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1 Leaf Queries

The next two theorems show that forh ≥ 3, proving a lower bound ofΩ(ke) on the number of
states for BPs solving TEP forT h

2 is essentially equivalent to proving a lower bound ofΩ(ke−2) on
the number of states making leaf queries for BPs solving TEP for T h−1

2 .

Theorem 1 For h ≥ 3, any BP withs states solving the TEP forT h
2 can be transformed to a BP

solving the TEP forT h−1
2 in which the number of states querying leaves is at mosts/k2. If the

original BP is deterministic, then so is the transformed BP.

Proof: LetB be a BP withs states which solves the TEP forT h
2 . Then for somer, r′ ∈ [k] there

are at mosts/k2 states which make queries of the formfj(r, r′) for some nodej at level two (i.e.
the children ofj are leaves). Now we construct a BPB′ with at mosts/k2 states querying leaves
which solvesT h−1

2 . The idea is thatB′ will simulateB for the case in which, for each level 2 node
j, fj is 1 except possibly forfj(r, r′), andfj(r, r′) is the value of the leafj in T h−1

2 , and further
the children (leaves) of nodej have values(r, r′).

Start by replacing every state ofB that queriesfj(r, r′) by a state that queries the leafj (of
T h−1
2 ). Now remove every stateγ that queriesfj(a, b) for some level 2 nodej, where(a, b) 6=

(r, r′), and reroute any edge intoγ by sending it to the destination of the outedge ofγ labelled 1.
Finally remove every stateδ which queries a leaf ofT h

2 and replace every edge intoδ by sending it
to the destination of the outedge ofγ labelled eitherr or r′, depending on whether the leaf is a left
child or a right child. �

Theorem 2 For h ≥ 3, any BP which solvesT h−1
2 with s states which query leaves andO(sk2)

states altogether can be converted to a BP which solvesT h
2 withO(sk2) states. If the original BP

is deterministic, then so is the transformed BP.

Proof: Simply replace every leaf query by a subprogram withO(k2) states which evaluates the
corresponding level 2 node inT h

2 . �

2 Lower Bound for BT 3
2 (k)

Here we give an alternative proof for the following theorem.The earlier proof can be found in
[CMW+10].

Theorem 3 Every deterministic BP solvingBT 3
2 (k) has at leastk3/ log2 k states for sufficiently

largek.
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Proof: Let B be a deterministic BP solvingBT 2
2 (k). By Theorem 1 it suffices to show thatB

has at leastk/ log k leaf queries, for largek (we uselog k for log2 k).
We say that a stateq of B is aV -stateif either q queries a leafv2 or v3, or q is an output state.

A statep is anF -stateif p queriesf1, andB has an edge from someV -state top.
We suppose that the initial state is aV state, by adding an extra state if necessary.
Let V be the set ofV -states, and letF be the set ofF -states. Lets = |V | (the cardinality of

V ). Then|F | ≤ ks.
For eachf : [k]× [k]→ {0, 1} define

ψ[f ] : F → V

by settingψ[f ](p) to be the firstV -state encountered in the computation starting from statep, when
the root functionf1 is f .

The number of possible distinct functionsψ[f ] is at most

|V ||F | ≤ sks

asf varies. It is clear that distinct functionsf must give distinct functionsψ[f ], since otherwise
the computations of two distinct functions would give the same output for any pair of leaf values
(v2, v3). Since there are2k

2

choices forf , this gives

sks ≥ 2k
2

Thusks log s ≥ k2, so
s ≥ k/ log s

From this we can conclude
s ≥ k/ log k + 3

for sufficiently largek. The theorem follows, sinces is at most 3 more than the number of leaf
queries (the two output states and the initial state). �

3 Sequential BPs

Definition 4 A BP solvingFT h
2 (k) or BT h

2 (k) is sequentialif for every computation on any in-
stance all queries to the left principle subtree (rooted at node 2) precede every query to the right
principle subtree.

Our goal is to prove a lower bound ofΩ(k4) on the size of sequential deterministic BPs solving
FT 4

2 (k). We intend to prove a lower bound for the following problem, which implies the same
lower bound for the sequential case.

Definition 5 The problemRESh
2 (k) is the same asFT h

2 (k) except the root functionf1 is fixed to
be addition modk and the subtree rooted at node 2 is replaced simply by the leaf2. A BP solving
the problem must start by queryingv2, and may not queryv2 after that.
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Lemma 6 Any sequential deterministic BP solvingFT h
2 (k) for h ≥ 3 can be converted to a

deterministic BP solvingRESh
2 (k) with fewer states.

Proof: Let B be a sequential deterministic BP solvingFT h
2 (k). Forx ∈ [k] let Ix be the input

toB in which the left-child functionf2 is the constant function with valuex, the root functionf1
is addition modk, and all other functions and leaf values are identically 1. Let qx be the first state
in the computation ofB on inputIx that queries some node in the right principle subtree (rooted
at node 3). We convertB to a BPB′ solvingRESh

2 (k) as follows. Delete all states precedingqx
in the computation ofB on inputIx, and add a new initial state which queries the leaf node 2 of an
input toRESh

2 (k), whosex-th outedge leads toqx, 1 ≤ x ≤ k. It is easy to see thatB′ has fewer
states thanB and correctly solvesRESh

2 (k). �

We can further simplify our lower bound problem to that of counting leaf queries for height 3
trees by applying the proof of Theorem 1.

Definition 7 The problemRR3(k) is the same asRES4
2(k) except now the children of nodesv6

andv7 are removed, so that these two nodes become leaves. As before,a BP solving this problem
must start by queryingv2, and may not queryv2 after that.

The next lemma is proved in the same way as Theorem 1.

Lemma 8 To prove a lower bound ofs states for sequential BPs solving the TEP forT 4
2 it suffices

to prove a lower bound ofs/k2 on the number of states querying the leavesv6 and v7 for BPs
solvingRR3(k) as in definition 7.

Thus to prove a lower boundΩ(k4) states on the size of sequential deterministic BPs solving
FT 4

2 (k) it suffices to prove a lower bound bound ofΩ(k2) on the number of states queryingv6 and
v7 for deterministic BPs solvingRR3(k) The next two subsections prove such lower bounds for
restricted versions ofRR3(k).

3.1 f3 is fixed to some random function

Here we prove lower bounds ofΩ(k2) for restricted versions ofRR3(k) by assuming thatf3 is
a fixed random function. The restrictions involve the numberof alternations betweenv6 andv7
queries during a computation.

NOTE: This subsection is not very promising.

Theorem 9 Let B be a deterministic BP which solves a version ofRR3(k) under the restriction
that initially B queriesv2 andv6 and after that it does not query either node. ThenB has at least
k2 states which queryv7, for sufficiently largek.

Proof: Let B be as in the theorem, and assume thatf3 is a fixed function chosen at random. We
will show that (for sufficiently largek), for almost all choices off3, if B has fewer thank2 states
that queryv7 thenB makes a mistake for some choice ofv2, v6, v7.

Let + denote addition modk.
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Forv2, v6 ∈ [k] let the unary functionG〈v2,v6〉 taking [k] into [k] be defined by

G〈v2,v6〉(z) = v2 + f3(v6, z)

ThusG〈v2,v6〉(v7) is the solution to the problemRR3(k).
The following result is easy to prove.
CLAIM: If f3 is chosen uniformly at random, then with high probability each of thek2 func-

tionsg〈v2,v6〉, for v2, v6 ∈ [k], is distinct from the others, for sufficiently largek.
Note that in the computation ofB on any input inRR3, the output is determined by the last

query tov7, sincev2 andv6 may not be subsequently queried, and all other query values are fixed.
Thus this last state (in effect) computes the functionG〈v2,v6〉(v7). It follows from the CLAIM that
there is a choice forf3 (in fact almost all choices work) such that there must be at leastk2 states
which queryv7. �

Lemma 10 Any deterministic BP solvingRR3(k) has at leastk states which queryv7.

Proof: Assume randomf3 as in the proof of Theorem 9. For any fixedv6, v7 ∈ [k] let qx be the
first state which queriesv7 whenv2 = x. Then the statesq1, . . . , qk must all be distinct, because
the output isv2 + f3(v6, v7). �

Theorem 11 Let B be a deterministic BP solvingRR3(k) which has at mostk states which query
v7. Assume further that for each input, B queriesv7 exactly once. ThenB hasΩ(k2) states which
queryv6.

Proof: Assume thatB satisfies the assumptions in the theorem. Then by the lemma,B has
exactly k states which queryv7. To prove the theorem it suffices to show thatB has at least
k(k + 1)/2 states which queryf6, for sufficiently largek.

Fix some random functionf3. We may assume

For eachv6 ∈ [k], f3(v6, v7) is not constant inv7 (1)

because this happens with high probability. Note that therearek3 inputs with this fixedf3, each
input is specified by the triplev2, v6, v7. Note that the output function (value ofv1) is

Out(v2, v6, v7) = v2 + f3(v6, v7) (2)

Let q1, . . . , qk be thek states which queryv7.
Claim 1: For each stateqi, 1 ≤ i ≤ k, and for eachv6 ∈ [k] there is exactly onev2 ∈ [k] such

that the computation on each input(v2, v6, ∗) leads toqi.
Proof of Claim 1: By assumption, for each pair(v2, v6) the computation on input(v2, v6, ∗)

(where∗ stands for anyv7) leads to exactly one of thek statesq1, . . . , qk. Hence if the Claim is
false, then there isv6 ∈ [k] and distinctv2, v′2 ∈ [k] such that both of the inputs(v2, v6, ∗) and
(v′2, v6, ∗) lead to the same stateqj. But then for anyv7 the outputs for(v2, v6, v7) and(v′2, v6, v7)
would be the same, which violates (2).
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Now for 1 ≤ i ≤ k let q̂i(v6) be the unique value ofv2 for which the computation input
(v2, v6, ∗) leads to the stateqi. By the proof of Claim 1 we have

Claim 2: For eachv6 ∈ [k] and1 ≤ i < j ≤ k

q̂i(v6) 6= q̂j(v6)

Now let p1, . . . , pr denote the states which queryv6. Then the pair〈v7, qi〉 uniquely determines
the next state of the formpℓ in the computation afterqi, where we denote byp0 the ‘empty state’
in case the computation terminates without reaching any of the statesp1, . . . , pr afterqi. Thus for
i, c ∈ [k] we may define the functionG〈i,c〉(v6) to be the output of the computation after stateqi is
reached whenv7 = c, since by assumption, afterpℓ the computation does not query eitherv2 or v7.
Note that the statepℓ completely determines the functionG〈i,c〉. We have

G〈i,c〉(v6) = Out(q̂i(v6), v6, c)

= q̂i(v6) + f3(v6, c)

We will show that for largek there must be at leastk(k + 1)/2 different functionsG〈i,v7〉 asqi and
v7 vary, and hence there must be at leastk(k + 1)/2 states of the formpℓ.

[NOTE: For this argument it may be easier to letf3(a, b) = (a+b)3, as in Siuman’s Read-Once
proof]

Let us abbreviatef3(v6, c) as a function ofv6 by f c, so

G〈i,c〉 = q̂i + f c

We now define a sequence
S1 ⊂ S2 ⊂ · · · ⊂ Sk

of sets of functions of the formG〈i,c〉 as follows:

Si = {G〈j,c〉 | 1 ≤ j ≤ i, c ∈ [k]}

Claim 3: For largek, for randomf3, with high probability|S1| = k, and|Si+1 \ Si| ≥ k − i
for i = 1, . . . k − 1.

Proof: Sincef3 is chosen uniformly at random, the unary functionsf 1, f 2, . . . , fk are chosen
independently uniformly at random. Hence very likely for each i ∈ [k] the functions

G〈i,1〉, G〈i,2〉, . . . , G〈i,k〉

are all distinct, so in particular|S1| = k. Also for all i, j, c, d, c′, d′ ∈ [k] with j < i + 1 and
(c, d) 6= (c′, d′) it is very unlikely that bothG〈i+1,c〉 = G〈j,d〉 andG〈i+1,c′〉 = G〈j,d′〉, since otherwise
f c − fd = f c′ − fd′ . Thus likely at mosti of the functions of the formG〈i+1,c〉 (for c = 1, . . . , k)
occur inSi. This proves Claim 3.

