under the hypothesis of the lemma, both of the ingutsvg, v7, f3) and (v}, vg, v4, f3)
lead to the samé)-state, and since they share the sginthey must have the same output. &

SKIP TO THEOREM_ 28
Lemma 23 Let A and B be finite sets, ang : A — B. Suppose we are given any probability dis-

tribution over A. When elements, o’ of A are chosen independently according to the distribution
lete = Pr[g(a) = g(d’)]. Then|B| > 1/e.

12



Proof:

Prlg(a) = g(d')] = Y _Prlg(a) =0]- Prlg(d’) =1b| 4)
beB

= > n (5)
beB

wherep, = Pr[g(a) = b] whena is chosen according to the given probability distributidéow
{p, : b € B} is a probability distribution orB, and",_, p; is minimized when the, are all
equal, i.e. when eagh, = 1/|B|. Thus

Prig(a) = g(a')] = |B|/|B* = 1/|B|

[ |
Recall that) = {q, ..., ¢/} is the set of initiall/-states, wheré > k. For each statg; let

Wi = {fs3] vz p(va, f3) = qi} (6)

Let I be the set of all possible functiorfs. By Lemma 2D eaclf; is mapped td: distinct states
¢, and sQy_, |W;| = k|F|, so

the average size oV;| is k|F'|/¢ (7)
Similarly for intersections
the average size ofV; N W;| is k2| F|/¢? (8)

and hence by our assumptién< k2 the averages intersection siz&; N W,| > |F|/k>.
We are now ready to get a lower bound for the gengydl - f5 case.

Theorem 24 Any deterministicfs;-V- f3 branching program solvingz23(k) has at least?(1 —
o(1)) V-states.

Proof: As mentioned earlier, the intuition is that the initi&l-layer is not very useful, because
vg, v7 are not yet known. Hence useful information about which efth’ functions f; is input
cannot be summarized using justinitial V' -states, so th& layer must pretty much pass on the
triple (v, ve, v7) to the final F;, layer. In fact our proof shows that if an inplit= (vs, ve, v7, f3)
is chosen uniformly at random, then the triglg, vs, v7) can be determined with error probability
O(1/k*) from the information of which initia,-statel reaches.

We refer to the notation described at the beginning of Sulus€8.2.2.

We apply Lemma 23 witd, B as follows.

A - {(1}2;”671)7) | V2, Vg, U7 S [k]}
B = the set of all initialF;-states

We use the uniform distribution ovet.

13



Instead of defining a single functi@r, we define a famil){Gfg : f¥ € F'} of functions, where

is defined byGfg (vq,v6, v7) is the initial Fy-state reached on inpity, ve, v7, f3). We will show
that wheny? is chosen uniformly at random frofi = { f5 : [k] x [k] — [k]} and(vs, vs,v7) @nd
(w9, wg, w7) are chosen independently then

Pr[Gf??(UQ,U6,U7) = Gfg(wg,w(;,wﬁ] S 1/]{?3 + O(l/kA) (9)

Thus there exists some particulgffor which () holds, so according to Lemiina 23 there must be
atleastt3(1 — o(1)) initial Fy-states, and the theorem follows.
Recall the definition(6) ofV;.

Lemma 25 For fixedvy, ws € [k], if f3 is chosen uniformly at random frofi and we set; =
o(ve, 1) andq; = (w2, f7) then the probability thatiV; N W;| < |F|/k® is at mostl /k*.

Proof:  For each fixed pair, s, if [W, N W,| < |F|/k® then the probability that? € W, NV,

is at mostl /k%. Since there are at mokt statesy, . . ., ¢, there are at mosgt* choices forr, s, so
the probability thatf? is in 1, N W, for some smallV, N W, is at mostk* /k® = 1/k*. [ |
Define

U = {(ve,v7) | vs,v7 € [k]}
We use the variables, ¢/, v, w to range ovet/. We define the function

v :QxU—B

by 1 (q;, ¥) is the initial F;,-state reached from stagewhen the input$uvs, v7) arez.
Forl <i,j < ¢ define

Sij ={(@,9) | £ # §AND ¥(q;, &) = ¥(q;,9)}
The next lemma will be applied when the geis S;;.
Lemma 26 If S is a set of more thadt(2t — 1) ordered pairs of distinct elements then there is a
subsetS’ of S with ¢ + 1 pairs such that each pair i’ has at least one element that is distinct

from all elements in the other pairs 6f.

Proof: Note that the pairs ity must involve more tha@t distinct elements. |
RecallF = {f : [k] x [k] — [K]}.

Lemma 27 If |S;;| > 2t(2t — 1) then|W,; N ;| < |F|/k".

14



Proof:

Assume|S;;| > 2t(2t — 1). Then by Lemma 26 there is a subs$gf of S;; consisting of at
leastt + 1 pairs(Z, y) such that each pair has at least one elenfamty that is distinct from all
elements in the other pairs 6f;. By Lemm&22, if(Z,y) € S;; then

VPt + f3(2) = wi + f3() forall f3 € W; N W; (10)

where
v = Ma)  wl =epMg) (11)
We argue that (10) limits the number gfs in 1, N W, as follows. For eaclf; € W; N W, the
first pair (7,, 71) in S}, fixes the differencgw,’ — vf*) to be f5(71) — f3(7,). Each of the othet
pairs reduces the choices ffiy by a factor ofk by specifyingf;(Z) or f3(y) in terms of another
value of f; and the differencéw’® — v{*). |
Now suppose thatv,, v) and (w,,w) are chosen independently fror, and f is chosen

uniformly from F'. Then the probability thatv,, o) = (w., @) is exactlyl/k3. Thus it suffices to
show that the conditional probability

PI[G po (v, T) = G jo(wa, W) | (v2,V) # (wa, W)] = O(1/k%) (12)

Let gi = w(vg, f3) andg; = @(ws, f3). If Gro(ve,¥) = G o(wo,w) then we cannot have
vy # w9 but v = 4, since this violates LemmaR2 (withy = f2). Thus by our condition
(v9, V) # (weq, W) We may assume

U # W
By Lemma2b, in order to prové {IL2) we may assuimien W;| > |F|/k®, so by Lemm&27 with
t = 8 it follows that|S;;| < 2t(2t — 1) = 240. Hence there are fewer than 240 pairs of distinct
vectors(Z, i) such that)(¢;, ¥) = ¢ (qg;, ¥), and the probability that randomly chosgh @) equals
one of these pairs is at mast0 /4. Thus [12) follows. |

SKIP TO HERE
The next result is an improved version of Theoferh 24 due t@dam

Theorem 28 (James’ Alternative to TheoremlI24.) Any determinigtid’ - f3 branching program
solving RR3(k) has at least?(1 — 2/k) V-states.

The statement of this theorem differs from that of Theoreho2¥ by making then(1) term
explicit, but the proofs are somewhat different.

Proof: As before, the intuition is that the initidl;-layer is not useful. This time, we begin by
finding a large class of functiong which the Fi-layer does not distinguish at all: that is to say,
when f; is retstricted to be from this class, then the initialstate depends only an.

Let B be anyf;-V- f3 branching program solving R3(k), and assumé has less thah? — 2k
V-states.

15



Step 1. The Fi-layer does not distinguish a large class of functiong, C F. As in the proof
of the previous theorem, 1€) = {qi, ..., q.} be the set of initial/-states, witl/ < k% — 2k. Let
U be the set of function§:] — @, and lety : ' — U be defined by setting( f3)(v2) to be the
first VV-layer state reached iy when given those, and f; values in the input. (This is similar to
the functiony : [k] x F — Q used in the previous proof.) Sin¢&| < k% and|F| = k**, we can
find somey, € W such thatyp=1(1,)| > k¥~ 2. Let F, = ¢ ' (¢,), SO|F,| > k2,

Henceforth we concern ourselves only with inputs whgree F,. Observe that in this case,
the initial VV-state reached by is equal top.(v2), and hence does not depend fin B now
effectively has two layers, calldd and F5.

Step 2: A useful property of F,. Define the following relation® C ([k]?)%: P(v, @) holds iff
forall f,g € F., f(¥) — f(w) = g(v) — g(w), where— denotes subtraction moduko Observe
that P is an equivalence relation.

In the next step we will see that the initig}-state determines both and the equivalence class
of (vg, v7) under the relatiorP. But first, we will show that the number of equivalence classes
more thark? — 2k. As a warm-up, iff, = F, then there aré? equivalence classes, since for any
¥ # W € [k]?, there exist functiong, g € F such thatf (v) — f(&) = 0 butg(v) — g(w) = 1.

Now, assume only thdf,| > k*~2k_ Pick a representative from each equivalence class to
form the setE C [k]2. We will show that a functiorf € F, is determined entirely by its values on
E: it follows that|E| > k* — 2k.

Indeed, letf,g € F. be any two functions such that’ € E, f(v) = ¢(v); we must show
f = g. Consider anyi € [k]?, and leti € FE be the representative of its equivalence class. Then

f(@) = f(V) + (f (@) — f(0)) = 9(0) + (9() — 9(V)) = g(w).

Step 3: There are at least:® — 2k? initial Fy-states. Foruv, € [k] andd = (vg,v7) € E, let
G(vq,7) € C be the firstF,-state reached by on input(vq, vs, v7, f3) (@S long asfs € F., f3
does not matter). To show that there afe- 2k? initial F,-states, all that remains is to show that
any two distinct pairgv,, ) # (we, W) € [k] x E lead to distinct initalF,-states.

Suppos€ vy, U) # (wq, w) lead to the same initiak;, state. Ift' = «j, then B gives the same
output in both cases, even though the outputs should beettfevhich is a contradiction.

The remaining case is that# «. Thenv andw are representatives of different equivalence
classes undeP, so there must exist somgg € F., such thatf(v) — f(w) # g(¥) — g(w0).
In particular, we may assume thato) — f(w) # wy — ve. Rearranging the inequality gives
vo + f(¥) # we + f(W), SO B must distinguish the input@», v, f) and (w,, wa, f), but it does
not. This is a contradiction: so it is true that each pair ¥) leads to a distinct initiaF»-state, and
so there are at leakt — 2k? of them.

As in the previous proof, this implies that there are at léast 2k V-states. |

We can improve the lower bound in the previous theorem fkém 2k to k2 by arguing a little
more carefully and assuming that thiestates are layered.

Definition 29 A set of contiguous states in a branching progranaigeredif all syntactic paths
from any initial state in the set to any final state in the setéhtne same finite length.

16



Note that any BPB is equivalent to a layered BB’ where the number of states i is at
most the square of the number of state®BinSo for the purpose of showing a problem is not in
log space, it suffices to consider layered BPs.

Note that any BP solving TEP that comes from a pebbling algoris layered.

Theorem 30 (Improvement to Theorem [28) For any deterministiel’- f3 branching program
solving RR3(k) with layeredV states, the number df-states is at least? if & > 2.