From Claim 3 it follows that likely there are at leastk(k + 1)/2 distinct functions of the form
G〈i,c〉, and hence at leastk(k + 1)/2− 1 statesp1, . . . , pr. �
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Alternative Proof of the Last Part:
We give an alternative proof that there must be at leastk2/2 different functions of the formG〈i,c〉.
The main point is the same as before, namely:
Fact: For all i, j, c, d, c′, d′ ∈ [k] with i 6= j and (c, d) 6= (c′, d′) it is very unlikely that both
G〈i,c〉 = G〈j,d〉 andG〈i,c′〉 = G〈j,d′〉

The reason is that otherwisef c − fd = f c′ − fd′ .
It follows easily from the Fact that there can be at most

(
k
2

)
equal pairsG〈i,c〉, G〈i′,c′〉 (for

distinct pairs(i, c), (i′, c′)). Now write〈i, c〉 ∼ 〈i′, c′〉 if G〈i,c〉 = G〈i′,c′〉, and lets be the number of
equivalence classes among thek2 pairs〈i, c〉. We want to get a lower bound ons. Note that given
s, the number of equal pairs is minimized when all equivalenceclasses have the same size. Then
each class hask2/s members, and so there are

(
k2/s

2

)
s

equal pairs. Thus (
k2/s

2

)
s ≤

(
k

2

)

sos ≥ k3/(2k − 1) > k2/2.

Generalizing Theorem 11
Now suppose that instead ofk states learningv7 we havet statesq1, . . . , qt learningv7, where

t = k2−ǫ

for someǫ > 0. Then we can define the function

q̂i(v6) = v2

as before (because the pairqi, v6 determinesv2), but nowq̂i is a partial function in general. If we
set

Di = domain(q̂i)

then[k]× [k] (think the set of all pairs(v6, v2)) is the disjoint union of setsEi where

Ei = {(v6, q̂i(v6)) | v6 ∈ Di}

so
t∑

i=1

|Di| = k2 (3)

Assumption:
We partition[k] into k1−ǫ blocks of sizekǫ, and each domainDi is equal to one of these blocks.

Now pick any of these blocksD, and let

I = {i | Di = D}

7



Then|I| ≥ k, since for any fixedv6 ∈ D, q̂i(v6) ranges over allk values ofv2 asi ranges overI.
In fact |I| = k, sinceD × [k] is the disjoint union of the setsEi, i ∈ I (see proof of (3)
Now reasoning as in the proof of Theorem 11 there must be at leastk2/2 functions in the set

{G〈i,c〉 | i ∈ I, c ∈ [k]}
and hence there must be at leastk2/2 statespi.
QED

Discussion:In the above we sett = k2−ǫ, which in general is not an integer. We will think ofk as
the independent variable, and other parameters such ast are functions ofk. Then we should write

t ∼ k2−ǫ

instead oft = k2−ǫ, wheref(k) ∼ g(k) means

lim
k
f(k)/g(k) = 1

Lemma 12 Fix ǫ > 0. Given subsetsD1, . . . , Dt of [k], wheret ∼ k2−ǫ, such that everyx ∈ [k]
occurs in exactlyk of the subsets, the average sizeAveInt(k) of intersectionsDi ∩Dj, i 6= j is

AveInt(k) ∼ 1/k1−2ǫ

Proof: For eachj0 ∈ [t] we have
∑

i 6=j0

|Di ∩Dj0| = (k − 1)|Dj0|

since eachx ∈ Dj0 occurs in exactlyk sets. Hence
∑

i 6=j

|Di ∩Dj| = (k − 1)
∑

j

|Dj|

= k2(k − 1)

by (3). Since there aret(t− 1) pairsi, j with i 6= j, the average intersection size is

AveInt(k) = k2(k − 1)/t(t− 1) ∼ k3/(k2−ǫ)2 = 1/k1−2ǫ

�

Observation: Consider the setup of Theorem 6, except instead of allowing justk states which
queryv7 we allow some large numbert statesq1, . . . , qt which queryv7. As before, each compu-
tation must queryv7 exactly once. Assume further that none of the statesq1, . . . qt distinguishes
betweenv6 = 1 andv6 = 2. (That is, ifv6 ∈ {1, 2} then the stateqi reached depends only onv2.)
Then there existsf3 such that there must be at leastk2 states (afterq1, . . . , qt) which queryv6.

Proof: We designf3(v6, v7) so that there arek2 output functionsOutv2,v7 of the form

Outv2,v7(v6) = v2 + f3(v6, v7)

restricted tov6 ∈ {1, 2}, as the pair(v2, v7) varies. For example, we can takef3(v6, v7) = 1 +
(v6 − 1) · v7. Then there must be a distinct state which queriesv6 for each pairv2, v7.
QED
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3.2 The input includesf3
Here we prove lower bounds ofΩ(k2) on the number of states querying the leavesv6 andv7 for BPs
which solveRR3(k) (Definition 7) under various restrictions concerning the alternations of states
querying leavesv6 andv7 and states queryingf3 during a computation. Recall that by Lemma 8
a lower bound ofΩ(k2) on the number of states queryingv6 andv7 for deterministic BPs solving
RR3(k) (with no such restriction on the alternations) implies a lower bound ofΩ(k4) for sequential
deterministic BPs solvingFT 4

2 (k).
Here we assume that our BPs are dags in which the states are organized into layers. Each dag

has a single source node which queriesv2, and after that each layer consists either of states which
query leaf nodes (i.e.v6 andv7) (calledV-layers) or states which queryf3 (calledf3-layersor
F-layers). Our goal is to prove a lower bound on the total number of states in all V-layers (i.e. the
total number of ‘V-states’).

3.2.1 The VF, FV, and VFV cases

Theorem 13 Any deterministic BP solvingRR3(k) which consists only of a V-layer followed by
a f3 layer has at leastk2 V-states.

Proof: For each triple(v2, v6, v7) associate the first state in the computation with input(v2, v6, v7, f3)
(for anyf3) which queriesf3. These states must all be distinct since for any two distincttriples
there is somef3 which gives different output values for the two. Hence theremust be at leastk3

such initialf3 states. It follows that there must be at leastk2 V-states, because each such V-state
has onlyk outedges and each initialf3 state is reached by at least one outedge from a V-state.�

Theorem 14 Any deterministic BP solvingRR3(k) which consists only of anf3 layer followed by
a V-layer has at leastkk

2

V-states.

Proof: The proof is similar to the proof of the previous theorem. Fixv2 = 1. There arekk
2

possible functionf3. For each such functionf3 the computation on inputf3 must reach a distinct
initial V-state, since any two distinct functionsf3 differ on some argument(v6, v7), so the output
differs. �

Theorem 15 Any deterministic BP solvingRR3(k) which consists only of a V-layer followed by
anf3-layer followed by a V-layer has at leastk2 V-states.

Proof: Let us refer to the three layers as layer I, layer II, and layerIII, respectively. We will
show that either layer I or layer III has at leastk2 V-states.

Suppose there are fewer thank2 states in layer I. Then there exist distinct triples(v2, v6, v7) and
(v′2, v

′
6, v

′
7) such that the computations on both triples lead to the same initial statep of layer II (see

the proof of Theorem 13). Note that the two pairs(v6, v7) and(v′6, v
′
7) cannot be the same, since

otherwisev2 6= v′2 so the two outputsv2 + f3(v6, v7) andv′2 + f3(v6, v7) would be different for any
f3, but no query in either of the layers II and III could distinguish them.
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Note that the computation from statep to the first stateq of layer III depends only onf3. It
suffices to prove the following.

Claim: There must be a distinct initial stateq of layer III for each of thek2 possibilities for the
pair of outputs(v2 + f3(v6, v7), v

′
2 + f3(v

′
6, v

′
7)) asf3 varies.

For otherwise there exists functionsf3 and f̂3 such that bothf3 and f̂3 end up in the same
stateq starting from statep and eitherv2 + f3(v6, v7) 6= v2 + f̂3(v6, v7) or v′2 + f3(v

′
6, v

′
7) 6=

v′2+f̂3(v
′
6, v

′
7). In the first case the BP cannot distinguish between the two inputs(v2, v6, v7, f3) and

(v2, v6, v7, f̂3) and in the second case it cannot distinguish between the two inputs(v′2, v
′
6, v

′
7, f3)

and(v′2, v
′
6, v

′
7, f̂3), but in either case it should distinguish. �

Definition 16 TheBooleanRR3(k) problem is the same asRR3(k) except the output is to deter-
mine whether the value of the root is 1.

The next two results show thatΘ(k2/ log k) V-states are necessary and sufficient for a three-
layer (V-f3-V) deterministic BP to solve the BooleanRR3(k) problem.

Theorem 17 The BooleanRR3(k) problem can be solved by a deterministic BP withO(k2/ log k)
V-states, where the BP has three layers as in Theorem 15: a V-layer followed by andf3-layer
followed by a V-layer.

Proof: The idea is to divide thek2 possible pairs(v6, v7) into O(k2/ log k) equivalence classes
of size aboutlog k each. Layer I remembersv2, queriesv6 andv7, and passes onv2 together with
the equivalence class of(v6, v7) to the initial states of Layer II. Thus there areO(k3/ log k) initial
states of Layer II, and Layer I has a total ofO(k2/ log k) states.

Layer II evaluatesf3 at (v6, v7) for each pair(v6, v7) in the relevant equivalence class, remem-
bers the subset of pairs which makev2 + f3(v6, v7) = 1, and passes this subset to one of the initial
states of Layer III.

We assume that there are at mostlog2 k − log2 log k members of each equivalence class, so
there are at mostk/ log k initial states of Layer III. For each initial state (i.e. each subset) the BP
queriesv6 and thenv7 and determines whether(v6, v7) is in the accepting subset and hence whether
to accept the input. Thus Layer III hask/ log k initial states which queryv6 andk2/ log k states
which queryv7, making a total ofO(k2/ log k) states. �

We can improve the constant in the above bound by arguing morecarefully.

Theorem 18 The BooleanRR3(k) problem can be solved by a deterministic BP withk2/ log2 k V-
states, for sufficiently largek, where the BP has three layers as in Theorem 15: a V-layer followed
by andf3-layer followed by a V-layer.

Proof: The proof is similar to that of the previous theorem. Now we divide thek possible values
of v6 into k/(log2 k + 1) equivalence classes (“bins”) of sizelog2 k + 1 each. Layer I remembers
v2, queriesv6 andv7, and passes onv2 andv7 and the bin number ofv6 to the initial states of Layer
II. There arek2/(log2 k + 1) states in Layer I.

Layer II evaluatesf3(v6, v7) for each pairv6, v7 in the relevant bin, remembers the subset of
pairs which makev2+f3(v6, v7) = 1, and passes this subset to one of the initial states of Layer III.

10



In fact this initial state of Layer III only needs to know which subset of thelog2 k + 1 possible
values in the bin forv6 makesv2 + f3(v6, v7) = 1. Hence there are

2log2 k+1 = 2k

states of Layer III. Each state queriesv6 to determine whether the actual value ofv6 is in the good
subset, and outputs 0 or 1 accordingly.

The total number ofV -states in Layers I and III isk2/(log2 k + 1) + 2k, which is at most
k2/ log2 k for sufficiently largek. �

Theorem 19 Any deterministic BP with three layers (V-f3-V) solving the BooleanRR3(k) prob-
lem has more thank2/(2 log2 k) V-states.

Proof: The proof is similar to the proof of Theorem 15. Suppose that there are at most
k2/(2 log2 k) states in Layer I. Then there are at mostk3/(2 log2 k) initial states of Layer II, and
hence there is a set of at least2 log2 k distinct triples(vi2, v

i
6, v

i
7), 1 ≤ i ≤ r, r ≥ 2 log2 k of triples

such that the computation on input any one of of these triplesleads to the same initial statep of
Layer II. As in the earlier proof, it is easy to see that ifi 6= j then the pairs(vi6, v

i
7) and(vj6, v

j
7) are

distinct.
LetOutf3(i) be the Boolean predicate on{1, . . . , r} which is true iffvi2 + f3(v

i
6, v

i
7) = 1; i.e.

the input(vi2, v
i
6, v

i
6, f3) leads to the output TRUE. Note that there are2r ≥ 22 log2 k = k2 possible

choices for the predicateOutf3 asf3 varies.
Claim: There must be a distinct initial stateq of layer III for each of the≥ k2 possibilities for

Outf3 asf3 varies.
The proof of the Claim is as before, and the theorem follows. �

3.2.2 The FVF case

The FVF case is much more difficult than the VFV case, and we give several different proofs. The
second proof (Theorem 28) is the simplest, but the final proof(Theorem 38, in the next subsection)
stands a better chance of generalizing to the VFVF case.