Proof: We observe that the same counting argumer@tap 1of the proof of Theorerh 28 used
to show thate ' (1, )| > k¥ 2 also shows

|F*‘ > k}kz/fk — k,kzz—kzlogkl (13)

Arguing as inStep 2we obtain that the number of equivalence clagégis> k? — klog, ¢, and
from Step 3we conclude that there must be at leflast- k% log, ¢ initial F;-states, and hence the
number ofl/-states which have edges to thelayer is at least? — k log, /.

Since thel/-states are layered, no initigl-state in the sef) = {q, ..., ¢/} has an edge to the
final f3 layer. Hence the total number bf-states is at least

h(0) = €+ k2 — klog, ! (14)
k

It is easy to see that the derivatit&() is positive for¢ > k > e, and soh(¢) takes its minimum
for ¢ > k at? = k. Hence for the layered case the numbei/e$tates must be at leaktk) =
k+k* — klog, k = k2. |

The next result follows easily from (1L4).

Corollary 31 In the setting of Theorefn BO, if the numMfeof initial V-states is at leask(2 +
log,. 3) then the total number df -states is at least® + k.

The comment at the end of Sectibnl4.2 points out that the aptpabbling algorithm for
solving RR3(k) yields a BP withk? + k V-states. The above proof can possibly be improved to
give a lower bound closer t? + k by considering functiong; not in F..

Here we prove a lower bound &f + k states quite independent of the above proof, but it only
works when the number of initidf states is small.

Theorem 32 For any deterministicfs-V - f3 branching program solvingz R3(k) with layeredV/ -
states and at most + +/k /3 initial V-states, the total number &f-states is at least® + , for
sufficiently largek.

Proof: This proof does not use the function equivalence clasggument used in the previous
two proofs.

We start by stating the following definitions and facts, sarhéhem from earlier in this sub-
section:

17



F {f (K] x [k] — [K]} (15)

Q {q1,- .., qx+u } = initial V-states ¢ small) (16)

o(va, f3) = q (initial V -state from(vy, f3)) a7

P(gi,7) = pj (initial F;-state from(g;, ¥7)) (18)

1<i<k+4u: P = {Y(¢g,0)| 7€ k] x[k]} (19)

k+u

P = | J P =initial F;-states (20)

1§Z§k+um = %}3‘3U2¢(U27f3):qi} (21)
k+u

D_IWil = kP (22)

Q1 = {p(va, f) | vz € [K]} (23)

QI =k  VfeF (24)

Lemma 33 If f € W; andy(q;, V) = ¥(q;, W) then f (V) = f(w).
Proof: The initial F,-state cannot distinguish the outputs+ f(v) andwvy + f (). |
Corollary 34 If |P;| < k* then|W;| < |F|/k

Proof: There arek? possible vectors, so by the Lemma ifP;| < k? then there exist distinct
U, so everyf in W; satisfiesf (v)) = f (). |

Corollary 35 If u < k — 1 then there are at leasdt distinct values of such that P;| = k2.

Proof: This follows easily from Corollariy 34 and (22). |

Lemma36 If 1 <i < j < k+wandy(g,v) = (g, @) thenforall f in W, "W, f(¥) # f(w).

Proof: If f € W; N, andi # j then there exists distinet, w, such thatp(v,, f) = ¢; and

w(ws, f) = ¢;, but the initial F,-statey (g;, ¥) = 1(q¢;, w) cannot distinguish between the outputs

vo + f(U) andwy + f (), so f (V) — f(W) = wy — vy # 0. |
The next result is immediate from Lemind 36.

Corollary 37 If f, is a constant function, then for ajl, ¢; € Q[fo], if i # j thenP,N P, = .

Note that ifu = 0 then from Corollary_35 and Corollafy 87 we conclude there masflinitial
F,-states and hence at le@stnon-initial VV-states and hence a total of at lekst- k£ V -states, so
the Theorem follows in this case.

18



In the general case we assume& k — 1 and note that by Corollafy 85 there must be at léast
setsP; of cardinalityk?. We divide the remaining setsP, into those with at least? — a elements
and those with fewer thai?¥ —a elements, for some parameteto be determined. By renumbering
the sets, we may suppose that sets

P1>P27"'7Pk+t (25)
have cardinality at leagt® — a for somet with 0 < ¢ < u, and sets
Peyir, .o Pegu (26)

have cardinality less thalt — a.

Our plan is to find a functiorf such that using LemmaB3 we forgez W, whenk +¢ + 1 <
i < k+ u (so|P;| is small), and force thé remaining large setg; with ¢; € Q[f] to be pairwise
disjoint, using Lemm&a_36.

Consider an undirected grapghwith verticesW = {1,2,... k + t} and edges

E={(i,j)|i+#jandP,N P, # o}

Let M be a subset of the edgéswhich forms a maximal matching if.

CLAIM 1: |M| < u.

For assumdM| > w + 1. By Lemmal36 if(i,j) € M and f, is a constant function, then
fo € W;nW;, so f, cannot be id¥; for u+ 1 distinct values of. But there are only +« possible
values ofi and each functiorf is in exactlyk setsWV;. This proves the CLAIM 1.

SinceM is a maximal matching, every edge@hhas at least one endpoint in common with an
edge inM. We expand the set/ of edges to form a set/’ by adding, for each endpointof an
edge inM, all edges with an endpointexcept that if there are more thant+ 1 such edges then
we only addu + 1 such edges.

Thus

IM'| < u+2u(u+1) = hu) (27)

For each edge = (i, j) € M’ we knowP, N P; # &, so there exists;, w, such that

V(qi, ve) = (g, we)

Let
F'={feF|f(n)=/fuw),Yee M} (28)

CLAIM 2: If f € F’ andg; andg; are distinct elements @p|f]| thenP, N P; = @.

This is because i, N P; # @, thenG has an edge = (i, j). Bute ¢ M’ by Lemmd3b and
the definition ofF”. By definition of M, it follows that one endpoint, sayof e is in the maximal
matching)/, and there are at leagt+ 1 edges in\/’ which share the endpoint If ¢/ = (i,r) is
any of these: + 1 edges then again by Lemrmnal 36 and the definitioA’at follows that f ¢ W,.
But everyf is in k setslV,, and there are only + u possibilities form, so this is impossible. This
proves CLAIM 2.

Now set the parameter= 2h(u) as in [27). We can ensure that F’ by setting

fn) = f(i.)=1, VYee M

19



This constraing’ on at most: different arguments, and since each of the sets ih (26) hasstt
k* — a — 1 different elements we can still kegpin £’ and use Lemma_33 to s¢tv) # f(w) for

suitablev, « and make sur¢ ¢ {k +t+ 1,...k + u}. For suchf we haveg; € Q[f] implies
|P;| > k* — a, so by CLAIM 2 there must be at leaspairwise disjoint set®; with |P;| > £k? — a.

Then by Corollary 35 there are at ledst- u setsP; of sizek? in this group. Hence we have

|P| > (k —u)k® +u(k® — a) = k* — uk® + uk® —ua > k* — ua

By dividing by & we obtain a lower bound df* — ua/k on the number of non-initidl -states,
making the total number df states at least + u + k? — ua/k. In order to be sure this lower
bound meets the claimed lower bound in the statement of #wdim, we want

E+udk*—ua/k >k +k

oru > ua/k ora < k, or h(u) < k. Thus it suffices to haveu? + 3u < k, oru < vk/3, for
sufficiently largek. |

3.2.3 Another FVF proof

Here we give a third lower bound proof (due to Phuong and $fevehe FVF case. This proof is
a little more complicated, but it seems more likely to getlieea The idea is to desribe the set of
inputs that reach each state, and use properties of thesw sttow that they cannot soon lead to
ouput states unless these input sets are small.

Theorem 38 Any deterministicfs-V-f; branching program solvinge R3(k) has at least?(1/2 —
O(1/k)) distinctV -states.

Proof: Each state in the program is associated with the set of irfpatgeach it. The sets that
are associated with initidl; states form a disjoint partition of all inputs. Each suchnsest satisfy
several constraints, and if there are two fewstates (and hence two few initial, states), these
constraints will limit the size of the sets, and this will gia contradiction.

Let 7 be the number of initial” states, and be the number of initiaF;, states. We will show
that either? > k?/2, orr > k3/2. We prove this by contradiction, so assume that loth k? /2
andr < k3/2.

Let F' denote the set of all functioni] x [k] — [k]. Note that there are in totaP|F'| inputs
to the program. Let, ¢o, ..., ¢, be the initialV states angh,, p», . .., p, be the initial F, states.
Below we will use indices, j, z: 1 < i < k (possible value of,), 1 < j < ¢ (¢, ranges over all
initial V' states) and < z < r (p. ranges over all initiaF, states). We will also use for pairs
(U67 U7) (SOUJ S [/{5]2)

For eachl < i < kletG, ,Gio,...,G; be the disjoint partition of: G, ; is the set of
functionsf € F' such that following, = i and f we reachy;.

Fix somej, 1 < j < /(. ThenG,; UG, ; U... UGy, is the set of all functions that reagh
(via some possible value of). Observe thats; ;, G, ..., G ; are pairwise disjoint, because if

20



feG,;NGy fori# i, then oninputsi, w, f) and(i',w, f) (for anyw) the program has the
same output, which is a contradiction. l&f denote the disjoint union

Gj = GL]' UGQJ U ...UGk,j

For each pair of stateg andp., let W, ., denote the set of tuples € [k]* that lead fromy; to
p.. ThenW,,, W;,, ..., W;, is a partition of[k]?. Lett; . = |W;.|, then it follows that

tj71 —|— t]’,g —|— e —|— tjﬂﬂ - k’2 (29)

It is helpful to write down the set of inputs that reach aniahif;, statep,. This consists of the
disjoint union of (we will writei x W x G for {i} x W x G):

1 x Wl,z X Gl,l; 2 X Wl,z X G2,17 cee k x Wl,z X Gk,l
1 x W27z X GLQ, 2 X W27z X G272, RN k x W2,z X G]@Q
1 x Wgyz X Gl’g, 2 X W&Z X GQ}@, R k x ngz X kag

So the total number of inputs associated withs

y4
> 151G
j=1

Summing up over all statgs we have the total number of all possible inputs, so:

r Y4
DO 4G = K| (30)

z=1 j=1

We will prove an upper bound usingr, |F'| on the LHS, and this will give the desired lower
bounds orY andr.

Notice that if somelV; . contains two different pairs, w’ then for all inputs of the form
(ve,w, f) and(vh,w’, f) that reactp, (herev, andv), may not be distinct) the values ¢fw) and
f(w") are tied together by

v2 + f(w) = vy + fw')

because at, the program cannot distinguish between the two inputs. Asalt, if some state;
can afford to treat several in the same way then the set of functiafis cannot be too large. We
have:

Lemma 39 Letl < j < /andt = maxj<.<, ;.. Then

|F|
|G < it

21



Proof: Letp, be a state such thdt’; .| =t;, =t¢, and letf € G,. Choose so f € G, ;. Then
on all inputs(i, w, f) (for w € W; ) the program has the same output. Therefbi® constant on
Wi, e, flw) = f(we) = ... = f(w) where{wy,ws,...,w;} = W;,. In other words, the
values off ont — 1 inputsws, ..., w, are determined by (w,). So the conclusion follows. B
We will show that the contribution of smafl; (i.e., |G;| < |F|/k) to the LHS of [30) is
not significant, and therefore we can focus on €hesuch thatt;, € {0,1} for all z. So let
S ={j : maxj<.<,t;. > 2} index the small set&; andL = {1,2,...,¢} — S index the large
sets. By the lemma we have
|G| < |F|/k forallj e S (32)

The LHS of (30) is .
SN 4G+ D)0 .Gl
z=1 jeS§ z=1 jeL

The first sum can be upper bounded as follows:

T

SN G =D 1GD e

z=1 jeS jes z=1
=) |G|k by (29)
j€eSs
<z:@lc2 by (31)
S
jES
< k|F)| (32)

Now we estimate the second sum. Eer {0, 1} and a setG we use the notatiot(z to denote
& (the empty set) it = 0 andG if t = 1. Then for eaclr (1 < z < r) the inclusion-exclusion
principle gives us:

Jti:Gil 2D 151Gyl = D byt -|G N Gy

jEL jeL j<j'eL
Therefore
Dot Gl < U t:Gil + D tiaty |Gy N Gyl
JEL jeL j<j'eL
S|P+ ) tiatp|Gy NGyl
Jj<j'€eL
Hence,

SO GG <P+ ) bty |G N Gyl

z=1 jEL z=1 j<j'eL
=r[F|+ Y [GiNGu Y tiatye (33)
j<j'eL z=1

It remains to upper bound the sum on the RHS. We need the foliptmio lemmas.

22



Lemma 40
> 1GNGy| = k(k = 1)[F|/2

1<j<g'<t

Proof: For each pai(y, j'), |G; N G| is the number of functiong € £ that are in bottz; and
G. Each functionf appears exactly sets amongr,, G, . .., G,. This is because for each value
1 0f vy, the setF’ is partitioned into disjoint union

GianUGi2U...UG;y
and eaclt; is the disjoint union
Gj == Glyj U GQJ Uu...u de'

So eachf is counted exactly(k — 1)/2 times in the sum. As a result,

> 1GNGy =) k(k—1)/2=k(k—1)|F|/2

1<5<5'<t feF

The above lemma provides a good upper bound on

.
D IGNGH D sty
1

j<j'€L 2=

provided that for allj < 5’
> tisty
z=1

is small (O(k)). The next lemma is to deal with the pajtg’ where this sum is large.
Notice that for each paiy;, ¢;» (wherej < j' € L) the sum

T
E it
z=1

is precisely the total number of statgs such that there are paths from bathg¢; to p.. The
following lemma is proved in the same way as Lenima 39:

Lemma 41 Suppose < j' € L. Let

t - i t]‘,th/J
z=1

Then
| F]

kt—l

|G, NGy| < (34)

23



Proof: By the above remark, there are precisedyate, such that there are paths frggandg;
top.. Without loss of generality let these stategbea,, . . ., p;. Thenforeach, (1 < z < t) there
are valuesu,, w’, of (vg, v7) that leady;, ¢; to p., respectively (i.e.W;, = {w.}, W, , = {w.}).
Observe thatv;, wo, . .., w, are pairwise distinct (and similarly fas}, ws, . . ., wy).

Supposef € G; NG Then for distinct, i’ € [k] we havef € G, ; N Gy ;. Thus for each
the program produces the same outputom., f) and(', w’, f). Thus (recalk- and— refer to
addition and subtraction mdg

i+ f(w:) =1+ f(uwl)
So

flws) =i =i+ f(u))
Since: # ¢ it follows thatw, # w’,. Now for eachy € [£] let

H= |J (Gi;nGiy)

i,i’€lk]i—i'=y
Then for everyf € H, we have
flw.) =y + f(w))
In other words, the values of on ¢ distinct inputswy, w,, ..., w; can be determined from the

values on other inputs. Therefore
|H,y| < |F|/K'

It follows that
G NGyl = " |H,| < KIF|/K = |F|/K

y€lk]

Foreachy < j' € L let
Tiy =Y ity
z=1

Note that7; ; < r for all j,j'. For the derivation below, we use Lemingd 40 for the p&jrg’)
whereT; ;; < 5 and Lemma4l for the other pairs. We have

r

DG NG bty = Y G NGy|Ty;

j<j'erL z=1 j<j'eL
= ) 1GNGy[+ ) |1G;NGy|Tyy
T. <5 T. .1>6

J,3" = J,3" =

<53 |G;NGy|+ (5) r2|F|/k°
= O(K*)|F| by Lemmd4D and becauge< k* r < k*

24



Substituting this into[(33) we have

DD telGl S TIF|+ Ok F (35)

z=1 jeL

From (30), [(3R) and_(35) we get
(tk + 1+ O(K*))|F| > K°|F)|
If s is the total number oF -states thers > ¢ andsk > r so2sk + O(k?) > k* and
s> k22 — O(k)

from which the Lemma follows. [ |

3.2.4 The FVFV case

Theorem 424 Any deterministicf;-V-f3-V branching program solvinge R3(k) has at leas&?/5
V -states, for sufficiently large.

Proof: Let B be a deterministic BP with layeis,-V;-F»-V; solving RR3(k). We begin as in
Step 1in the proof of Theorem 28. Thus there is somefSetf functionsf : [k] x [k] — [k] and
some sef{ ¢, ..., qx} Of initial V;-states such that for every inplt,, vg, v7, f) to B, if f € F,
then the input reaches staftg.

So in effect we can ignore the initial layés and assume that the BP has only three layers
Vi-F»-V,, provided we only consider input functiorfse F,. The only thing we need to know
aboutF, is that it is big enough; namely

|Fy| > kF -2 (36)

Recall that in the proof of th&;-F-V; case (Theorermn_15) we argued that if there are fewer
thank? initial F'-states (which is implied by fewer thai V;-states) then two distinct input triples
(v, vg, v7) @nd(vh, vg, v5) would reach the same initidl-state, and this would necessitate at least
k? initial V,-states. We cannot make the same argument now, beéamsay not include the right
functions. However we can still argue that if there are fethank?/5 initial F,-states then there
must be more thak? initial V,-states.

Let P = {pi, ..., p,} be the set of initiaF,-states. Defing : [k]*> — P by

T/J(@, U) =Dy

wherep; is the initial F, state reached when the input, v, v7) = (¢,7) (here the choice of
f € F,isirrelevant).

Let ), be the set of initial;-states. For eacli € F. definep; : P — Q2 by ps(p;) is the
initial V5-state reached starting at statevhen the input function ig.

1This theorem has been replaced by Theofein 45, and can beedpaithough it has an interesting argument
involving uniform hypergraphs.

25



Lemma 43 Let P’ C P be such that for every € [k]? there is: € [k] such thaty (i, v) € P'.
Thenp; 1p/ (the restriction ofp; to P’) uniquely determineg € F..

Proof: Let P’ be as in the lemma, and I¢tbe any member of’,. Let ¢ be any member of
[k]?, and leti € [k] be such thap; € P, wherep; = (i, 7). Then the initialVs-stateq = p;(p;)
together withv determines the output, + f(¢)) of B, and this together withr, = i determines
f (). |

Claim: If |P| < k3/5 then there is?” C P with | P'| < (139/300)k? such that”’ satisfies the
conditions of Lemm&a43.

The theorem follows from the Claifhsince if|P| > k3/5 then there are more thas /5 Va-
states (since states have fanout at ni)sso we may assume’| < k*/5. Hence we may apply
Lemmal43B with| P’| < (139/300)k2. If m = |Q,| then there are at mosi(139/300%* choices for
py 1pr: P'— @2, S0 by [36)

m(139/300)k2 > ]F*] > kk%%

Raising both sides to the pow&00/(139%?) we obtain|Q,| = m > k? for sufficiently largek,
giving us the required lower bound.

The Claim follows from the next lemma, whelEé = [k]?, P is the set of initialF;,-states, and
each node’ € W is connected to thé nodes) (i, ¥), 1 < i < k. (Note that thesé states must be
distinct, since the output, + f(¥) with i = v, depends om..)

Lemma 44 Let G be a bipartite graph with left vertex sét’ satisfying|IW| = k* and right
vertex set” satisfying| P| < k*/5, and suppose that each vertexiin has degreé:. Then there is
a subset”” C P with |P’'| < (139/300)k? which coverd¥, in the sense that every nodelii is
adjacent to some node .

Proof: For each subsd?’ C P let
W(P") ={w e W | wis adjacent to some element Bf}

Our goal is to find somé” with |P’| < (139/300)k* andW (P’) = W. We will form P’ as the
disjoint union of sets>, P,, P;, P», P, using a greedy algorithm, and define

5
=Pl si=[W(P)\ |J WP, 1<i<5

j=i+1

Motivated by the fact that the average degree of element3 isfat least 5, we start by building
Ps, initializing Ps to be @ and successively adding elementsipsuch that each element added
increasesiV (Ps)| by at least 5, until no more such elements can be added. Sinee|lW (F;)|
we have

S5 > ts

2For this all we need know about 139/300 is that it is less thian 1

3Dustin says this is really about vertex covers feaniform hypergraphs. He worked out the following general-
ization: If H is ak-uniform hypergraph withn edges and average degree at msthenH has a vertex cover of size
less thannH,/d, whereH is thedth harmonic number. Lemnial44 is obtained by setting: £ andd = 5.

26



By definition no node inP; is adjacent to any node i \ W (Ps), and since no more nodes can
be added td; it follows that any node irP \ P; can be adjacent to at most 4 nodes$lin, W (Ps).
Since each node i \ W (P5) has degreé we have

4(]€3/5 - t5) Z ]{I(k’2 - S5)
SO
S5 > k’2/5

Now we augmenf’; by initializing P, = &, and successively adding elementdof P to P, so
that each element added increaBégP;) U W (P;) by at least 4, until no more such elements can
be added. Arguing as before we have

54 > 4ty

and
3(k3/5 - t4 - t5) Z k?(k‘Q — S4 — 85)

SO
54+ 855 > (2/5)k?

We defineP; and P, similarly, so

s3 > 3i3
S9 = 2ty
and
2(k3/5—t3—t4—t5) 2 k(k2—83—84—35)
k3/5—t2—t3—t4—t5 Z ]{3(1{32—82—83—84—85)
SO

S3+ S84+ 85 > (3/5)]{32
So+ S3+S4+S5 > (4/5)k2

Finally we choosé”; to cover one by one the? — s, — s3 — 54 — s5 remaining nodes df’, so
t1251:k2—52—83—84—85

SettingP’ = P; U P, U P3; U P, U P, we have from the above inequalities

| P'| ts+ty+tg+ta+ 1

< 85/5 4 54/4+ 83/3 4 52/2 + (K* — 55 — 54 — 53 — 89)

k* — (4/5)s5 — (3/4)s4 — (2/3)s3 — (1/2)s9

k? — (1/2)(s5 + 84 + 53 + 52) — (1/6) (85 + 54 + 53) — (1/12)(55 + 54) — (1/20)s5
< K= (1/2)(4/5)k* — (1/6)(3/5)k* — (1/12)(2/5)k* — (1/20)(1/5)k*

(139/300)k*

27



Now we present an improved version of Theofem 42.