We will name the three layersF1, V, F2. The goal (as before) is to show that the total number
of V -states must be at leastk2. We approach this problem by restricting the number of initial V -
states. The initialV -states are those that have an edge from layerF1 leading to them, and hence
they are the only states that carry information fromF1.

Let F be the set of all functionsf3 : [k]× [k]→ [k].
In the following we fix a BPB with three layersF1, V, F2.
LetQ = {q1, . . . qℓ} be the set of initialV -states inB.
We assumeℓ < k2, since we are trying to prove the number ofV -states is at mostk2.
Letϕ = ϕB : [k]×F → Q be defined byϕ(v2, f3) = qi if an input(v2, v6, v7, f3) toB reaches

the stateqi. (Note thatv6, v7 are irrelevant.)
For eachf3, defineϕf3(v2) = ϕ(v2, f3)

Lemma 20 For eachf3, the functionϕf3 : [k]→ Q is injective.

11



Proof: This is because for fixedf3, v6, v7 the outputv2 + f3(v6, v7) varies withv2. �

It follows that there are at leastk initial V -states, soℓ ≥ k.
We now give a simple proof for the case in which there are onlyk initial V -states.

Theorem 21 If there are exactlyk initial V -states, thenB has at leastk2 V -states.

Proof: The proof is similar to the case of two layersV -F (Theorem 13). Recallq1, . . . , qk are the
initial V -states. It suffices to show that there are at leastk3 initial F2 states, since then there must
be at leastk2 V -states to generate thek3 edges leading to the initialF2 states. We show this by
showing that each distinct triple(qi, v6, v7) leads to a distinct initialF2 state. (Note that(qi, v6, v7)
determines the initialF2 state.)

Suppose to the contrary that(qi, v6, v7) 6= (qj, v
′
6, v

′
7) but both triples lead to the same initialF2

state.
Case I: qi = qj.

Choose anyf3 such thatf3(v6, v7) 6= f3(v
′
6, v

′
7). Choosev2 such thatϕf3(v2) = qi = qj (see

Lemma 20). Then the inputs(v2, v6, v7, f3) and(v2, v′6, v
′
7, f3) both lead to the same initialF2 state

but have different outputs, soB makes a mistake on one of them.
Case II: qi 6= qj.

Choose anyf3 so f3(v6, v7) = f3(v
′
6, v

′
7). Choosev2, v′2 so ϕf3(v2) = qi andϕf3(v

′
2) = qj,

so v2 6= v′2. Then(v2, v6, v7, f3) and(v′2, v
′
6, v

′
7, f3) lead to the same initial state ofF2 but have

different outputs. �

To handle the generalF1-V -F2 case it suffices to show that if the set of initialV -states is
{q1, . . . , qℓ} andℓ < k2, then the number of initialF2-states is at leastk3. The intuition is that the
layerF1 has no knowledge ofv6, v7, and hence it cannot summarize useful information aboutf3
using justk2 output states. Thus some version of the proof for theV -F case should give us the
required lower bound for the number ofV -states.

The next two results will be used in the proof of Theorem 24 to get a lower bound on the
number of initialF2-states.

NOTE: The next result is useful, but then skip to Theorem 28.

Lemma 22 If triples (qi, v6, v7) and(qj, v′6, v
′
7) lead to the same initialF2-state then for allv2, v′2, f3,

if ϕ(v2, f3) = qi andϕ(v′2, f3) = qj then

v2 + f3(v6, v7) = v′2 + f3(v
′
6, v

′
7)

Proof: Under the hypothesis of the lemma, both of the inputs(v2, v6, v7, f3) and(v′2, v
′
6, v

′
7, f3)

lead to the sameF2-state, and since they share the samef3 they must have the same output.�

SKIP TO THEOREM 28

Lemma 23 LetA andB be finite sets, andg : A→ B. Suppose we are given any probability dis-
tribution overA. When elementsa, a′ ofA are chosen independently according to the distribution
let ǫ = Pr[g(a) = g(a′)]. Then|B| ≥ 1/ǫ.
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Proof:

Pr[g(a) = g(a′)] =
∑

b∈B
Pr[g(a) = b] · Pr[g(a′) = b] (4)

=
∑

b∈B
p2b (5)

wherepb = Pr[g(a) = b] whena is chosen according to the given probability distribution.Now
{pb : b ∈ B} is a probability distribution onB, and

∑
b∈B p

2
b is minimized when thepb are all

equal, i.e. when eachpb = 1/|B|. Thus

Pr[g(a) = g(a′)] ≥ |B|/|B|2 = 1/|B|

�

Recall thatQ = {q1, . . . , qℓ} is the set of initialV -states, whereℓ ≥ k. For each stateqi let

Wi = {f3 | ∃v2 ϕ(v2, f3) = qi} (6)

Let F be the set of all possible functionsf3. By Lemma 20 eachf3 is mapped tok distinct states
qi, and so

∑
i |Wi| = k|F |, so

the average size of|Wi| is k|F |/ℓ (7)

Similarly for intersections

the average size of|Wi ∩Wj| is k2|F |/ℓ2 (8)

and hence by our assumptionℓ < k2 the averages intersection size|Wi ∩Wj| ≥ |F |/k2.
We are now ready to get a lower bound for the generalf3-V -f3 case.

Theorem 24 Any deterministicf3-V -f3 branching program solvingRR3(k) has at leastk2(1 −
o(1)) V -states.

Proof: As mentioned earlier, the intuition is that the initialF1-layer is not very useful, because
v6, v7 are not yet known. Hence useful information about which of the kk

2

functionsf3 is input
cannot be summarized using justk2 initial V -states, so theV layer must pretty much pass on the
triple (v2, v6, v7) to the finalF2 layer. In fact our proof shows that if an inputI = (v2, v6, v7, f3)
is chosen uniformly at random, then the triple(v2, v6, v7) can be determined with error probability
O(1/k4) from the information of which initialF2-stateI reaches.

We refer to the notation described at the beginning of Subsection 3.2.2.
We apply Lemma 23 withA,B as follows.

A = {(v2, v6, v7) | v2, v6, v7 ∈ [k]}
B = the set of all initialF2-states

We use the uniform distribution overA.
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Instead of defining a single functionG, we define a family{Gf0
3
: f 0

3 ∈ F} of functions, where

Gf0
3
: A→ B

is defined byGf0
3
(v2, v6, v7) is the initialF2-state reached on input(v2, v6, v7, f 0

3 ). We will show
that whenf 0

3 is chosen uniformly at random fromF = {f3 : [k] × [k] → [k]} and(v2, v6, v7) and
(w2, w6, w7) are chosen independently then

Pr[Gf0
3
(v2, v6, v7) = Gf0

3
(w2, w6, w7)] ≤ 1/k3 +O(1/k4) (9)

Thus there exists some particularf 0
3 for which (9) holds, so according to Lemma 23 there must be

at leastk3(1− o(1)) initial F2-states, and the theorem follows.
Recall the definition (6) ofWi.

Lemma 25 For fixedv2, w2 ∈ [k], if f 0
3 is chosen uniformly at random fromF and we setqi =

ϕ(v2, f
0
3 ) andqj = ϕ(w2, f

0
3 ) then the probability that|Wi ∩Wj| ≤ |F |/k8 is at most1/k4.

Proof: For each fixed pairr, s, if |Wr ∩Ws| ≤ |F |/k8 then the probability thatf 0
3 ∈ Wr ∩Ws

is at most1/k8. Since there are at mostk2 statesq1, . . . , qℓ, there are at mostk4 choices forr, s, so
the probability thatf 0

3 is inWr ∩Ws for some smallWr ∩Ws is at mostk4/k8 = 1/k4. �

Define
U = {(v6, v7) | v6, v7 ∈ [k]}

We use the variables~x, ~y,~v, ~w to range overU . We define the function

ψ : Q× U → B

by ψ(qi, ~x) is the initialF2-state reached from stateqi when the inputs(v6, v7) are~x.
For1 ≤ i, j ≤ ℓ define

Sij = {(~x, ~y) | ~x 6= ~y AND ψ(qi, ~x) = ψ(qj, ~y)}

The next lemma will be applied when the setS is Sij.

Lemma 26 If S is a set of more than2t(2t − 1) ordered pairs of distinct elements then there is a
subsetS ′ of S with t + 1 pairs such that each pair inS ′ has at least one element that is distinct
from all elements in the other pairs ofS ′.

Proof: Note that the pairs inS must involve more than2t distinct elements. �

RecallF = {f : [k]× [k]→ [k]}.

Lemma 27 If |Sij| ≥ 2t(2t− 1) then|Wi ∩Wj| ≤ |F |/kt.
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Proof:
Assume|Sij| ≥ 2t(2t − 1). Then by Lemma 26 there is a subsetS ′

ij of Sij consisting of at
leastt + 1 pairs(~x, ~y) such that each pair has at least one element~x or ~y that is distinct from all
elements in the other pairs ofS ′

ij. By Lemma 22, if(~x, ~y) ∈ S ′
ij then

vf32 + f3(~x) = wf3
2 + f3(~y) for all f3 ∈ Wi ∩Wj (10)

where
vf32 = ϕ−1

f3
(qi) wf3

2 = ϕ−1
f3
(qj) (11)

We argue that (10) limits the number off3’s in Wi ∩Wj as follows. For eachf3 ∈ Wi ∩Wj, the
first pair(~x1, ~y1) in S ′

ij fixes the difference(wf3
2 − vf32 ) to bef3(~x1) − f3(~y1). Each of the othert

pairs reduces the choices forf3 by a factor ofk by specifyingf3(~x) or f3(~y) in terms of another
value off3 and the difference(wf3

2 − vf32 ). �

Now suppose that(v2, ~v) and (w2, ~w) are chosen independently fromA, andf 0
3 is chosen

uniformly fromF . Then the probability that(v2, ~v) = (w2, ~w) is exactly1/k3. Thus it suffices to
show that the conditional probability

Pr[Gf0
3
(v2, ~v) = Gf0

3
(w2, ~w) | (v2, ~v) 6= (w2, ~w)] = O(1/k4) (12)

Let qi = ϕ(v2, f
0
3 ) and qj = ϕ(w2, f

0
3 ). If Gf0

3
(v2, ~v) = Gf0

3
(w2, ~w) then we cannot have

v2 6= w2 but ~v = ~w, since this violates Lemma 22 (withf3 = f 0
3 ). Thus by our condition

(v2, ~v) 6= (w2, ~w) we may assume
~v 6= ~w

By Lemma 25, in order to prove (12) we may assume|Wi ∩Wj| > |F |/k8, so by Lemma 27 with
t = 8 it follows that |Sij| < 2t(2t − 1) = 240. Hence there are fewer than 240 pairs of distinct
vectors(~x, ~y) such thatψ(qi, ~x) = ψ(qj, ~y), and the probability that randomly chosen(~v, ~w) equals
one of these pairs is at most240/k4. Thus (12) follows. �

SKIP TO HERE
The next result is an improved version of Theorem 24 due to James.

Theorem 28 (James’ Alternative to Theorem 24.) Any deterministicf3-V -f3 branching program
solvingRR3(k) has at leastk2(1− 2/k) V -states.

The statement of this theorem differs from that of Theorem 24only by making theo(1) term
explicit, but the proofs are somewhat different.

Proof: As before, the intuition is that the initialF1-layer is not useful. This time, we begin by
finding a large class of functionsf3 which theF1-layer does not distinguish at all: that is to say,
whenf3 is retstricted to be from this class, then the initialV -state depends only onv2.

LetB be anyf3-V -f3 branching program solvingRR3(k), and assumeB has less thank2−2k
V -states.
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Step 1: TheF1-layer does not distinguish a large class of functionsF∗ ⊆ F . As in the proof
of the previous theorem, letQ = {q1, . . . , qℓ} be the set of initialV -states, withℓ < k2 − 2k. Let
Ψ be the set of functions[k] → Q, and letϕ : F → Ψ be defined by settingϕ(f3)(v2) to be the
first V -layer state reached byB when given thosev2 andf3 values in the input. (This is similar to
the functionϕ : [k]× F → Q used in the previous proof.) Since|Ψ| < k2k and|F | = kk

2

, we can
find someψ∗ ∈ Ψ such that|ϕ−1(ψ∗)| > kk

2−2k. LetF∗ = ϕ−1(ψ∗), so|F∗| > kk
2−2k.