Theorem 45 Any deterministigi;-V-f3-V branching program solving R3(k) has more thark?/3
V -states, for sufficiently largk.

Proof: Let B be a deterministic BP with layeis,-V;-F»-V; solving RR3(k). We begin as in
Step 1in the proof of Theorern 28. Thus there is someSetf functionsf : [k] x [k] — [k] and
some sef{qy, ..., q} of initial V;-states such that for every inplt,, vg, v7, f) to B, if f € F,
then the input reaches statg.

So in effect we can ignore the initial layé# and assume that the BP has only three layers
Vi-F5-V,, provided we only consider input functiorfse F,. The only thing we need to know
aboutF, is that it is big enough; namely

|Fy| > kF -2 (37)

Recall that in the proof of th&;-F-V; case (Theorermn_ 15) we argued that if there are fewer
thank? initial F'-states (which is implied by fewer thaA 1 -states) then two distinct input triples
(v9, vg, v7) @and(vh, vg, v4) would reach the same initidl-state, and this would necessitate at least
k? initial V;-states. We cannot make the same argument now, beéamsay not include the right
functions. However we can still argue that if there are fethank?/3 initial F,-states then there
must be more thak? initial V,-states.

Let P = {py,...,p.} be the set of initial>-states. Assume to get a contradiction that

r=|P|<k/3 (38)

Definey : [k]*> — P by
w(vv U7) =Di

wherep; is the initial F;, state reached when the inplut, vs, v7) = (v, @) (here the choice of
f € F,isirrelevant).

Notice that if (v, w) and (v, «") are distinct elements af~!(p;) thenw # @, because for
v # v’ the two outputs + f(w) andv’ + f(w) are different but cannot be distinguished by any
query.

For1 < i < r we order the elements, «) of '~!(p;) by the lexicographic ordering of thé
component to form the ordered sets

Z = ((vf,@}),. .., (v, 1<i<r

wheret; = |)~!(p;)|. Notice that by[(3B) the average valuetpfs at least 3.

We define the unordered déf; to consist of thed components of;. Thus

(2

28



As observed above, theé elements are distinct, so

Forfe F,andl <i<r definec?zf € [k]" to be the ordered set of outputs determinedipy
andf. Thus

@l = (v} + f(@}), .. v+ f(d)))
Let ), be the set of initial;-states. We may as well assume
|Qq| < K? (40)

Definep : P x F, — Q2 by p(p;, f) is the initial V,-state reached starting at statavhen the input
functionisf € F..

Lemma 46 For1 <i <randf,g € F,, if p(pi, f) = p(ps, g) thena! =

3"

Proof: TheV; states determine the output, butvipquery can distinguisti from g. |
Forl <i<rlet
Si={al| fe .} (41)
By (40) and Lemma 46 we have
[Si| <k 1<i<r (42)

Notice that if in the definition[(41) we had allowefito range over the set’ of all functions
f : [k]* — [k] instead of overF,, then|S;| = k'i. Since the average value gfis at least 3,
equation[(4R) puts a considerable contraint on the caitiral F... We use this idea to derive a
contradiction from[(3]7) and our assumptién|(38).

We will give an algorithm to define a sequengg, p,,, ..., p;, of states inP so that when
Wi, ..., W/ are defined recursively by (sée39))

W= W (43)
j
VV;+1 = Wij+1 \ U WZ/ (44)
(=1
then the set$l’], ..., W are pairwise disjoint and each has at least 3 elements.

Let
w =Wl >3, 1<j<d

For f € I the number of choices fof 1 W (the restriction off to W) is k", but by (42) the
number of choices fof 1 W) whenf € F, is at mostk?. Since the setd/’; are pairwise disjoint,
eachj cuts down the ratio of choices fgre F, to choices off € F by a factor of at least —2.
Since by [(3V) we knowF'|/|F.| < k**, to reach a contradiction it suffices to have

d

H kuj'fQ > k,?k

j=1

29



which is equivalent to

d
> uy > 2k +2d (45)

7j=1
Here is the algorithm to choose the sequence;,, . . ., p;, Of states inP. We use the abbreviation

,=wi\Jw,, 1<i<r

0<j
Jg+1
while j < 2k andmax{|Y;| : 1 <i<r} >3
choose; solY;;| > 3
Jj—J+1
end while
d<—j—1

Notice that the resulting setd7, ..., W) are the sety],,...,Y;,, and hence each has at least 3

elements (and the sets are pairwise disjoint) as requirkst. A

d?

d <2k (46)

To prove the requiremerit (45) there are two cases.

If the while loop halts becausg > 2k, thend = 2k, and since each; > 3 it follows that
S0 uy > 3d = 6k = 2k + 2d.

Otherwise the while loop halts becausgl < 2 for 1 < i < r. Observe that eacli € [k]?
occurs in exactly: different setd¥; (once for each choice af € [k]). Thus if eachY;| < 2, it
must be that the ratio of the number of occurrences of all neimgvectorsw in Wy, ..., W, after

removing all occurrences lJi_, W, tor < k*/3, is at most 2. Thus

k?’—k‘Zuj
R B
B3 =

so by [46) we have_ u; > k*/3 > 2k + 2d for sufficiently largek, as required.

3.2.5 The VFVF case

At this point we have been unable to prove an interestingidweand for the VFVF case in solving
RR3(k) (Definition[d). Here we summarize the work on this by Steve Rhdong in the summer
of 2010. This is based on generalizing the proof of Thedrem 38

Each input to our branching prograthhas the form(vs, v, v7, f) Wheref = f; € F where

F={f:[k]— [K]}

30



We assume each V-state can query any property,af, (as long as the fanout is at magtso we
abbreviatess, v; by w. Thus each input t& has the form

(v,w, f) = (v, v6,v7, f3)

The corresponding output @ is v + f(w). Note that there are exactkf| F| different inputs.
The states oB are divided sequentially into the four layers

‘/17F17‘/27F2

where the states df; andV; queryw and have fanout, and the states df; and F; query f and
have arbitrary fanout. (See Theorem 48 to see that we canlg@eabound in this general setting
for the height 2 case.)

LayerV; hask inputs, one for each value of= v,.
Layer I, hasm initial statesP! = {p},...,p! }.
LayerV, has/ initial states@? = {q1, ..., q}.
Layer F;, hasr initial statesP? = {p?,...,p?}.

LayerV; computes a transformatian,, : [£*] — P*.
Layer F; computes a transformatiany, : P! x F' — Q2.
LayerV, computes a transformatian,, : Q* x [k]* — P2.
Layer F, computes a transformatiasy, : P? x F — [k].
Forl < i < mletU’ = ¢ (p!) be the set of triple$v, w) reaching statg!. Thus the sets
Ui,...,U, form a partition of[k]3. We write

U= {(vy,wy), ..., (v, wy,)}

whereu; = |U"|.

FACT: Forl < i < m, the elements ofw?, ..., w} } are all distinct.

Otherwise there would be distinct values)’ of v, such that for somev, both of the triples
(v,w) and (v, w) occur inU*. But then for anyf, the inputs(v, w, f) and (v, w, f) would reach
the same output state &f even though + f(w) # v' + f(w).

For each state in B we let/, denote the set of inputs reaching stat&hus

Iy =U'xF

Forl <i<mandl <j </let

G ={fernn, f)=q}

Note that for each, the set§ G, . .., Gi} form a partition ofF". For1 < j < ¢ we have

I,, = | JU" x Gi (disjoint union)
=1

31



Fori<j</1<z<rlet
Wi = {w : pv (g5, w) = p?}
Forl < z <r we have

£ m
Ly = | JUU (U n (k] x WP%)) x Gj
j=1i=1
Thus1,: is the disjoint union over all pairg;, ¢;) of inputs which follow the patfip;, ¢;) to p?.
Let us briefly give an intuitive argument. We are trying toye@ lower bound of2(%k?) on
the total number of V-states iB. So lets assume otherwise; say there are at &fgst V-states.
Then on averagd/‘| > 10, soU; has 10 distinct values af,, and the restriction of to these 10
values hag:'? possibilities. But there are only< £*/10 initial V>-states, so on average a state
receiving the input sel’* x G cannot know much about the value of a functiordhon aw in
U". For each such}, ¢; sends the entire input sef, x G’ to some initialF,-statep?. Since there
are onlyr < k3/10 such states, on average eaghreceives at leastO|F| of the k3| F| possible
inputs, so that makes an average of 10 possibi@lues for each functiorf it receives. Yet?
must determine the output+ f(w) based solely orf.
The proof of the next result shows that in order to get a loveamiol of2(£%) on+ (and hence
a lower bound of2(k?) on the number of V-states iR), we may as well assume that the number
of edges inB reaching each staj is w(v/k), since any statg? with fan-in O(v/k) can handle
only O(|F|) distinct inputs.

Theorem 47 Suppose that the number of input sets w;) x G’ reaching any fixed statg; is
O(Vk). Thenr = Q(k?). (Herer = | P?| is the number of initial states in thg, layer.)

Proof: Suppose that the input sets reachidgre(r, x Gy),. .., (z, x G,), wherez,, ...z,
are distinct triples ifk|?, andGy, ..., G, are subsets of’. Note that for anyi < j, any f in
G; N G must give the same output for both the tripiesandz;, and hence

GiN G| < |F|/k

Hence we can bound the number of inputs reachihgsing the inclusion-exclusion principle as
follows:

2 =D 1Gi < [|JGil+ ) 1GinG|
i=1 i=1 i<j
< 1F1+ () ein
= O(|F|) assuming: = O(Vk)

Since the total number of inputsig|F|, it follows that the number of stateg isr = Q(k%). W

Now we will try using the method in the proof of Theorém 38 td gdower bound of2(%?)
on the total number of V-states .

32



Lett;;. = |U N ([k] x W,.)| = the number of triples sent to statevia state®; andg;. As in
Lemmd 39 it is easy to show 4
G5l < |F|/k

As before, when max., > 4 (or some small number like 4);%| is small enough to ignore. For
simplicity, let us assume that
tijz <1

By the inclusion/exclusion principle we have

L] = ) t:|Gl
i

< | Utisz;’ + Z ’G; N G§'|tijzti’j’z
9] i<i 5,5’

Using an upper bound @f’| on the first term in the second line, and the fact that there doal

of k3| F| inputs, it follows that

FIF| = |La| <rlFI+ Y (IGiNGY| thtw (47)
z=1 i<il jj'
Let Sij = {Z : tijz = 1} Then
Z tijstiy e = |Si; N S

Note thaty >, _,, . .. |G} N G;l’,] = (J)|F|, because eachcontributes once to the sum for each pair
i <. Since|G} N G| is small whenS;; N Sy > ¢ for a suitable constant we obtain

B <r4 (T;)c

However this is not good enough to get a good lower bound ¢nm. In order to show this, we
must show thab,; N S;/;; is empty for most tuples j, ', 5.

3.2.6 The ‘simple’ (height 2) case

By thesimplecase we mean the Tree Evaluation Problem for binary treesighh2. There is an
easy proof in[[CMW 10] showing that any:-way BP solving this must have at ledsstates that
guery the leaves,, v3, even when the root function is fixed to be addition nkodHowever this
proof sheds no light on our attempts to prove lower boundiigmgection (the sequential height
4 case) since the problem becomes trivial whfgns addition modk. In fact our approach in
this section assumes that the states in the BP are dividethyacs such as VFVF. This amounts
to trying to prove lower bounds for a much stronger kind of BPwhich the V layers allow an
arbitrary transformation depending og, v; with some fixed (but large) number of inputs and
outputs, and similarly for the F layers.

33



Hence it is worth studying proofs for this simple height 2ecassuming that the BP is divided
into V and F layers which have general access to the inpui®$;) and f;, respectively. In fact a
simple counting argument in the style of Neciporuk giveshesdesired lower bound for this case,
and more generally. Unfortunately this counting argumemtsthot work for solving the problem
RR3(k), although perhaps it might prove helpful in some way.

Theorem 48 Let B be ak-way branching program solving the Tree Evaluation Problenbinary
trees of height 2, and suppose that we allow any V-statetmmake an arbitrary query concerning
the pair of leaf valueguv,, v3) (as long as there are at moktedges leaving the state) and we allow
any F-state to make an arbitrary query concerning the tabilgadues defining the root function
f1 (here we can allow any number of out-edges from the F-stategn B has at least: different
V-states.

Proof: Because we are interested in the layered case in this subs&atiwill assume that the
states ofB are divided into alternate and F' layersVy, Fi, Vs, Fy, ..., V;, F,. However a standard
Neciporuk-style argument proves the theorem even withostassumption.

Suppose layeV; has/; V-states,1 < i < t. By the fanout assumption it follows that each F-
layer F; has at mosk/; inputs from the preceeding V-lay&}. Thus for each possible root function
f : [k]* — [k] we can describe the effect of layEras a map fronk/; inputs to at most;, ; inputs
of layerV; 1, and the effect of the final laydr;, as a map fronk/, inputs to thek outputs of the
branching progranB. Since we are trying to prove that there are at least a total\6&tates we
may assumé; < k. Hence forl < i < t and each functiorf we can describe the effect of layer
F; by amap

foopep.
i« [kb] — [K]
There are at most*“: choices fory/, and for each distingf : [k]* — [k] the sequence!, ..., o/
must be distinct (since any two distinct root functighwvill give a different output for some pair

vy, v3). Hence
t

=1
soYt_, ¢; > k, as required. n

Remark: The above proof shows a stronger result, namely that evénnaiiimit on the fan-out
of the V-states, the total number of initial F-states is asté?.

3.2.7 Lower bound for semi-thrifty programs for the simple case

We have not been able to prove the lower bound for the VFVF easa when the branching
program satisfies the condition that the s@;isare determined by querying onlf(w) wherew
appears irU;. Here we will give a simple argument showing lower bound f60\W semi-thrifty
branching programs that solves the simple (height 2) case.

Theorem 49 Let B be a VFVF semi-thrifty branching program that solves theeTevaluation
Problem for binary trees of height 2. Then either it kdsnany initial V-states, or it ha%:? many
initial F-states.

34



Proof: As usual, we denote the initial states in the firdayer byp}, pi, ..., pl ; the initial states
in the second’ layer byqy, g2, - - ., q; and the initial states in the lagt layer byp?, p3, ..., p?.
Suppose that < k2, we will show thatm + r > k2.

Let U; denote the set af that reachp}. SoU,, Us, ..., U, is a partition of[k]. In particular,
U; andU; are disjoint for any # 7'

We say tha{w, G) “meets” (w’, G%)) if for some statey?, w labels an edge from; to p? and
w' labels an edge from; to p?.

Claim: Suppose thatw, G%) meets(w, G",). ThenG! is single-valued om, that is, for any
two functionsf, ' € G5, f(w) = f'(w).
Proof:  Suppose for a contradiction that there are functipng € G such thatf (w) # f'(w).
We view f and f” as function ornlJ;. BecausdJ; is disjoint fromU;,, ande/, is defined based on

values of functions ow;, there are extensiorygandf’ of f, f/ such thath|U2,, = f’|Ui,, and that
both f and f’ belong toG; As aresult, botly and f’ belong to the intersection

NGy

Therefore R R R R
fw) = fw),  fllw) = f(u)
This is a contradiction, becaugew) = f(w) # f'(w) = f’(w), while f(w’) = f’(w’). [
It follows from the claim that if there are distinat;, w; € U; such that(w;, G%) and (w}, G%)
each meets at least some other fait; G%)), then|G%| < |F|/k*. This is because in this cas#
must be single-valued on both andw;.

Fix 7, 1 < i < m. Because < k?, there must be somgso that|G’| > |F|/k*. By the above
observation, there is at most one valugc U; such that the paifw;, G;) meets some other pair

(w', G%). Consequently, for each of the othék| — 1 manyw € U; the pair(w, G%) takes up on
distinct statey?. As a result, the total number of initi@h-states is at least

m

S (U~ 1) =k —m

i=1

In other wordsy + m > k2. [ ]

4  Optimizing Branching Programs from Pebbling

In his MSc research paper Dustin shows that when the statdiackl pebbling algorithm for the
binary tree of height. is implemented by #&-way BP, the resulting BP has exactly + 1)" — &
states (not counting output states). Although we know thatstandard pebbling algorithm uses
the least possible number of pebbles, it is not immediatielgrahat its implementation by a BP
uses the least possible number of states (among all pelkdlogithms). Here we show that it
does. We also consider minimizing leaf queries.

35



4.1 Minimizing All States

Let IT be a black pebbling algorithm faf = T2 (the binary tree of height). Let States(k, 1) be
the number of non-output states in thevay BP that implementH in order to solvel’T" (k).

In general we assunie> 1 andk > 2.

We can definestates(k, I1) as follows. Forl < i <t let p;, be the number of pebbles on the
tree before théth pebble placement il (heret is the total number of placements). Note that the
pebble placement at stépequiresk?: states in the corresponding BP; one state for each of the
possible values of the pebbled nodes. Thus

States(k,1I) = Y " k"
Now let SS(k, h) (SS stands for Standard States) B&ites(k, I1), wherell is the standard peb-
bling algorithm for7".

Theorem 50
SS(k,h) = (k+1)"—k

Proof: We use induction oth. Forh = 1 just one pebble is required, so the base case follows.
For the induction step, the standard pebbling algorithmgebbles the left principal subtree, keeps
a pebble on its root, then pebbles the right principal seb@ed then with a pebble on each child
of node 1, finally pebbles node 1. Thus

SS(k,h+1) = SS(k,h)+k-SS(k,h)+ k* (48)
= (k+1)[(k+1) k) + k* (49)

= (k+1)" - (50)

|

For eachk, h let MinStates(k, h) be the minimum ofStates(k,11,) for all pebbling algo-
rithmsII,, for T".

Theorem 51 For all k&, h
MinStates(k,h) = SS(k,h) = (k+ )" — k

Proof:  Obviously MinStates(k,h) < SS(k,h). We prove the reverse inequality by induction
on h. The base cask = 1 is clear. For the induction step, (fromto i + 1) consider the
last step inll;,, before the root is pebbled that one of the principal subtfeag the left one)

of 7"+ is empty. From this point on until node 2 is pebbled there ieast one pebble on the
right subtree, so (by the Induction Hypothesis) the peblalegments on the left subtree contribute
at leastk - SS(k, h) states which query nodes in this subtree. Also node 3 musebblgd at
some point, so by the I.H. there must be at lIeaStk, i) states which query nodes in the right
subtree. Finally there must be at leaststates which query node 1. Referring[fol(48) we see that
MinStates(k,h +1) > SS(k,h + 1). |

36



4.2 Minimizing Leaf Queries

Let Leaf(k, IT) be the number of states which query leaves in the BP correggptuthe pebbling
algorithmII. As before, lefp; be the number of pebbles in the tree before the pebble isgpkce
stepi of I1. Letleaf be the set of all such that a pebble is placed on a leaf at stefll. Then

Leaf(k, 1) = ) Kk

i€leaf

For eachk, h let MinLeaf(k, h) be the minimum ofLeaf(k,11;) for all pebbling algorithmgT,
for Th.

Theorem 52
MinLeaf(k,h) = (k+ 1)

Proof: Itis easy to see by induction dnthat the standard pebbling algorithm achieves the stated
bound. Hence it suffices to prove the lower bound by inductiorh. The base cask = 1 is
obvious. For the induction step we argue as in the proof obfdm[51. Starting from the last
time before the root is pebbled that one principal subtresripty we note that the leaves on that
subtree must be pebbled while the other subtree has at leagiebble, and the leaves of the other
subtree must also be pebbled. Hence

MinLeaf(k,h+1) > k(k+ )" '+ (k+ )" = (b + 1"

Conjecture: Every deterministic thrifty BP which solvesT" (k) has atleast/inLeaf(h, k) =
(k + 1)h~! states which query leaves.

Finally we consider sequential BPs (see Sedtion 3). We aeeeistied in the number of leaf
states required for a sequential BP to solE&?(k) assuming that it has initial states, one for
each possible value af, and it is not allowed to query, later. (This is the problenk R3(k)
described in Definitiof]7.)

The corrsponding pebbling problem is to pebblewith a permanent pebble placed on node 2
throughout. It is easy to see that the minimum number of statany BP which corresponds to
such a pebbling algorithm #(k + 1) = k? + k. This is slightly larger than the lower bound /ot
stated in Theorem 30. (See the comment at the end of the proof.

5 Read-Once Lower Bound

We give two lower bound proofs for deterministic read-onces BBlving F'7}'. The first one is

due to James. The second one is an improvement, due to SiuGwollary[63 to the second
Theorem states that deterministic read-once BPs soWifigy k) haveQ (k") states, showing that
black-pebbling gives the optimal read-once algorithm.

37



5.1 First Theorem

Theorem 53 Let k = p*", wherep is prime andr > 1. Leth € {1,...,vk}. Then any deter-
ministic read-once branching program which solves the tresdi@tion problem/T7 must have
at leastk("~1)/2 = pr(h-1) states which query leaves.

We need the following definitions:

5.1.1 The Internal Nodes

LetF = F j; be the field of ordex/k. Fora,b € F_ , let[a,b] = a + bVk € [k], so that]-, ] is a
bijection betweerF? and|[k].