Henceforth we concern ourselves only with inputs wheref3 ∈ F∗. Observe that in this case,
the initial V -state reached byB is equal toϕ∗(v2), and hence does not depend onf3. B now
effectively has two layers, calledV andF2.

Step 2: A useful property ofF∗. Define the following relationP ⊆ ([k]2)2: P (~v, ~w) holds iff
for all f, g ∈ F∗, f(~v) − f(~w) = g(~v) − g(~w), where− denotes subtraction modulok. Observe
thatP is an equivalence relation.

In the next step we will see that the initialF2-state determines bothv2 and the equivalence class
of (v6, v7) under the relationP . But first, we will show that the number of equivalence classesis
more thank2 − 2k. As a warm-up, ifF∗ = F , then there arek2 equivalence classes, since for any
~v 6= ~w ∈ [k]2, there exist functionsf, g ∈ F such thatf(~v)− f(~w) = 0 butg(~v)− g(~w) = 1.

Now, assume only that|F∗| > kk
2−2k. Pick a representative from each equivalence class to

form the setE ⊆ [k]2. We will show that a functionf ∈ F∗ is determined entirely by its values on
E: it follows that|E| > k2 − 2k.

Indeed, letf, g ∈ F∗ be any two functions such that∀~v ∈ E, f(~v) = g(~v); we must show
f = g. Consider any~w ∈ [k]2, and let~v ∈ E be the representative of its equivalence class. Then
f(~w) = f(~v) + (f(~w)− f(~v)) = g(~v) + (g(~w)− g(~v)) = g(~w).

Step 3: There are at leastk3 − 2k2 initial F2-states. For v2 ∈ [k] and~v = (v6, v7) ∈ E, let
G(v2, ~v) ∈ C be the firstF2-state reached byB on input(v2, v6, v7, f3) (as long asf3 ∈ F∗, f3
does not matter). To show that there arek3 − 2k2 initial F2-states, all that remains is to show that
any two distinct pairs(v2, ~v) 6= (w2, ~w) ∈ [k]× E lead to distinct initalF2-states.

Suppose(v2, ~v) 6= (w2, ~w) lead to the same initialF2 state. If~v = ~w, thenB gives the same
output in both cases, even though the outputs should be different, which is a contradiction.

The remaining case is that~v 6= ~w. Then~v and ~w are representatives of different equivalence
classes underP , so there must exist somef, g ∈ F∗ such thatf(~v) − f(~w) 6= g(~v) − g(~w).
In particular, we may assume thatf(~v) − f(~w) 6= w2 − v2. Rearranging the inequality gives
v2 + f(~v) 6= w2 + f(~w), soB must distinguish the inputs(v2, ~v2, f) and(w2, ~w2, f), but it does
not. This is a contradiction: so it is true that each pair(v2, ~v) leads to a distinct initialF2-state, and
so there are at leastk3 − 2k2 of them.

As in the previous proof, this implies that there are at leastk2 − 2k V -states. �

We can improve the lower bound in the previous theorem fromk2− 2k to k2 by arguing a little
more carefully and assuming that theV -states are layered.

Definition 29 A set of contiguous states in a branching program islayeredif all syntactic paths
from any initial state in the set to any final state in the set have the same finite length.
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Note that any BPB is equivalent to a layered BPB′ where the number of states inB′ is at
most the square of the number of states inB. So for the purpose of showing a problem is not in
log space, it suffices to consider layered BPs.

Note that any BP solving TEP that comes from a pebbling algorithm is layered.

Theorem 30 (Improvement to Theorem 28) For any deterministicf3-V -f3 branching program
solvingRR3(k) with layeredV states, the number ofV -states is at leastk2 if k > 2.

Proof: We observe that the same counting argument inStep 1of the proof of Theorem 28 used
to show that|ϕ−1(ψ∗)| > kk

2−2k also shows

|F∗| > kk
2

/ℓk = kk
2−k logk ℓ (13)

Arguing as inStep 2we obtain that the number of equivalence classes|E| > k2 − k logk ℓ, and
from Step 3we conclude that there must be at leastk3 − k2 logk ℓ initial F2-states, and hence the
number ofV -states which have edges to theF2 layer is at leastk2 − k logk ℓ.

Since theV -states are layered, no initialV -state in the setQ = {q1, . . . , qℓ} has an edge to the
final f3 layer. Hence the total number ofV -states is at least

h(ℓ) = ℓ+ k2 − k logk ℓ (14)

It is easy to see that the derivativeh′(ℓ) is positive forℓ ≥ k > e, and soh(ℓ) takes its minimum
for ℓ ≥ k at ℓ = k. Hence for the layered case the number ofV -states must be at leasth(k) =
k + k2 − k logk k = k2. �

The next result follows easily from (14).

Corollary 31 In the setting of Theorem 30, if the numberℓ of initial V -states is at leastk(2 +
logk 3) then the total number ofV -states is at leastk2 + k.

The comment at the end of Section 4.2 points out that the optimal pebbling algorithm for
solvingRR3(k) yields a BP withk2 + k V -states. The above proof can possibly be improved to
give a lower bound closer tok2 + k by considering functionsf3 not inF∗.

Here we prove a lower bound ofk2 + k states quite independent of the above proof, but it only
works when the number of initialV states is small.

Theorem 32 For any deterministicf3-V -f3 branching program solvingRR3(k) with layeredV -
states and at mostk +

√
k/3 initial V -states, the total number ofV -states is at leastk2 + k, for

sufficiently largek.

Proof: This proof does not use the function equivalence classargument used in the previous
two proofs.

We start by stating the following definitions and facts, someof them from earlier in this sub-
section:
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F = {f : [k]× [k]→ [k]} (15)

Q = {q1, . . . , qk+u} = initial V -states (u small) (16)

ϕ(v2, f3) = qi (initial V -state from(v2, f3)) (17)

ψ(qi, ~v) = pj (initial F2-state from(qi, ~v)) (18)

1 ≤ i ≤ k + u : Pi = {ψ(qi, ~v) | ~v ∈ [k]× [k]} (19)

P =
k+u⋃

i=1

Pi = initial F2-states (20)

1 ≤ i ≤ k + u : Wi = {f3 | ∃v2 ϕ(v2, f3) = qi} (21)
k+u∑

i=1

|Wi| = k|F | (22)

Q[f ] = {ϕ(v2, f) | v2 ∈ [k]} (23)

|Q[f ]| = k, ∀f ∈ F (24)

Lemma 33 If f ∈ Wi andψ(qi, ~v) = ψ(qi, ~w) thenf(~v) = f(~w).

Proof: The initialF2-state cannot distinguish the outputsv2 + f(~v) andv2 + f(~w). �

Corollary 34 If |Pi| < k2 then|Wi| ≤ |F |/k

Proof: There arek2 possible vectors~v, so by the Lemma if|Pi| < k2 then there exist distinct
~v, ~w so everyf in Wi satisfiesf(~v) = f(~w). �

Corollary 35 If u ≤ k − 1 then there are at leastk distinct values ofi such that|Pi| = k2.

Proof: This follows easily from Corollary 34 and (22). �

Lemma 36 If 1 ≤ i < j ≤ k+u andψ(qi, ~v) = ψ(qj, ~w) then for allf inWi∩Wj, f(~v) 6= f(~w).

Proof: If f ∈ Wi ∩Wj andi 6= j then there exists distinctv2, w2 such thatϕ(v2, f) = qi and
ϕ(w2, f) = qj, but the initialF2-stateψ(qi, ~v) = ψ(qj, ~w) cannot distinguish between the outputs
v2 + f(~v) andw2 + f(~w), sof(~v)− f(~w) = w2 − v2 6= 0. �

The next result is immediate from Lemma 36.

Corollary 37 If f0 is a constant function, then for allqi, qj ∈ Q[f0], if i 6= j thenPi ∩ Pj = ∅.

Note that ifu = 0 then from Corollary 35 and Corollary 37 we conclude there must bek3 initial
F2-states and hence at leastk2 non-initialV -states and hence a total of at leastk2 + k V -states, so
the Theorem follows in this case.
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In the general case we assumeu ≤ k− 1 and note that by Corollary 35 there must be at leastk
setsPi of cardinalityk2. We divide the remainingu setsPi into those with at leastk2− a elements
and those with fewer thank2−a elements, for some parametera to be determined. By renumbering
the sets, we may suppose that sets

P1, P2, . . . , Pk+t (25)

have cardinality at leastk2 − a for somet with 0 ≤ t ≤ u, and sets

Pk+t+1, . . . Pk+u (26)

have cardinality less thank2 − a.
Our plan is to find a functionf such that using Lemma 33 we forcef /∈ Wi whenk + t+ 1 ≤

i ≤ k + u (so |Pi| is small), and force thek remaining large setsPi with qi ∈ Q[f ] to be pairwise
disjoint, using Lemma 36.

Consider an undirected graphG with verticesW = {1, 2, . . . k + t} and edges

E = {(i, j) | i 6= j andPi ∩ Pj 6= ∅}

LetM be a subset of the edgesE which forms a maximal matching inG.
CLAIM 1: |M | ≤ u.

For assume|M | ≥ u + 1. By Lemma 36 if(i, j) ∈ M and f0 is a constant function, then
f0 /∈ Wi∩Wj, sof0 cannot be inWi for u+1 distinct values ofi. But there are onlyk+u possible
values ofi and each functionf is in exactlyk setsWi. This proves the CLAIM 1.

SinceM is a maximal matching, every edge inG has at least one endpoint in common with an
edge inM . We expand the setM of edges to form a setM ′ by adding, for each endpointi of an
edge inM , all edges with an endpointi except that if there are more thanu + 1 such edges then
we only addu+ 1 such edges.

Thus
|M ′| ≤ u+ 2u(u+ 1) = h(u) (27)

For each edgee = (i, j) ∈M ′ we knowPi ∩ Pj 6= ∅, so there exists~ve, ~we such that

ψ(qi, ~ve) = ψ(qj, ~we)

Let
F ′ = {f ∈ F | f(~ve) = f( ~we), ∀e ∈M ′} (28)

CLAIM 2: If f ∈ F ′ andqi andqj are distinct elements ofQ[f ] thenPi ∩ Pj = ∅.
This is because ifPi ∩ Pj 6= ∅, thenG has an edgee = (i, j). But e /∈ M ′ by Lemma 36 and

the definition ofF ′. By definition ofM ′, it follows that one endpoint, sayi of e is in the maximal
matchingM , and there are at leastu + 1 edges inM ′ which share the endpointi. If e′ = (i, r) is
any of theseu+ 1 edges then again by Lemma 36 and the definition ofF ′ it follows thatf /∈ Wr.
But everyf is in k setsWm and there are onlyk+ u possibilities form, so this is impossible. This
proves CLAIM 2.

Now set the parametera = 2h(u) as in (27). We can ensure thatf ∈ F ′ by setting

f(~ve) = f( ~we) = 1, ∀e ∈M ′
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This constrainsf on at mosta different arguments, and since each of the sets in (26) has atmost
k2 − a− 1 different elements we can still keepf in F ′ and use Lemma 33 to setf(~v) 6= f(~w) for
suitable~v, ~w and make suref /∈ {k + t + 1, . . . k + u}. For suchf we haveqi ∈ Q[f ] implies
|Pi| ≥ k2− a, so by CLAIM 2 there must be at leastk pairwise disjoint setsPi with |Pi| ≥ k2− a.
Then by Corollary 35 there are at leastk − u setsPi of sizek2 in this group. Hence we have

|P | ≥ (k − u)k2 + u(k2 − a) = k3 − uk2 + uk2 − ua ≥ k3 − ua

By dividing byk we obtain a lower bound ofk2 − ua/k on the number of non-initialV -states,
making the total number ofV states at leastk + u + k2 − ua/k. In order to be sure this lower
bound meets the claimed lower bound in the statement of the theorem, we want

k + u+ k2 − ua/k ≥ k2 + k

or u ≥ ua/k or a ≤ k, or h(u) ≤ k. Thus it suffices to have2u2 + 3u ≤ k, or u ≤
√
k/3, for

sufficiently largek. �

3.2.3 Another FVF proof

Here we give a third lower bound proof (due to Phuong and Steve) for the FVF case. This proof is
a little more complicated, but it seems more likely to generalize. The idea is to desribe the set of
inputs that reach each state, and use properties of these sets to show that they cannot soon lead to
ouput states unless these input sets are small.

Theorem 38 Any deterministicf3-V-f3 branching program solvingRR3(k) has at leastk2(1/2−
O(1/k)) distinctV -states.