We consider trees in which every internal node is labeled thi¢ functiony : [k] x [k] — [£],
defined by

90([%7 bo]» [ah bl]) = [aoah apby + a1bﬂ-

The internal nodes being fixed, henceforthimput ¢ shall be an assignment of values to the
leaves of the treé = (von-1,...,v9n_1).

5.1.2 i-Siblings

Nodev’s 0-parent isv itself, and in general’s : + 1-parent is the parent ofs i-parent.i;-children
are defined oppositely.

Nodew’s only 0-sibling isv itself. In general, an-sibling of v is anyi-child of v’s i-parent
which is not already &-sibling of v for any j < i. For example]-siblings are ordinary siblings,
and2-siblings are cousins.

5.1.3 The Final-Leaf Function

Leti € {21,211 1 ... 2" — 1} be the last leaf queried by some computation that queries
each leaf exactly once. Lét= (vyn-1,...,v9n_1) be a tuple assigning a value to every leaf. Then

thefinal-leaf functionf; , : [k] — [k] is defined as follows: for any € [k], f; /() is the value of

the root of the tree if the ledfis assigned value, the other leaves are assigned their values from
¢, and the internal nodes compute the function defined in @&8&til.1.

5.2 Proof of Theorem 53

Throughout this section’? shall be any read-once branching program which correctiyprdes
the tree-evaluation problem, asdshall be the set of states 6%

We first show in LemmB_54 that at the tinkemakes its last query to a leaf, it must remember
the entire final-leaf function, so it must have at least asynsaates as there are possible functions
at that point. Then, we show in Lemrhal 55 that there is at leastdistinct possible final-leaf
function for every degreé-— 1 polynomial over the field" ;. These two lemmas complete the
proof.

38



Lemma 54 There exists a functioty : S — [k] — [k] such that for any leaf assignmeht=
(vah-1,...,v9n_), if 7 is the last leaf queried by on input/ ands € S is the state which makes
that query, therG(s) = fi,. That s, the state encodes the entire final-leaf function for the last
leaf queried byB.

Proof:  The values of the internal nodes are all predetermined, s@dmputation ofB from
states to the output state depends only on the value of theile@ince the program is read-once,
the states does not depend on the valuef i. Hence the value of; ,(z) is completely determined
by s andz (independent of). |

Lemma 55 Call a functiong : [k] — [k] attainablef there is some input = (von—1,...,v5n_;)
which forcesB'’s final-leaf function to bg. There are at least"~1)/2 attainable functions.

5.2.1 Proof of Lemmd5bh

Using the operatiof, -| from Sectiori 5.1]1, for every leafwith valueu;, let[a;, b;] = v;.
Leti € {2"7! ... 2" — 1} be the index of any leaf. Then fgre {1,...,h — 1}, letC;(i) be
the set of allj-siblings ofi, and let¥; (i) = >~ .cc. ;) bm-

Lemma 56 Let: be the index of any node. If the value of every leaf beldswof the form([1, b]
(that is, its first component is 1), theérnas the valuél, i'], wheret' is the sum of all thé-values
of those leaves.

Proof: Observe that the internal node function given in Sectiotlsdn inputg1, by] and([1, b, ],
assumes the valye, by + b1]. |

Lemma 57 Leti be a leaf index and suppose that for all leaveg i, a; = 1. Then the final
function f; ,, when restricted to inputs of the forja 0], is

fzg aO [ ZE h_j_ll.

Note that the second componentfpf is the degree+ — 2 polynomial ina with coefficients; (i):
in particular, every choice of valuggl;) gives a different final function. (Recall that Theorem 53
assumes < 'k, so a degreé, — 1 polynomial cannot be identically 0 ové,)

Proof:  Assume without loss of generality thatis the leftmost leaf:i = 2"~!. Letx; =
i,Ta,...,x,_1,2, = 1 be the indices of the nodes on the path from letf the root of the tree,
with valuesv,; = [a,,, by,].

Notice that every node; has as its right child the root of the subtree whose leavetharset
C;_1(1): it follows by Lemmd5b that node; has as its right input the valye, X;_,(¢)]. Then

39



the b-value of the root is the polynomial instated in the Lemma, evaluated by Horner’s Rule by
climbing the path fromi to the root. To see this, prove by induction that for everg {1,... A},

m—1
Vg, = [a, Zj(i)amjll .
|

Lemma 58 For any choice ofvalues, . .., 5,1 € F 4, there exists aninput= (von-1,...,v5n_1)
such that the following two properties hold. Lebe the index of the final leaf queried B/on
input/. Then

o Forallj #4,a; = 1.
oForallje{1,...,h—l},2j(i):5j.
Proof: Begin with all the leaf values unspecified, and run the brargprogramB. Every time

B queries a leaf (except for the last time) decide the valuestiorm according to the following
algorithm:

1. Letm be the index of the leaf being queried.

2. If m’s 1-sibling is still unspecified, lef = 1. Otherwise, letj be the smallest integer such
thatm has at least ongsibling that has not yet been specified.

3. Let D be the set of all leaves which aresiblings ofm for anyr < j, excludingm itself:
D =UZiCo(m).

4. Specify theé-value of leafm to be

b = 55— ba.

xzeD

After 2" — 1 leaf queries have happened, the only keaflue that is still unspecified is that of the
final leaf,b;. It suffices to show that the following invariant holds atmigvstep of the interaction.

e Let i be the index of any leaf whodevalue has not yet been specified. Then for every
j €{1l,...,h— 1}, theb-value of¥;(7) is either undetermined (due to some léafalue in
C; (1) still being unspecified) or is equal £0.

The invariant is true at the beginning of the interaction@inbecause:; (i) is undetermined for
every: andj. Now, assume the invariant holds at one point in time, andteue of a new leaf
m is specified. Consider thievalueX; (i) for any j” and any leaf # m whoseb-value has not
yet been specified. If the-value ofX;/ (i) was determined before leai was specified, it must
already be correct, so the only case we are interested imi&th(:) was not determined before
and is determined nowi’ must be equal to th¢-value chosen in the algorithm: for jfwere less

40



thanj’, thenm’s unspecified;-sibling would leave:; (i) undetermined, and if were greater than
J', then the value of would already have been determined. Therefore, th€'sét) = C;(i) is
equal toD U {m} (taking theD used in the algorithm), so

Z]’/(i):be—Fbm:be—FS]’—be:S]’.

zeD zeD xeD
[ |

Lemmad 57 and 58 together show that the final function canrdgeddo be any degrele— 1
polynomial overF' ., which completes the proof of Lemrhal55.

5.3 Second Theorem

Theorem 59 Any deterministic read-once BP which sol&s)' hasQ (k") states which query
leaves.

Proof: The proof is similar to that of the previous theorem, but nosvuge a different field, and
the node values are field elements, rather than pairs of fieidents. Fix a deterministic read-once
branching progran? which solvesr"Ty.

Let d be an odd positive integer. We let the fidldbe GF(2¢), and set; = 2¢. In general the
nonzero elements of the fiet@d?’(¢) form a cyclic group of ordeg — 1, so if e is relatively prime
with ¢ — 1 then the polynomiat® is a permutation polynomial of the fie@F'(¢). (A permutation
polynomial of a field is a polynomial that permutes the elemmai the field.) Since? — 2 is
divisible by 3 whend is odd, it follows thatycd(3,2¢ — 1) = 1, soz? is a permutation polynomial
of F = GF(2¢) = GF(k).

We assumeé: > 3"~!, so that distinct polynomials over of degree3”—! represent distinct
functions onF.

We fix the functionf; assigned to each internal nodeTdf to be

fila,b) = a’ + b

[NOTE: Alternatively we could také;(a,b) = (a + )]
With this assignment of functions to internal nodes, théofing lemma is easily proved by
induction on the height of node using the fact that? is a permutation polynomial.

Lemma 60 For each internal node of 7' and element € I and each leaf in the subtree rooted
at r and each assignment of elementgino the leaves other thai) there is a value,; € F for i
which makes, = a, wherew, is the value of node.

From this lemma it follows that, for each possible tuple s», . .., s,_1) of h—1 field elements
and each leaf, there is an assignment of field elements to the leaves dthei such that the values
of the siblings of the nodes on the path from the root to theerigdxcluding the root itself) form
the sequencesy, so, ..., Sp_1).

Thus if x is the value of the leafthen value of the root is

fl(l‘) = 51 + (82 + ...+ (Sh_g + (Sh—l + 233)3)3 .. .)3 (51)

41



Lemma 61 For each distinct sequends,, so, . .., s,_1) of field elements the polynomial(z) in
(51) is distinct.

Proof: The proof is by induction on. If we write the polynomialf; (z) as a sum of monomials
;2 then the highest degree monomiaki8 ' and the second-highest degree monomial is the
same as the second highest onésin ; +23)3"*, namely3"~2s,_,23" '3 SinceF has charac-
teristic 2, the coefficier®"—2s;,_; is the same as;,_; in F. Hence the value of;,_; is determined
by the polynomialf,(z). If we sety = s;,_; + z* (note that this map from to y is a bijection)
then [51) becomes

filx) =51+ (s9+ ...+ (spo +y*)?..)°

S0sy,...,S,_o are determined by the induction hypothesis. |

It follows from the above lemma that there ar& ! distinct polynomials of the forn(51).
Since we assumke exceeds their degre¥¥ !, there arek"~* distinct functionsf, (x) of the form
G2).

To finish the proof of the theorem we need an analog of Lefnman%8a proof of Theorem
[53. This will show that for each tuple, ..., s, 1 € F there is an assignment of elements to the
leaves ofl’? such that ifz is the value of the last leaf read by the program, then theevafithe
rootis f1(z) as given in[(5ll). Hence there must be at lédst distinct states i3 which read the
last leaf in some computation.

Recall from the proof of Theorem b3 that fpe {1,..., h—1}, C;(7) is the set of allj-siblings
of i. Then we defineoot;(i) to be the root of the subtree whose leaves are thé€'set, and we
defineS;(7) to be the value ofoot;(7).

Lemma 62 For any choice of values, .. ., s, € F there exists an input= (von-1,...,09n_;)
such that ifi is the last leaf queried b on input/ thenforallj € {1,...,h—1}, s,; = (S;(4))?.

Proof:  The proof is similar to the proof of Lemmal58. Steps 1. and 2thefalgorithm to
evaluate a leaf are the same as before, but the last two stepeypdace by

3. The valuev,, of leafm is that which according to Lemnial60 makes= (s,_;)'/3, where
r = root;(i).

Now the invariant becomes

e Leti be any leaf whose value has not yet been specified. Then for gve{1,..., h — 1},
S;(7) is either undetermined (due to some leatly{:) still being unspecified) or is equal to
(sn-3)"/>.

The proof of the invariant consists in observing that whendlre algorithm fixes the value of
any node of heighf, that value igs;,_;)'/>. |
|

Corollary 63 Any deterministic read-once BP solvifiy (k) hasQ(k") states.

42



Proof:  This follows from Theorems 59 arid 1. Difficult instancesFsfy (k) are obtained by
assigning functions to the nodes in the top- 2 layers according to the proof of Theorém| 59
when the overall tree heightis— 1. The functions assigned to layer 2 from the bottom are those
described in the proof of Theorém 1 (i.e. zero everywherexat some specific pairr’ of child
values). The values of the sibling pairs of the leaves-are |

6 Thrifty lower bound - alternative proof
Theorem 64 Any deterministic thrifty BP solving' 77 (k) has at leask” states.

Proof: The definition of critical states used in this proof is the sams in the original proof, but
the way of assigning pebbling sequences to inputs is sjighfierent, so to ensure consistency
we’'ll start by repeating the definition of the critical staequence of an input.

Fix an input/, and letP = P, be its computation path. We will choosestates onP, one for
each node of the tree, as critical states foiThe critical statey! for the root is the last state on
P that queries the root. In general for internal nodethe critical stateg:; andgs,,, are the last
states onP beforeq! that query nodegi and2i + 1 (the thrifty condition ensures that these states
exist). Note that ifj is a descendant ofthenqu. occurs before! on P.

The pebbling algorithm associated with the computatioh gats slightly different from be-
fore, in that now a nodeéis pebbled (and the pebbles on the children removeédsiinot a leaf)
at the state/’ following the critical statey; rather than at; itself. The intuitive reason for this is
(assuming is not the root) by the thrifty property ‘knows’ the value ofv; of nodei, since the
parent ofi will be queried beforé is again queried.

This revised pebbling algorithm assigns a pebbling conditjoin to each state oR, such that
the set of pebbled nodes in each configuration is a minimabtthe tree or a subset of some
minimal cut, and any two adjacent configurations are eitthentical, or else the later one follows
from the earlier one by valid pebbling moves. This assigrtnean be described inductively by
starting with the last state iR and working backwards. The pebbling configuration for thigpou
state has just a black pebble on the root. Assume we've defireedebbling configurations for
g and every state following on P. Let ¢’ be the state beforg on P. If ¢’ is not critical, then
its pebbling configuration is the same as thatyoflf ¢’ is critical then it must query a node
that is pebbled iy. The pebbling configuration fay is obtained from the configuration fqrby
removing the pebble fromand adding pebbles t and2i + 1 (if 7 is an internal node - otherwise
you only remove the pebble from. This is the main property of the pebbling sequences that we
will use directly:

Fact 65 If non-root node is pebbled at critical statg/, then there is a later critical statg/ of /
that queries the parent of 7, and there is no state (critical or otherwise) betwqémnd qionP
that queries.

Define the supercritical statg of I to be the last critical states dfon P whose associated
pebbling configuration is a bottleneck. Hence by the blad¥peg lower bound for binary trees
of heighth, there are at leagtnodes pebbled at .

43



Remark Similiar to the original proof, at this point we could restrihe set of inputs to be the’
inputs whose functiong; are zero everywhere except possibly when the argumentbaralues
of the children of node. We would still get a lower bound df* states. However, doing so does
not simplify this proof, and might make it less robust in tleidwing sense: Possibly this proof
could be adapted to work for subsets of the inputs that gat@he statistical properties, but have
no obvious “simple” description, in contrast to the set:bfiinputs just mentioned.

Let (). be the set of states that are supercritical for some inputElge the set of inputs and
let N := (2" — 1)k? + 2h~1 be the number of-valued input variables. Thy#| = k"=, Let
A (for ‘Advice’) be the set of tuples df] of length N4 := Ng — h. We will now define an onto
functionG : Q. x A — E, which implies|Q.| * |A| > |E| and so|Q.| > k", which completes
the proof. G will have the property that for every € E there is some advice; € A such that
G(qgv ar) = 1.

To be precise, we will definé’ using a deterministic algorithm/ which takes as input an
element of)). x A. Oninput(q., a), algorithmM constructs a pat, o, ¢1, - - - , €m_1, ¢ through
the branching program, whegg = ¢., the output state ig,,, ande; is an edge fron; to ¢; 1. M
maintains a partial assignmeritof values in[k| to nodes. Initiallyo*(4) is undefined for all nodes
1.

The idea is thafl/ learns the values of the children of each node queried, seazfithe thrifty
property. It uses this information to answer a query to a rniodeich is the child of a previously-
gueried node. Otherwise it uses the next element in the adinga as the value of. There are
at leasth pebbled nodes in the bottleneck configuration, andvill query each of their parents
before they are queried, and hence learn their values. $huhy the advice: can haveh fewer
elements than there are input variables.

Back to the formal description}/ indexesa using the variablé, which is initially zero. The
main loop of M follows. At stateg;, M does the following:

1. If ¢, is an output state, set(1) to its labef4 Leti; < iy, < --- < 1, be the entries of* that
are still undefined. Set*(i1) := a[l],v* (i1 + 1) == a[l + 1],...,0"(i,) == a[l + z — 1]E
Then exit this loop.

Let X be the input variable queried lgy, and: the corresponding node of the tree.

If X = fi(y,v), then sev*(2i) := y andv*(2i + 1) :=y/.

If v*(¢) is defined, then take the edgewith that label (i.e. sef;; to the state; points to).
Otherwisev* (i) is undefined. Take the edgg with label a[l]. Setv*(:) := a[l]. Then
increment by 1.

abkowd

Before giving the remainder of the algorithid, we will recursively define the first — A
elements of the advice; for I. Suppose we've defined the first elements:; of a; for some
non-negative integer. < n — h. Consider the computation aff on (¢’ a;a”), for arbitrarya”
of length V4 — m. If the condition of (1) in the main loop is satisfied befarelooks ata”, then
define the next — h — m elements of:; to be the valueg takes on the undefined entriesf

4This isn’t actually necessary: if the advice is good theéfil) will already be defined by now
*We will argue later that + z — 1 will never exceed the length afwhen(q.,a) = (¢,a;) for somel

44



(in increasing order of node indices). Otherwidé reaches a staig where the condition of (5)
in the main loop is satisfied, and so far the computation doesl@pend on”. Let: be the node
queried byg,. Define the next element af to bew!.

Let p be the number of pebbles in the bottleneck configuratioh dfet o/, be the firstn — h
elements ofi;, defined above. Let” be an arbitrary tuple of elements @f of length N, — (n —
h) = Ng — n. It follows from the earlier stated fact about the assigneloliing sequences that
on input<qg, a’[a”> will use at most the firsk — p < n — h elements of); before satisfying the
condition of (1). Alsov* will be defined for allp of the pebbled nodes.

After the main loop* is defined for all nodes. Hence there are exafly/k" = kNe—n
inputs consistent with* (and! is one of them), and at most that many which also hg\es their
supercritical state. Hence we can use the remainipg- n undefined elements af; to uniquely
specify I. So after exiting the main loopy/ outputs the inpuf coded by the pair of* and the
last N — n elements of..

[

7 (k+1)"—Fkis exact for BPs that are both thrifty and read-once

This section is most-related to Sectidn 4. We writ¢"Tig as an abbreviation for “Bj(k) or
FT,(k)”. We show that a BP solving TEk) has minimum depth (defined below) if and only if it
is both thrifty and read-once (Fdcil68), and that the uppendof (k + 1)" — k non-output states
for FT% (k) mentioned in Section 4 is the exact minimum for these (vesyricted) BPs (Theorem
69).

Define the depth of a deterministic BP to be the maximum numbstates visited by any
input, with the output state included. It is easy to prove thepth2” is required to solve THk)
by considering those inputs all of whose internal node fionstare quasigroups (see [Weh10] for
a proof). Let us say a BP solving T&) is min-depth if it has deptr2”. We will use the following
results from[[Weh10]:

Lemma 66 Every min-depth BP solving TE) is thrifty.@

Lemma 67 For every input/ to a min-depth BP solving Tk ), the2" — 1 input variables queried
by I are exactly the” — 1 distinct thrifty input variables of . Hence such a BP is read-once.

Theoreni 6D is the goal. We will not use the next fact in the froat it may be worth noting:
Lemmag 66 and 67 charaterize the min-depth BPs solvidgAEin the following sense:

Fact 68 A BP solving TE(k) is min-depth iff it is both thrifty and read-once.

Proof: The left-to-right direction follows from Lemmas 66 dnd 6or fhe right-to-left direction,
we use the fact from [Weh10] (page 10, second paragraph amddet) that in a thrifty BP, every
input must query all and only it®" — 1 thrifty variables. Since the BP is also read-once, every
input visits exacth2" — 1 states (including an output state). |

6Hence from the lower bound on thrifty programsl[in [Weh10],ge¢ that every min-depth BP solving TE{) has
at leastk” non-output states. This is the bound that we are slightlyavipg on here.

45



Theorem 69 Every min-depth BP solving TE) has at leastk + 1)" — k non-output states.

Proof: For B a min-depth BP that solves TE:) and for each < h let States(B,l) be the
states ofB that query a heightnode variable. By Lemnia ¥0 the theorem follows if we can show
for arbitrary suchB that:

|States(B,1)| > (k+ 1)}

> ( 50
and |States(B l)|2k(k+1)h’ for2<i1<h (52)

Lemma 70 .

(k+1)"—k=(k+1)""+ &) (k+1)"

=2

Proof: Since(k + 1)" — (k+ 1)"! = k(k + 1)"~1, after subtractingk + 1)"~! from both sides
we can write the equations as:

h

kk+ )" = k=8> (k+1)"

=2

We addk to both sides, divide both sides kyand then prove the resulting family of equations

h
(k+1)"" =14+k) (k+1)""
=2

by induction onh > 2. Forh = 2 itis clear. Now leth > 3 be arbitrary and assume the equation
holds forh — 1.

THESI J(k+ 1) = 1T4+k(k+ D" 24+ 4 k(k+1)+k
= k+1D)+kk+1D" 2+ +k(k+1)
(k + )[1+k(k+1)h P4 4k
= (k+ D[+ k>, (k+ 1007
(k+1)(k+1)"2 by lLH.

The next lemma shows that it suffices to prove the lower bounthe number of states that
query height-2 variables.

Lemma 71 If |[States(B,2)| > k*(k + 1)"~2 for everyh and B, then [52) holds for every and
B.

Proof: Assume the hypothesis holds. LBtbe a min-depth BP that solves B() (the proof is
the same for FJ(k))

To show|States(B,1)| > (k + 1), we transformB into a min-depth BPB’ that solves
BT4™ (k). Replace each state that queries a leaf variable with a cofhedP for FE(k) in the

46



obvious way. Each such replacement involves addtlgeight-2 querying states. Hencefifhas
less thank + 1)"~! leaf-querying states theR’ has less thaw?(k + 1)"! = k2(k + 1)(h+1)-2
height-2 querying states, which contradicts the hypothéake still need to argue that we haven't
increased the depth by too much. Since every input tasits exactly2"~! leaf-querying states,
andB has deptl2", itis not hard to see that every computation patfimas length2” +2. 2" =
2h+1.