Proof: Each state in the program is associated with the set of inputsthat reach it. The sets that
are associated with initialF2 states form a disjoint partition of all inputs. Each such setmust satisfy
several constraints, and if there are two fewV states (and hence two few initialF2 states), these
constraints will limit the size of the sets, and this will give a contradiction.

Let ℓ be the number of initialV states, andr be the number of initialF2 states. We will show
that eitherℓ ≥ k2/2, or r ≥ k3/2. We prove this by contradiction, so assume that bothℓ < k2/2
andr < k3/2.

Let F denote the set of all functions[k] × [k] → [k]. Note that there are in totalk3|F | inputs
to the program. Letq1, q2, . . . , qℓ be the initialV states andp1, p2, . . . , pr be the initialF2 states.
Below we will use indicesi, j, z: 1 ≤ i ≤ k (possible value ofv2), 1 ≤ j ≤ ℓ (qj ranges over all
initial V states) and1 ≤ z ≤ r (pz ranges over all initialF2 states). We will also usew for pairs
(v6, v7) (sow ∈ [k]2).

For each1 ≤ i ≤ k let Gi,1, Gi,2, . . . , Gi,ℓ be the disjoint partition ofF : Gi,j is the set of
functionsf ∈ F such that followingv2 = i andf we reachqj.

Fix somej, 1 ≤ j ≤ ℓ. ThenG1,j ∪ G2,j ∪ . . . ∪ Gk,j is the set of all functions that reachqj
(via some possible value ofv2). Observe thatG1,j, G2,j, . . ., Gk,j are pairwise disjoint, because if
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f ∈ Gi,j ∩ Gi′,j for i 6= i′, then on inputs(i, w, f) and(i′, w, f) (for anyw) the program has the
same output, which is a contradiction. LetGj denote the disjoint union

Gj = G1,j ∪G2,j ∪ . . . ∪Gk,j

For each pair of statesqj andpz, letWj,z denote the set of tuplesw ∈ [k]2 that lead fromqj to
pz. ThenWj,1,Wj,2, . . .,Wj,r is a partition of[k]2. Let tj,z = |Wj,z|, then it follows that

tj,1 + tj,2 + . . .+ tj,r = k2 (29)

It is helpful to write down the set of inputs that reach an initial F2 statepz. This consists of the
disjoint union of (we will writei×W ×G for {i} ×W ×G):

1×W1,z ×G1,1, 2×W1,z ×G2,1, . . . , k ×W1,z ×Gk,1

1×W2,z ×G1,2, 2×W2,z ×G2,2, . . . , k ×W2,z ×Gk,2

. . .

1×Wℓ,z ×G1,ℓ, 2×Wℓ,z ×G2,ℓ, . . . , k ×Wℓ,z ×Gk,ℓ

So the total number of inputs associated withpz is

ℓ∑

j=1

tj,z|Gj|

Summing up over all statespz we have the total number of all possible inputs, so:

r∑

z=1

ℓ∑

j=1

tj,z|Gj| = k3|F | (30)

We will prove an upper bound usingℓ, r, |F | on the LHS, and this will give the desired lower
bounds onℓ andr.

Notice that if someWj,z contains two different pairsw,w′ then for all inputs of the form
(v2, w, f) and(v′2, w

′, f) that reachpz (herev2 andv′2 may not be distinct) the values off(w) and
f(w′) are tied together by

v2 + f(w) = v′2 + f(w′)

because atpz the program cannot distinguish between the two inputs. As a result, if some stateqj
can afford to treat severalw in the same way then the set of functionsGj cannot be too large. We
have:

Lemma 39 Let1 ≤ j ≤ ℓ andt = max1≤z≤r tj,z. Then

|Gj| ≤
|F |
kt−1
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Proof: Let pz be a state such that|Wj,z| = tj,z = t, and letf ∈ Gj. Choosei sof ∈ Gi,j. Then
on all inputs(i, w, f) (for w ∈ Wj,z) the program has the same output. Thereforef is constant on
Wj,z, i.e., f(w1) = f(w2) = . . . = f(wt) where{w1, w2, . . . , wt} = Wj,z. In other words, the
values off on t− 1 inputsw2, . . . , wt are determined byf(w1). So the conclusion follows. �

We will show that the contribution of smallGj (i.e., |Gj| ≤ |F |/k) to the LHS of (30) is
not significant, and therefore we can focus on theGj such thattj,z ∈ {0, 1} for all z. So let
S = {j : max1≤z≤r tj,z ≥ 2} index the small setsGj andL = {1, 2, . . . , ℓ} − S index the large
sets. By the lemma we have

|Gj| ≤ |F |/k for all j ∈ S (31)

The LHS of (30) is
r∑

z=1

∑

j∈S
tj,z|Gj|+

r∑

z=1

∑

j∈L
tj,z|Gj|

The first sum can be upper bounded as follows:
r∑

z=1

∑

j∈S
tj,z|Gj| =

∑

j∈S
|Gj|

r∑

z=1

tj,z

=
∑

j∈S
|Gj|k2 by (29)

≤
∑

j∈S

|F |
k
k2 by (31)

≤ ℓk|F | (32)

Now we estimate the second sum. Fort ∈ {0, 1} and a setG we use the notationtG to denote
∅ (the empty set) ift = 0 andG if t = 1. Then for eachz (1 ≤ z ≤ r) the inclusion-exclusion
principle gives us:

|
⋃

j∈L
tj,zGj| ≥

∑

j∈L
tj,z|Gj| −

∑

j<j′∈L
tj,ztj′,z|Gj ∩Gj′ |

Therefore ∑

j∈L
tj,z|Gj| ≤ |

⋃

j∈L
tj,zGj|+

∑

j<j′∈L
tj,ztj′,z|Gj ∩Gj′ |

≤ |F |+
∑

j<j′∈L
tj,ztj′,z|Gj ∩Gj′ |

Hence,
r∑

z=1

∑

j∈L
tj,z|Gj| ≤ r|F |+

r∑

z=1

∑

j<j′∈L
tj,ztj′,z|Gj ∩Gj′ |

= r|F |+
∑

j<j′∈L
|Gj ∩Gj′ |

r∑

z=1

tj,ztj′,z (33)

It remains to upper bound the sum on the RHS. We need the following two lemmas.
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Lemma 40 ∑

1≤j<j′≤ℓ

|Gj ∩Gj′ | = k(k − 1)|F |/2

Proof: For each pair(j, j′), |Gj ∩Gj′ | is the number of functionsf ∈ F that are in bothGj and
Gj′. Each functionf appears exactlyk sets amongG1, G2, . . . , Gℓ. This is because for each value
i of v2, the setF is partitioned into disjoint union

Gi,1 ∪Gi,2 ∪ . . . ∪Gi,ℓ

and eachGj is the disjoint union

Gj = G1,j ∪G2,j ∪ . . . ∪Gk,j

So eachf is counted exactlyk(k − 1)/2 times in the sum. As a result,
∑

1≤j<j′≤ℓ

|Gj ∩Gj′ | =
∑

f∈F
k(k − 1)/2 = k(k − 1)|F |/2

�

The above lemma provides a good upper bound on

∑

j<j′∈L
|Gj ∩Gj′ |

r∑

z=1

tj,ztj′,z

provided that for allj < j′
r∑

z=1

tj,ztj′,z

is small (O(k)). The next lemma is to deal with the pairsj, j′ where this sum is large.
Notice that for each pairqj, qj′ (wherej < j′ ∈ L) the sum

r∑

z=1

tj,ztj′,z

is precisely the total number of statespz such that there are paths from bothqj, qj′ to pz. The
following lemma is proved in the same way as Lemma 39:

Lemma 41 Supposej < j′ ∈ L. Let

t =
r∑

z=1

tj,ztj′,z

Then

|Gj ∩Gj′ | ≤
|F |
kt−1

(34)
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Proof: By the above remark, there are preciselyt statespz such that there are paths fromqj andqj′
topz. Without loss of generality let these states bep1, p2, . . . , pt. Then for eachpz (1 ≤ z ≤ t) there
are valueswz, w′

z of (v6, v7) that leadqj, qj′ to pz, respectively (i.e.,Wj,z = {wz}, Wj′,z = {w′
z}).

Observe thatw1, w2, . . . , wt are pairwise distinct (and similarly forw′
1, w

′
2, . . . , w

′
t).

Supposef ∈ Gj ∩ Gj′. Then for distincti, i′ ∈ [k] we havef ∈ Gi,j ∩ Gi′,j′. Thus for eachz
the program produces the same output on(i, wz, f) and(i′, w′

z, f). Thus (recall+ and− refer to
addition and subtraction modk)

i+ f(wz) = i′ + f(w′
z)

so
f(wz) = i′ − i+ f(w′

z)

Sincei 6= i′ it follows thatwz 6= w′
z. Now for eachy ∈ [k] let

Hy =
⋃

i,i′∈[k],i−i′=y

(Gi,j ∩Gi′,j′)

Then for everyf ∈ Hy we have
f(wz) = y + f(w′

z)

In other words, the values off on t distinct inputsw1, w2, . . . , wt can be determined from the
values on other inputs. Therefore

|Hy| ≤ |F |/kt

It follows that
|Gj ∩Gj′ | =

∑

y∈[k]
|Hy| ≤ k|F |/kt = |F |/kt−1

�

For eachj < j′ ∈ L let

Tj,j′ =
r∑

z=1

tj,ztj′,z

Note thatTj,j′ ≤ r for all j, j′. For the derivation below, we use Lemma 40 for the pairs(j, j′)
whereTj,j′ ≤ 5 and Lemma 41 for the other pairs. We have

∑

j<j′∈L
|Gj ∩Gj′ |

r∑

z=1

tj,ztj′,z =
∑

j<j′∈L
|Gj ∩Gj′ |Tj,j′

=
∑

Tj,j′≤5

|Gj ∩Gj′ |+
∑

Tj,j′≥6

|Gj ∩Gj′ |Tj,j′

≤ 5
∑
|Gj ∩Gj′ |+

(
ℓ
2

)
r2|F |/k5

= O(k2)|F | by Lemma 40 and becauseℓ < k2, r < k3
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Substituting this into (33) we have

r∑

z=1

∑

j∈L
tj,z|Gj| ≤ r|F |+O(k2)|F | (35)

From (30), (32) and (35) we get

(ℓk + r +O(k2))|F | ≥ k3|F |

If s is the total number ofV -states thens ≥ ℓ andsk ≥ r so2sk +O(k2) ≥ k3 and

s ≥ k2/2−O(k)

from which the Lemma follows. �

3.2.4 The FVFV case

Theorem 42 1 Any deterministicf3-V-f3-V branching program solvingRR3(k) has at leastk2/5
V -states, for sufficiently largek.

Proof: Let B be a deterministic BP with layersF1-V1-F2-V2 solvingRR3(k). We begin as in
Step 1in the proof of Theorem 28. Thus there is some setF∗ of functionsf : [k]× [k]→ [k] and
some set{q1, . . . , qk} of initial V1-states such that for every input(v2, v6, v7, f) to B, if f ∈ F∗
then the input reaches stateqv2 .

So in effect we can ignore the initial layerF1 and assume that the BP has only three layers
V1-F2-V2, provided we only consider input functionsf ∈ F∗. The only thing we need to know
aboutF∗ is that it is big enough; namely

|F∗| > kk
2−2k (36)

Recall that in the proof of theV1-F -V2 case (Theorem 15) we argued that if there are fewer
thank3 initial F -states (which is implied by fewer thank2 V1-states) then two distinct input triples
(v2, v6, v7) and(v′2, v

′
6, v

′
7) would reach the same initialF -state, and this would necessitate at least

k2 initial V2-states. We cannot make the same argument now, becauseF∗ may not include the right
functions. However we can still argue that if there are fewerthank3/5 initial F2-states then there
must be more thank2 initial V2-states.

Let P = {p1, . . . , pr} be the set of initialF2-states. Defineψ : [k]3 → P by

ψ(i, ~v) = pj

wherepj is the initial F2 state reached when the input(v2, v6, v7) = (i, ~v) (here the choice of
f ∈ F∗ is irrelevant).

Let Q2 be the set of initialV2-states. For eachf ∈ F∗ defineρf : P → Q2 by ρf (pi) is the
initial V2-state reached starting at statepi when the input function isf .

1This theorem has been replaced by Theorem 45, and can be omitted, although it has an interesting argument
involving uniform hypergraphs.
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Lemma 43 Let P ′ ⊆ P be such that for every~v ∈ [k]2 there isi ∈ [k] such thatψ(i, ~v) ∈ P ′.
Thenρf ↿P ′ (the restriction ofρf to P ′) uniquely determinesf ∈ F∗.

Proof: Let P ′ be as in the lemma, and letf be any member ofF∗. Let ~v be any member of
[k]2, and leti ∈ [k] be such thatpj ∈ P ′, wherepj = ψ(i, ~v). Then the initialV2-stateq = ρf (pj)
together with~v determines the outputv2 + f(~v) of B, and this together withv2 = i determines
f(~v). �

Claim: If |P | ≤ k3/5 then there isP ′ ⊆ P with |P ′| ≤ (139/300)k2 such thatP ′ satisfies the
conditions of Lemma 43.

The theorem follows from the Claim,2 since if |P | > k3/5 then there are more thank2/5 V2-
states (since states have fanout at mostk), so we may assume|P | ≤ k3/5. Hence we may apply
Lemma 43 with|P ′| ≤ (139/300)k2. If m = |Q2| then there are at mostm(139/300)k2 choices for
ρf ↿P ′ : P ′ → Q2, so by (36)

m(139/300)k2 ≥ |F∗| ≥ kk
2−2k

Raising both sides to the power300/(139k2) we obtain|Q2| = m > k2 for sufficiently largek,
giving us the required lower bound.

The Claim follows from the next lemma, whereW = [k]2, P is the set of initialF2-states, and
each node~v ∈ W is connected to thek nodesψ(i, ~v), 1 ≤ i ≤ k. (Note that thesek states must be
distinct, since the outputv2 + f(~v) with i = v2 depends onv2.)

Lemma 44 3 Let G be a bipartite graph with left vertex setW satisfying|W | = k2 and right
vertex setP satisfying|P | ≤ k3/5, and suppose that each vertex inW has degreek. Then there is
a subsetP ′ ⊆ P with |P ′| ≤ (139/300)k2 which coversW , in the sense that every node inW is
adjacent to some node inP ′.

Proof: For each subsetP ′ ⊆ P let

W (P ′) = {w ∈ W | w is adjacent to some element ofP ′}

Our goal is to find someP ′ with |P ′| ≤ (139/300)k2 andW (P ′) = W . We will form P ′ as the
disjoint union of setsP5, P4, P3, P2, P1 using a greedy algorithm, and define

ti = |Pi|, si = |W (Pi) \
5⋃

j=i+1

W (Pj)|, 1 ≤ i ≤ 5

Motivated by the fact that the average degree of elements ofP is at least 5, we start by building
P5, initializing P5 to be∅ and successively adding elements toP5 such that each element added
increases|W (P5)| by at least 5, until no more such elements can be added. Sinces5 = |W (P5)|
we have

s5 ≥ 5t5
2For this all we need know about 139/300 is that it is less than 1/2.
3Dustin says this is really about vertex covers fork-uniform hypergraphs. He worked out the following general-

ization: IfH is ak-uniform hypergraph withm edges and average degree at mostd, thenH has a vertex cover of size
less thanmHd/d, whereHd is thedth harmonic number. Lemma 44 is obtained by settingm = k2 andd = 5.
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By definition no node inP5 is adjacent to any node inW \W (P5), and since no more nodes can
be added toP5 it follows that any node inP \P5 can be adjacent to at most 4 nodes inW \W (P5).
Since each node inW \W (P5) has degreek we have

4(k3/5− t5) ≥ k(k2 − s5)

so
s5 > k2/5

Now we augmentP5 by initializing P4 = ∅, and successively adding elements ofP \ P5 to P4 so
that each element added increasesW (P5) ∪W (P4) by at least 4, until no more such elements can
be added. Arguing as before we have

s4 ≥ 4t4

and
3(k3/5− t4 − t5) ≥ k(k2 − s4 − s5)

so
s4 + s5 > (2/5)k2

We defineP3 andP2 similarly, so

s3 ≥ 3t3

s2 ≥ 2t2

and

2(k3/5− t3 − t4 − t5) ≥ k(k2 − s3 − s4 − s5)
k3/5− t2 − t3 − t4 − t5 ≥ k(k2 − s2 − s3 − s4 − s5)

so

s3 + s4 + s5 > (3/5)k2

s2 + s3 + s4 + s5 > (4/5)k2

Finally we chooseP1 to cover one by one thek2 − s2 − s3 − s4 − s5 remaining nodes ofW , so

t1 = s1 = k2 − s2 − s3 − s4 − s5
SettingP ′ = P5 ∪ P4 ∪ P3 ∪ P2 ∪ P1 we have from the above inequalities

|P ′| = t5 + t4 + t3 + t2 + t1

≤ s5/5 + s4/4 + s3/3 + s2/2 + (k2 − s5 − s4 − s3 − s2)
= k2 − (4/5)s5 − (3/4)s4 − (2/3)s3 − (1/2)s2

= k2 − (1/2)(s5 + s4 + s3 + s2)− (1/6)(s5 + s4 + s3)− (1/12)(s5 + s4)− (1/20)s5

< k2 − (1/2)(4/5)k2 − (1/6)(3/5)k2 − (1/12)(2/5)k2 − (1/20)(1/5)k2

= (139/300)k2
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Now we present an improved version of Theorem 42.

Theorem 45 Any deterministicf3-V-f3-V branching program solvingRR3(k) has more thank2/3
V -states, for sufficiently largek.

Proof: Let B be a deterministic BP with layersF1-V1-F2-V2 solvingRR3(k). We begin as in
Step 1in the proof of Theorem 28. Thus there is some setF∗ of functionsf : [k]× [k]→ [k] and
some set{q1, . . . , qk} of initial V1-states such that for every input(v2, v6, v7, f) to B, if f ∈ F∗
then the input reaches stateqv2 .

So in effect we can ignore the initial layerF1 and assume that the BP has only three layers
V1-F2-V2, provided we only consider input functionsf ∈ F∗. The only thing we need to know
aboutF∗ is that it is big enough; namely

|F∗| > kk
2−2k (37)

Recall that in the proof of theV1-F -V2 case (Theorem 15) we argued that if there are fewer
thank3 initial F -states (which is implied by fewer thank2 V1-states) then two distinct input triples
(v2, v6, v7) and(v′2, v

′
6, v

′
7) would reach the same initialF -state, and this would necessitate at least

k2 initial V2-states. We cannot make the same argument now, becauseF∗ may not include the right
functions. However we can still argue that if there are fewerthank3/3 initial F2-states then there
must be more thank2 initial V2-states.

Let P = {p1, . . . , pr} be the set of initialF2-states. Assume to get a contradiction that

r = |P | ≤ k3/3 (38)

Defineψ : [k]3 → P by
ψ(v, ~w) = pi

wherepi is the initialF2 state reached when the input(v2, v6, v7) = (v, ~w) (here the choice of
f ∈ F∗ is irrelevant).

Notice that if(v, ~w) and (v′, ~w′) are distinct elements ofψ−1(pi) then ~w 6= ~w′, because for
v 6= v′ the two outputsv + f(~w) andv′ + f(~w) are different but cannot be distinguished by any
query.

For 1 ≤ i ≤ r we order the elements(v, ~w) of ψ−1(pi) by the lexicographic ordering of the~w
component to form the ordered sets

~xi = 〈(v1i , ~w1
i ), . . . , (v

ti
i , ~w

ti
i )〉, 1 ≤ i ≤ r

whereti = |ψ−1(pi)|. Notice that by (38) the average value ofti is at least 3.
We define the unordered setWi to consist of the~w components of~xi. Thus

Wi = {~w1
i , . . . , ~w

ti
i } (39)
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As observed above, the~w elements are distinct, so

|Wi| = ti, 1 ≤ i ≤ r

For f ∈ F∗ and1 ≤ i ≤ r define~afi ∈ [k]ti to be the ordered set of outputs determined by~xi
andf . Thus

~afi = 〈v1i + f(~w1
i ), . . . v

ti
i + f(~wti

i )〉
LetQ2 be the set of initialV2-states. We may as well assume

|Q2| ≤ k2 (40)

Defineρ : P ×F∗ → Q2 by ρ(pi, f) is the initialV2-state reached starting at statepi when the input
function isf ∈ F∗.

Lemma 46 For 1 ≤ i ≤ r andf, g ∈ F∗, if ρ(pi, f) = ρ(pi, g) then~afi = ~agi .

Proof: TheV2 states determine the output, but noV2-query can distinguishf from g. �

For1 ≤ i ≤ r let
Si = {~afi | f ∈ F∗} (41)

By (40) and Lemma 46 we have
|Si| ≤ k2, 1 ≤ i ≤ r (42)

Notice that if in the definition (41) we had allowedf to range over the setF of all functions
f : [k]2 → [k] instead of overF∗, then |Si| = kti . Since the average value ofti is at least 3,
equation (42) puts a considerable contraint on the cardinality of F∗. We use this idea to derive a
contradiction from (37) and our assumption (38).

We will give an algorithm to define a sequencepi1 , pi2 , . . . , pid of states inP so that when
W ′

1, . . . ,W
′
d are defined recursively by (see (39))

W ′
1 = Wi1 (43)

W ′
j+1 = Wij+1

\
j⋃

ℓ=1

W ′
ℓ (44)

then the setsW ′
1, . . . ,W

′
d are pairwise disjoint and each has at least 3 elements.

Let
uj = |W ′

j | ≥ 3, 1 ≤ j ≤ d

For f ∈ F the number of choices forf ↿ W ′
j (the restriction off to W ′

j) is kuj , but by (42) the
number of choices forf ↿ W ′

j whenf ∈ F∗ is at mostk2. Since the setsW ′
j are pairwise disjoint,

eachj cuts down the ratio of choices forf ∈ F∗ to choices off ∈ F by a factor of at leastkuj−2.
Since by (37) we know|F |/|F∗| < k2k, to reach a contradiction it suffices to have

d∏

j=1

kuj−2 ≥ k2k
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which is equivalent to
d∑

j=1

uj ≥ 2k + 2d (45)

Here is the algorithm to choose the sequencepi1 , pi2 , . . . , pid of states inP . We use the abbreviation

Yi = Wi \
⋃

ℓ<j

Wiℓ , 1 ≤ i ≤ r

j ← 1
while j ≤ 2k andmax{|Yi| : 1 ≤ i ≤ r} ≥ 3
chooseij so|Yij | ≥ 3

j ← j + 1
end while
d← j − 1

Notice that the resulting setsW ′
1, . . . ,W

′
d are the setsYi1 , . . . , Yid , and hence each has at least 3

elements (and the sets are pairwise disjoint) as required. Also

d ≤ 2k (46)

To prove the requirement (45) there are two cases.
If the while loop halts becausej > 2k, thend = 2k, and since eachui ≥ 3 it follows that∑d

j=1 uj ≥ 3d = 6k = 2k + 2d.
Otherwise the while loop halts because|Yi| ≤ 2 for 1 ≤ i ≤ r. Observe that each~w ∈ [k]2

occurs in exactlyk different setsWi (once for each choice ofv2 ∈ [k]). Thus if each|Yi| ≤ 2, it
must be that the ratio of the number of occurrences of all remaining vectors~w in W1, . . . ,Wr after
removing all occurrences in

⋃d
ℓ=1W

′
ℓ, to r ≤ k3/3, is at most 2. Thus

k3 − k∑ uj
k3/3

≤ 2

so by (46) we have
∑
uj ≥ k2/3 > 2k + 2d for sufficiently largek, as required.

�

3.2.5 The VFVF case

At this point we have been unable to prove an interesting lower bound for the VFVF case in solving
RR3(k) (Definition 7). Here we summarize the work on this by Steve andPhuong in the summer
of 2010. This is based on generalizing the proof of Theorem 38.

Each input to our branching programB has the form(v2, v6, v7, f) wheref = f3 ∈ F where

F = {f : [k]2 → [k]}
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We assume each V-state can query any property ofv6, v7 (as long as the fanout is at mostk) so we
abbreviatev6, v7 byw. Thus each input toB has the form

(v, w, f) = (v2, v6, v7, f3)

The corresponding output ofB is v + f(w). Note that there are exactlyk3|F | different inputs.
The states ofB are divided sequentially into the four layers

V1, F1, V2, F2

where the states ofV1 andV2 queryw and have fanoutk, and the states ofF1 andF2 queryf and
have arbitrary fanout. (See Theorem 48 to see that we can get alower bound in this general setting
for the height 2 case.)

LayerV1 hask inputs, one for each value ofv = v2.
LayerF1 hasm initial statesP 1 = {p11, . . . , p1m}.
LayerV2 hasℓ initial statesQ2 = {q1, . . . , qℓ}.
LayerF2 hasr initial statesP 2 = {p21, . . . , p2r}.
LayerV1 computes a transformationϕV1

: [k3]→ P 1.
LayerF1 computes a transformationϕF1

: P 1 × F → Q2.
LayerV2 computes a transformationϕV2

: Q2 × [k]2 → P 2.
LayerF2 computes a transformationϕF2

: P 2 × F → [k].
For 1 ≤ i ≤ m let U i = ϕ−1

V1
(p1i ) be the set of triples(v, w) reaching statep1i . Thus the sets

U1, . . . , Um form a partition of[k]3. We write

U i = {(vi1, wi
1), . . . , (v

i
ui
, wi

ui
)}

whereui = |U i|.
FACT: For1 ≤ i ≤ m, the elements of{wi

1, . . . , w
i
ui
} are all distinct.

Otherwise there would be distinct valuesv, v′ of v2 such that for somew, both of the triples
(v, w) and(v′, w) occur inU i. But then for anyf , the inputs(v, w, f) and(v′, w, f) would reach
the same output state ofB even thoughv + f(w) 6= v′ + f(w).

For each states in B we letIs denote the set of inputs reaching states. Thus

Ip1i = U i × F

For1 ≤ i ≤ m and1 ≤ j ≤ ℓ let

Gi
j = {f : ϕF1

(p1i , f) = qj}

Note that for eachi, the sets{Gi
1, . . . , G

i
ℓ} form a partition ofF . For1 ≤ j ≤ ℓ we have

Iqj =
m⋃

i=1

U i ×Gi
j (disjoint union)
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For1 ≤ j ≤ ℓ, 1 ≤ z ≤ r let
Wj,z = {w : ϕV2

(qj, w) = p2z}
For1 ≤ z ≤ r we have

Ip2z =
ℓ⋃

j=1

m⋃

i=1

(
U i ∩ ([k]×W j,z)

)
×Gi

j

ThusIp2z is the disjoint union over all pairs(p1i , qj) of inputs which follow the path(p1i , qj) to p2z.
Let us briefly give an intuitive argument. We are trying to prove a lower bound ofΩ(k2) on

the total number of V-states inB. So lets assume otherwise; say there are at mostk2/10 V-states.
Then on average|U i| ≥ 10, soUi has 10 distinct values ofw, and the restriction off to these 10
values hask10 possibilities. But there are onlyℓ ≤ k2/10 initial V2-states, so on average a stateqj
receiving the input setU i × Gi

j cannot know much about the value of a function inGi
j on aw in

U i. For each suchwi
a, qj sends the entire input setwi

a ×Gi
j to some initialF2-statep2z. Since there

are onlyr ≤ k3/10 such states, on average eachp2z receives at least10|F | of thek3|F | possible
inputs, so that makes an average of 10 possiblew values for each functionf it receives. Yetp2z
must determine the outputv + f(w) based solely onf .

The proof of the next result shows that in order to get a lower bound ofΩ(k3) on r (and hence
a lower bound ofΩ(k2) on the number of V-states inB), we may as well assume that the number
of edges inB reaching each statep2z is ω(

√
k), since any statep2z with fan-inO(

√
k) can handle

onlyO(|F |) distinct inputs.

Theorem 47 Suppose that the number of input sets(via, w
i
a) × Gi

j reaching any fixed statep2z is

O(
√
k). Thenr = Ω(k3). (Herer = |P 2| is the number of initial states in theF2 layer.)

Proof: Suppose that the input sets reachingp2z are(x1 × G1), . . . , (xn × Gn), wherex1, . . . , xn
are distinct triples in[k]3, andG1, . . . , Gn are subsets ofF . Note that for anyi < j, any f in
Gi ∩Gj must give the same output for both the triplesxi andxj, and hence

|Gi ∩Gj| ≤ |F |/k

Hence we can bound the number of inputs reachingp2z using the inclusion-exclusion principle as
follows:

|Ip2z | =
n∑

i=1

|Gi| ≤ |
n⋃

i=1

Gi|+
∑

i<j

|Gi ∩Gj|

≤ |F |+
(
n

2

)
|F |/k

= O(|F |) assumingn = O(
√
k)

Since the total number of inputs isk3|F |, it follows that the number of statesp2z is r = Ω(k3). �

Now we will try using the method in the proof of Theorem 38 to get a lower bound ofΩ(k2)
on the total number of V-states inB.
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Let tijz = |U i ∩ ([k]×Wj,z)| = the number of triples sent to statep2z via statesp1i andqj. As in
Lemma 39 it is easy to show

|Gi
j| ≤ |F |/ktijz−1

As before, when max1≤z≤r ≥ 4 (or some small number like 4),|Gi
j| is small enough to ignore. For

simplicity, let us assume that
tijz ≤ 1

By the inclusion/exclusion principle we have

|Ip2z | =
∑

i,j

tijz|Gi
j|

≤ |
⋃

i,j

tijzG
i
j|+

∑

i<i′,j,j′

|Gi
j ∩Gi′

j′ |tijzti′j′z

Using an upper bound of|F | on the first term in the second line, and the fact that there area total
of k3|F | inputs, it follows that

k3|F | =
r∑

z=1

|Ip2z | ≤ r|F |+
∑

i<i′,j,j′

(|Gi
j ∩Gi′

j′ | ·
∑

z

tijzti′j′z) (47)

Let Sij = {z : tijz = 1}. Then ∑

z

tijzti′j′z = |Sij ∩ Si′j′ |

Note that
∑

i<i′,j,j′ |Gi
j ∩Gi′

j′ | =
(
m
2

)
|F |, because eachf contributes once to the sum for each pair

i < i′. Since|Gi
j ∩Gi′

j′ | is small when|Sij ∩ Si′j′ | ≥ c for a suitable constantc, we obtain

k3 ≤ r +

(
m

2

)
c

However this is not good enough to get a good lower bound onr +m. In order to show this, we
must show thatSij ∩ Si′j′ is empty for most tuplesi, j, i′, j′.

3.2.6 The ‘simple’ (height 2) case

By thesimplecase we mean the Tree Evaluation Problem for binary trees of height 2. There is an
easy proof in [CMW+10] showing that anyk-way BP solving this must have at leastk states that
query the leavesv2, v3, even when the root function is fixed to be addition modk. However this
proof sheds no light on our attempts to prove lower bounds in this section (the sequential height
4 case) since the problem becomes trivial whenf3 is addition modk. In fact our approach in
this section assumes that the states in the BP are divided intolayers such as VFVF. This amounts
to trying to prove lower bounds for a much stronger kind of BP, in which the V layers allow an
arbitrary transformation depending onv6, v7 with some fixed (but large) number of inputs and
outputs, and similarly for the F layers.
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Hence it is worth studying proofs for this simple height 2 case assuming that the BP is divided
into V and F layers which have general access to the inputs(v2, v3) andf1, respectively. In fact a
simple counting argument in the style of Neciporuk gives us the desired lower bound for this case,
and more generally. Unfortunately this counting argument does not work for solving the problem
RR3(k), although perhaps it might prove helpful in some way.

Theorem 48 LetB be ak-way branching program solving the Tree Evaluation Problem for binary
trees of height 2, and suppose that we allow any V-state inB to make an arbitrary query concerning
the pair of leaf values(v2, v3) (as long as there are at mostk edges leaving the state) and we allow
any F-state to make an arbitrary query concerning the table of values defining the root function
f1 (here we can allow any number of out-edges from the F-state). ThenB has at leastk different
V-states.

Proof: Because we are interested in the layered case in this subsection we will assume that the
states ofB are divided into alternateV andF layersV1, F1, V2, F2, . . . , Vt, Ft. However a standard
Neciporuk-style argument proves the theorem even without this assumption.

Suppose layerVi hasℓi V-states,1 ≤ i ≤ t. By the fanout assumption it follows that each F-
layerFi has at mostkℓi inputs from the preceeding V-layerVi. Thus for each possible root function
f : [k]2 → [k] we can describe the effect of layerFi as a map fromkℓi inputs to at mostℓi+1 inputs
of layerVi+1, and the effect of the final layerFt as a map fromkℓt inputs to thek outputs of the
branching programB. Since we are trying to prove that there are at least a total ofk V-states we
may assumeℓi ≤ k. Hence for1 ≤ i ≤ t and each functionf we can describe the effect of layer
Fi by a map

ϕf
i : [kℓi]→ [k]

There are at mostkkℓi choices forϕf
i , and for each distinctf : [k]2 → [k] the sequenceϕf

1 , . . . , ϕ
f
t

must be distinct (since any two distinct root functionsf will give a different output for some pair
v2, v3). Hence

t∏

i=1

kkℓi ≥ kk
2

so
∑t

i=1 ℓi ≥ k, as required. �

Remark: The above proof shows a stronger result, namely that even with no limit on the fan-out
of the V-states, the total number of initial F-states is at leastk2.

3.2.7 Lower bound for semi-thrifty programs for the simple case

We have not been able to prove the lower bound for the VFVF caseeven when the branching
program satisfies the condition that the setsGi

j are determined by querying onlyf(w) wherew
appears inUi. Here we will give a simple argument showing lower bound for VFVF semi-thrifty
branching programs that solves the simple (height 2) case.

Theorem 49 Let B be a VFVF semi-thrifty branching program that solves the Tree Evaluation
Problem for binary trees of height 2. Then either it hask2 many initialV -states, or it hask2 many
initial F -states.
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Proof: As usual, we denote the initial states in the firstF layer byp11, p
1
2, . . . , p

1
m; the initial states

in the secondV layer byq1, q2, . . . , qℓ; and the initial states in the lastF layer byp21, p
2
2, . . . , p

2
r.

Suppose thatℓ < k2, we will show thatm+ r ≥ k2.
Let Ui denote the set ofw that reachp1i . SoU1, U2, . . . , Um is a partition of[k]2. In particular,

Ui andUi′ are disjoint for anyi 6= i′.
We say that(w,Gi

j) “meets”(w′, Gi′

j′) if for some statep2z, w labels an edge fromqj to p2j and
w′ labels an edge fromqj′ to p2z.

Claim: Suppose that(w,Gi
j) meets(w′, Gi′

j′). ThenGi
j is single-valued onw, that is, for any

two functionsf, f ′ ∈ Gi
j, f(w) = f ′(w).

Proof: Suppose for a contradiction that there are functionsf, f ′ ∈ Gi
j such thatf(w) 6= f ′(w).

We viewf andf ′ as function onUi. BecauseUi is disjoint fromUi′ , andGi′

j′ is defined based on

values of functions onUi′ , there are extensionŝf andf̂ ′ of f, f ′ such thatf̂ |Ui′
= f̂ ′|Ui′

, and that

both f̂ andf̂ ′ belong toGi′

j′. As a result, botĥf andf̂ ′ belong to the intersection

Gi
j ∩Gi′

j′

Therefore
f̂(w) = f̂(w′), f̂ ′(w) = f̂ ′(w′)

This is a contradiction, becausêf(w) = f(w) 6= f ′(w) = f̂ ′(w), while f̂(w′) = f̂ ′(w′). �

It follows from the claim that if there are distinctwi, w
′
i ∈ Ui such that(wi, G

i
j) and(w′

i, G
i
j)

each meets at least some other pair(w′, Gi′

j′), then|Gi
j| ≤ |F |/k2. This is because in this caseGi

j

must be single-valued on bothwi andw′
i.

Fix i, 1 ≤ i ≤ m. Becauseℓ < k2, there must be somej so that|Gi
j| > |F |/k2. By the above

observation, there is at most one valuewi ∈ Ui such that the pair(wi, G
i
j) meets some other pair

(w′, Gi′

j′). Consequently, for each of the other|Ui| − 1 manyw ∈ Ui the pair(w,Gi
j) takes up on

distinct statep2z. As a result, the total number of initialF2-states is at least

m∑

i=1

(|Ui| − 1) = k2 −m

In other words,r +m ≥ k2. �

4 Optimizing Branching Programs from Pebbling

In his MSc research paper Dustin shows that when the standardblack pebbling algorithm for the
binary tree of heighth is implemented by ak-way BP, the resulting BP has exactly(k + 1)h − k
states (not counting output states). Although we know that the standard pebbling algorithm uses
the least possible number of pebbles, it is not immediately clear that its implementation by a BP
uses the least possible number of states (among all pebblingalgorithms). Here we show that it
does. We also consider minimizing leaf queries.
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4.1 Minimizing All States

LetΠ be a black pebbling algorithm forT = T h
2 (the binary tree of heighth). LetStates(k,Π) be

the number of non-output states in thek-way BP that implementsΠ in order to solveFT h(k).
In general we assumeh ≥ 1 andk ≥ 2.
We can defineStates(k,Π) as follows. For1 ≤ i ≤ t let pi be the number of pebbles on the

tree before theith pebble placement inΠ (heret is the total number of placements). Note that the
pebble placement at stepi requireskpi states in the corresponding BP; one state for each of the
possible values of the pebbled nodes. Thus

States(k,Π) =
∑

i

kpi

Now letSS(k, h) (SS stands for Standard States) beStates(k,Π), whereΠ is the standard peb-
bling algorithm forT h.

Theorem 50
SS(k, h) = (k + 1)h − k

Proof: We use induction onh. Forh = 1 just one pebble is required, so the base case follows.
For the induction step, the standard pebbling algorithm first pebbles the left principal subtree, keeps
a pebble on its root, then pebbles the right principal subtree, and then with a pebble on each child
of node 1, finally pebbles node 1. Thus

SS(k, h+ 1) = SS(k, h) + k · SS(k, h) + k2 (48)

= (k + 1)[(k + 1)h − k] + k2 (49)

= (k + 1)h+1 − k (50)

�

For eachk, h let MinStates(k, h) be the minimum ofStates(k,Πh) for all pebbling algo-
rithmsΠh for T h.

Theorem 51 For all k, h

MinStates(k, h) = SS(k, h) = (k + 1)h − k

Proof: ObviouslyMinStates(k, h) ≤ SS(k, h). We prove the reverse inequality by induction
on h. The base caseh = 1 is clear. For the induction step, (fromh to h + 1) consider the
last step inΠh+1 before the root is pebbled that one of the principal subtrees(say the left one)
of T h+1 is empty. From this point on until node 2 is pebbled there is atleast one pebble on the
right subtree, so (by the Induction Hypothesis) the pebble placements on the left subtree contribute
at leastk · SS(k, h) states which query nodes in this subtree. Also node 3 must be pebbled at
some point, so by the I.H. there must be at leastSS(k, h) states which query nodes in the right
subtree. Finally there must be at leastk2 states which query node 1. Referring to (48) we see that
MinStates(k, h+ 1) ≥ SS(k, h+ 1). �
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4.2 Minimizing Leaf Queries

LetLeaf(k,Π) be the number of states which query leaves in the BP corresponding to the pebbling
algorithmΠ. As before, letpi be the number of pebbles in the tree before the pebble is placed at
stepi of Π. Let leaf be the set of alli such that a pebble is placed on a leaf at stepi of Π. Then

Leaf(k,Π) =
∑

i∈leaf
kpi

For eachk, h letMinLeaf(k, h) be the minimum ofLeaf(k,Πh) for all pebbling algorithmsΠh

for T h.

Theorem 52
MinLeaf(k, h) = (k + 1)h−1

Proof: It is easy to see by induction onh that the standard pebbling algorithm achieves the stated
bound. Hence it suffices to prove the lower bound by inductionon h. The base caseh = 1 is
obvious. For the induction step we argue as in the proof of Theorem 51. Starting from the last
time before the root is pebbled that one principal subtree isempty we note that the leaves on that
subtree must be pebbled while the other subtree has at least one pebble, and the leaves of the other
subtree must also be pebbled. Hence

MinLeaf(k, h+ 1) ≥ k(k + 1)h−1 + (k + 1)h−1 = (k + 1)h

�

Conjecture: Every deterministic thrifty BP which solvesFT h(k) has at leastMinLeaf(h, k) =
(k + 1)h−1 states which query leaves.

Finally we consider sequential BPs (see Section 3). We are interested in the number of leaf
states required for a sequential BP to solveFT 3(k) assuming that it hask initial states, one for
each possible value ofv2, and it is not allowed to queryv2 later. (This is the problemRR3(k)
described in Definition 7.)

The corrsponding pebbling problem is to pebbleT 3 with a permanent pebble placed on node 2
throughout. It is easy to see that the minimum number of states in any BP which corresponds to
such a pebbling algorithm isk(k + 1) = k2 + k. This is slightly larger than the lower bound ofk2

stated in Theorem 30. (See the comment at the end of the proof.)

5 Read-Once Lower Bound

We give two lower bound proofs for deterministic read-once BPs solvingFT h
2 . The first one is

due to James. The second one is an improvement, due to Siuman.Corollary 63 to the second
Theorem states that deterministic read-once BPs solvingFT h

2 (k) haveΩ(kh) states, showing that
black-pebbling gives the optimal read-once algorithm.
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5.1 First Theorem

Theorem 53 Let k = p2r, wherep is prime andr ≥ 1. Let h ∈ {1, . . . ,
√
k}. Then any deter-

ministic read-once branching program which solves the tree evaluation problemFT h
2 must have

at leastk(h−1)/2 = pr(h−1) states which query leaves.

We need the following definitions:

5.1.1 The Internal Nodes

Let F = F√
k be the field of order

√
k. Fora, b ∈ F√

k, let [a, b] = a+ b
√
k ∈ [k], so that[·, ·] is a

bijection betweenF2 and[k].
We consider trees in which every internal node is labeled with the functionϕ : [k]× [k]→ [k],

defined by
ϕ([a0, b0], [a1, b1]) = [a0a1, a0b0 + a1b1].

The internal nodes being fixed, henceforth aninput ℓ shall be an assignment of values to the
leaves of the treeℓ = (v2h−1 , . . . , v2h−1).

5.1.2 i-Siblings

Nodev’s 0-parent isv itself, and in generalv’s i+ 1-parent is the parent ofv’s i-parent.i-children
are defined oppositely.

Nodev’s only 0-sibling is v itself. In general, ani-sibling of v is anyi-child of v’s i-parent
which is not already aj-sibling of v for anyj < i. For example,1-siblings are ordinary siblings,
and2-siblings are cousins.

5.1.3 The Final-Leaf Function

Let i ∈ {2h−1, 2h−1 + 1, . . . , 2h − 1} be the last leaf queried by some computation that queries
each leaf exactly once. Letℓ = (v2h−1 , . . . , v2h−1) be a tuple assigning a value to every leaf. Then
thefinal-leaf functionfi,ℓ : [k] → [k] is defined as follows: for anyx ∈ [k], fi,ℓ(x) is the value of
the root of the tree if the leafi is assigned valuex, the other leaves are assigned their values from
ℓ, and the internal nodes compute the function defined in Section 5.1.1.

5.2 Proof of Theorem 53

Throughout this section,B shall be any read-once branching program which correctly computes
the tree-evaluation problem, andS shall be the set of states ofB.

We first show in Lemma 54 that at the timeB makes its last query to a leaf, it must remember
the entire final-leaf function, so it must have at least as many states as there are possible functions
at that point. Then, we show in Lemma 55 that there is at least one distinct possible final-leaf
function for every degree-h − 1 polynomial over the fieldF√

k. These two lemmas complete the
proof.

38



Lemma 54 There exists a functionG : S → [k] → [k] such that for any leaf assignmentℓ =
(v2h−1 , . . . , v2h−1), if i is the last leaf queried byB on inputℓ ands ∈ S is the state which makes
that query, thenG(s) = fi,ℓ. That is, the states encodes the entire final-leaf function for the last
leaf queried byB.

Proof: The values of the internal nodes are all predetermined, so the computation ofB from
states to the output state depends only on the value of the leafi. Since the program is read-once,
the states does not depend on the valuex of i. Hence the value offi,ℓ(x) is completely determined
by s andx (independent ofℓ). �

Lemma 55 Call a functiong : [k] → [k] attainableif there is some inputℓ = (v2h−1 , . . . , v2h−1)
which forcesB’s final-leaf function to beg. There are at leastk(h−1)/2 attainable functions.

5.2.1 Proof of Lemma 55

Using the operation[·, ·] from Section 5.1.1, for every leafi with valuevi, let [ai, bi] = vi.
Let i ∈ {2h−1, . . . , 2h − 1} be the index of any leaf. Then forj ∈ {1, . . . , h− 1}, letCj(i) be

the set of allj-siblings ofi, and letΣj(i) =
∑

m∈Cj(i)
bm.

Lemma 56 Let i be the index of any node. If the value of every leaf belowi is of the form[1, b]
(that is, its first component is 1), theni has the value[1, b′], whereb′ is the sum of all theb-values
of those leaves.

Proof: Observe that the internal node function given in Section 5.1.1, on inputs[1, b0] and[1, b1],
assumes the value[1, b0 + b1]. �

Lemma 57 Let i be a leaf index and suppose that for all leavesj 6= i, aj = 1. Then the final
functionfi,ℓ, when restricted to inputs of the form[a, 0], is

fi,ℓ([a, 0]) =

[
a,

h−1∑

j=1

Σj(i)a
h−j−1

]
.

Note that the second component offi,ℓ is the degree-h− 2 polynomial ina with coefficientsΣj(i):
in particular, every choice of values(Σj) gives a different final function. (Recall that Theorem 53
assumesh ≤

√
k, so a degreeh− 1 polynomial cannot be identically 0 overF.)

Proof: Assume without loss of generality thati is the leftmost leaf:i = 2h−1. Let x1 =
i, x2, . . . , xh−1, xh = 1 be the indices of the nodes on the path from leafi to the root of the tree,
with valuesvxj

= [axj
, bxj

].
Notice that every nodexj has as its right child the root of the subtree whose leaves arethe set

Cj−1(i): it follows by Lemma 56 that nodexj has as its right input the value[1,Σj−1(i)]. Then
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theb-value of the root is the polynomial ina stated in the Lemma, evaluated by Horner’s Rule by
climbing the path fromi to the root. To see this, prove by induction that for everym ∈ {1, . . . , h},

vxm
=

[
a,

m−1∑

j=1

Σj(i)a
m−j−1

]
.

�

Lemma 58 For any choice of valuess1, . . . , sh−1 ∈ F√
k, there exists an inputℓ = (v2h−1 , . . . , v2h−1)

such that the following two properties hold. Leti be the index of the final leaf queried byB on
input ℓ. Then

• For all j 6= i, aj = 1.

• For all j ∈ {1, . . . , h− 1}, Σj(i) = sj.

Proof: Begin with all the leaf values unspecified, and run the branching programB. Every time
B queries a leaf (except for the last time) decide the value to return according to the following
algorithm:

1. Letm be the index of the leaf being queried.

2. If m’s 1-sibling is still unspecified, letj = 1. Otherwise, letj be the smallest integer such
thatm has at least onej-sibling that has not yet been specified.

3. LetD be the set of all leaves which arer-siblings ofm for anyr < j, excludingm itself:
D = ∪j−1

r=1Cr(m).

4. Specify theb-value of leafm to be

bm = sj −
∑

x∈D
bx.

After 2h − 1 leaf queries have happened, the only leafb-value that is still unspecified is that of the
final leaf,bi. It suffices to show that the following invariant holds at every step of the interaction.

• Let i be the index of any leaf whoseb-value has not yet been specified. Then for every
j ∈ {1, . . . , h− 1}, theb-value ofΣj(i) is either undetermined (due to some leafb-value in
Cj(i) still being unspecified) or is equal tosj.

The invariant is true at the beginning of the interaction simply becauseΣj(i) is undetermined for
everyi andj. Now, assume the invariant holds at one point in time, and theb-value of a new leaf
m is specified. Consider theb-valueΣj′(i) for any j′ and any leafi 6= m whoseb-value has not
yet been specified. If theb-value ofΣj′(i) was determined before leafm was specified, it must
already be correct, so the only case we are interested in is thatΣj′(i) was not determined before
and is determined now.j′ must be equal to thej-value chosen in the algorithm: for ifj were less
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thanj′, thenm’s unspecifiedj-sibling would leaveΣj′(i) undetermined, and ifj were greater than
j′, then the value ofi would already have been determined. Therefore, the setCj′(i) = Cj(i) is
equal toD ∪ {m} (taking theD used in the algorithm), so

Σj′(i) =
∑

x∈D
bx + bm =

∑

x∈D
bx + sj −

∑

x∈D
bx = sj.

�

Lemmas 57 and 58 together show that the final function can be forced to be any degree-h − 1
polynomial overF√

k, which completes the proof of Lemma 55.

5.3 Second