Now we assumé > 3 and give the argument f¢Btates(B,3)| > k?(k+1)"=3. It will be clear
how to generalize it to géStates(B,l)| > k?(k + 1)"~' for all 3 < I < h. We transformB into a
min-depth BPB' that solves B! (k). The height-3 querying states Bfwill become the height-
2 querying states foB’. HenceB must have at least?(k + 1)"~3 height-3 querying states, since
otherwiseB’ would have fewer thak?(k + 1)(*~1)~2 height-2 querying states, which contradicts
the hypothesis. Lek; be the inputs ta3 all of whose leaf values are The computation path of
each input/’ to B’ will be derived in a simple way from the computation path aofngd € F;.
First, remove every state i that queries a variable in

{fu(a,b) | uis a height-2 node and, b) # (1,1)}

Also, for every leaf-querying statg remove thek — 1 out-edges of labeled2, . . . , k. Removing
those states and edges does not break the path of any inpuyt this is clear for the edges, and
for the states it follows from the thrifty property (Lemrna)66Ve need to be a bit more careful
about removing the leaf-querying states, since teyvisited by inputs inE;. Place a token on
the start state, which must be a leaf state by thriftinesse&gpe following while there remains
some leaf-querying state We knowg has a single out-edge labeled 1;¢€be the state that edge
points to. Redirect all the edges going intso that they go int@’ instead. If the token is on
then move it tog’. Finally removeg. When this process finishes, the token will be resting on a
height-2 querying statg* with no in-edges; specifically some state that queries abkrin the set
V ={f.(1,1) | uis a height-2 node The last step is just to relabel the states that query Vasab
in V. for each height-2 node, change every occurrence of the state lghél, 1) to /|, 2. The
start state of the resulting BB’ is ¢*.

Now we need to argue that we hadecreasedhe depth enough. Consider an ingut E; to
B. The construction above determines the inpub B’ that/ gets mapped to. Sindeis thrifty,
it does not visit any of the height-2 querying stateithat were removed. We also know that
visits exactly2"~! states inB that query leaf variables. It follows that the computati@thpof I’
is shorter than that of by exactly2"~!, and so it has lengt¥*—*. |

Fix h, k and a deptl2” BP B that solves TE(k). Let £ be the set of inputs té. We want to
show B has at least?(k + 1)"~2 height-2 querying states. L& be the states aB that query a
height-2 variable. For < 2"~2 let Q? be the stateg € Q? such thay is thet-th Q*-state visited
by some input ta5.

Lemma 72 Q7 N Q7 = 0 for distinctt, t, < 2"2.

Proof: Otherwise, there arg, t, with ¢, < t; such that there is a statethat is thet,-th state
visited by some inpuf; and thef,-th state visited by some other inplyt# ;. SinceB has depth
2" by Lemm& 6 we get thal, visits 2" — ¢, states after; and I, visits 2" — ¢, states after.

a7



However, sinceB is read-once, every syntactic computation path is a semérgi consistent)
computation path, so there must be some idputhose computation path is the same as thdt of
up toq, and then the same as thatlgffrom ¢ until the output. But then the computation path of
I5 has lengtht; + 2" —t, > 2", a contradiction. [

Next, for2 < I < h we will define a sequencg of positive integers of lengt@"~!. To see
the purpose of;, consider the min-depth BB* for FT,(k) that we get from the optimal black
pebbling that always pebbles the left subtree before the sgbtree. If you draw the tree minus
the leaves, and label each nodevith the number of states iB* that query au-node, then your
picture should look like this:

k’2
k2 k3
k2 k3 k3 k4

Z; gives the exponents of the heightodes in such a picture, read from left to right. SoAot 4,
we havez, = 2,3,3,4. Formally: z, = 2, and for2 <[ < h — 1, z is 2., followed by the
sequence obtained by adding 1 to each element,of We write () for thet-th element of;].
Later we will appeal to the following equivalent definitioh 8.

Fact 73 Let #oneét) be the number of 1s in the binary representatiort of 0. Thenzy(t) =
2 4 #onest — 1) fort > 1.

Eventually we will get the quantity?(k + 1)"~2 using the following simple lemma:
Lemma 74 Y2 kA0 = k2(k + 1)" for every2 < I < h

Proof: Easy by induction ok — 1. |

We assign to each inputa pebbling sequendg’ of length exactly2" such that the following
Property 1 holds. Because of the depth restriction, whicHiea is thrifty (Lemmd 66), there is
exactly one way to do this. The definition follows the statatwd Property 11.

Property 1 For each pair of adjacent stateg, ¢, on the computation path df if C{ andC? are
the associated pebbling configurations, then a pebble isddinla node: in the moveC? — C1 iff
q1 queriesu, and a pebble is removed from a non-root nade the moveC! — CY iff ¢, queries
the parent ofu.

Fix I and letP be the computation path éf The pebbling sequence assignment can be described
inductively by starting with the last state ¢hand working backwards. The pebbling configuration
for the last state irP (i.e. the output state) has just a black pebble on the roatuie we have
defined the pebbling configurations fgand every state following on P, and letq’ be the state
beforeq on P. This inductive construction, together with Lemnia$ 66 aidd énhsures thaj’
gueries some nodethat is pebbled iy (see page 10 of [Weh10] for a more-detailed argument).
The pebbling configuration fay is obtained from the configuration fqrby removing the pebble
from u and adding pebbles to both childrenof(if « is an internal node - otherwise you only
remove the pebble from).

We will use the next lemma in the proof of Lemind 76.

48



Lemma 75 For every input/ andt < 272, if C is the pebbling configuration associated with the
t-th Q?-state visited by, then there are at least(¢) pebbled nodes it

Proof:

LetC andt be as in the statement of the Lemma, and leé the heigh? node that gets pebbled
in the next configuration after'. By Property 1, the two children aof are pebbled irC. Also by
Property 1, there are exactly- 1 height 2 nodes —namely, the height 2 nodes pebbled eattiat— t
are “covered” by a pebbled node @, meaning eithep or some ancestor af is pebbled inC.
Recall #ones from FaEt V3. It is not hard to see that #gned) is the smallest number. such
that there exists a set @i nodesU which, if pebbled, would covegxactlyt — 1 height 2 nodes;
#onegt — 1) is the number of terms needed to representl as a sum of distinct powers of 2, and
the presence of the terdi corresponds to a node I at height2 4 i. Now, since the children of
are pebbled i, and cannot cover a height 2 nodémust have a total of at lea3t- #onegt — 1)
pebbled nodes. Then by Fact 73 we concladeas at least,(¢) pebbled nodes. |

Recall £ is the set of all inputs to the BB. Let E, be the inputs that visit state
Lemma 76 Forall t < 2"-2andqin Q% |E,| < |E|/k*®).

Proof: (sketch

Here is theidea. Given Lemmad_75, this proof is an easy adaptation of thetyhigiver bound
proof from [Weh10]. In fact, for = 2"~2 it is exactly the same proof, sincg(2"~2) = h and
for t = 2"=2 we are counting the statgssuch thatg is the last height-2 querying state visited
by some input. Note it is necessary to use the fact that fatyawput 7 and all of the pebbling
configurationg” that we assigned td, there is at most one pebbled node&liron any path from
the root to a leaf irY3,. [ |

Using Lemma 7R, we have:
2h72

Q% =) |Q7]
t=1

Clearly { E,} ,cq2 is a partition ofE for everyt < 2"~2. So from Lemma76 we get th&?| >
k%2®) for everyt < 2"=2. Combining this with the previous equation we have:

oh—2

Q% > Z 210
t=1

Finally, combining the previous equation with Lemma 74 (fer 2), we finish the proof:

@ = K*(k+1)"*

49



8 DAG Half-Pebble Lower Bound

Theorem 14 (due to Rahul) in the arXiv version of our journglgraon tree evaluation (15 May
2010) states

‘Ifa DAG D has a fractional pebbling usingpebbles, then it has a black-white pebbling using
at most 2p pebbles.

The proof idea is simple. We adapt the fractional pebbliragpdure FRAC to the B/W proce-
dure WHOLE so that if at time t FRAC has a half or more black pebbl@odev, then WHOLE
has a whole black pebble emat timet. If FRAC has less than half a black pebble, then WHOLE
has no black pebble.

Similarly for white pebbles, but for consistency we needng®‘half or more’ to 'more than
half’, and ‘less than half’ to ‘half or less’.

This is easy to implement. The crucial point is that if at titleRAC has a combined black-
white weight of 1 on node, then at timet WHOLE has either a whole black or a whole white
pebble orv at timet.

It is obvious that for each nodeand each time¢, WHOLE has at most twice the weight of
FRAC onv at timet.

We can use the same idea to prove the following:

Theorem 77 [Steve] If a DAGD has a fractional pebbling usingpebbles, then it has a fractional
pebbling using at most 1.5p pebbles such that the only prpekble fraction allowed i$ /2.

Proof: We modify the above proof as follows. We choose parametersuch that
0<r<l/2<s<1

and
r+s=1 (53)

Now given a fractional pebbling FRAC we modify it to form a p&hb HALF as follows. If at
time ¢ nodev has a fractiorb of black pebble, then HALF has black pebble weight given ey th
following table:

FRAC HALF
0<b<r 0
r<b<s 1/2

s<b<1 1

Similarly, if v has a fractionv of white pebble at time, then HALF has white pebble weight given
by
FRAC  HALF
0<w<r 0
r<w<s 1/2
s<w<l1 1

50



By the constraints on ands, it is easy to check that for any pdirw for nodewv at timet in
FRAC such that < b + w < 1, the total pebble weight far at timet in HALF never exceeds 1.
Further, ifb + w = 1, then the total pebble weight in HALF is 1.

The ratio of the weight of at timet of HALF/FRAC is at most

max{.5/r,1/s}

This is minimized (subject to the constraintsor) whenr = 1/3 ands = 2/3. The maximum
blow-up ratio for thisr, s is thus 3/2. |

References

[CMW*10] Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Bravernand Rahul San-
thanam. Pebbles and branching programs for tree evaly2dg. arXiv:1005.2642.

[Weh10] Dustin Wehr. Pebbling and branching programs sgltne tree evaluation problem,
2010. arXiv:1002.4676.

51



	Leaf Queries
	Lower Bound for BT32(k)
	Sequential BPs
	f3 is fixed to some random function
	The input includes f3
	The VF, FV, and VFV cases
	The FVF case
	Another FVF proof
	The FVFV case
	The VFVF case
	The `simple' (height 2) case
	Lower bound for semi-thrifty programs for the simple case


	Optimizing Branching Programs from Pebbling
	Minimizing All States
	Minimizing Leaf Queries

	Read-Once Lower Bound
	First Theorem
	The Internal Nodes
	i-Siblings
	The Final-Leaf Function

	Proof of Theorem 53
	Proof of Lemma 55

	Second Theorem

	Thrifty lower bound - alternative proof
	(k+1)h - k is exact for BPs that are both thrifty and read-once
	DAG Half-Pebble Lower Bound

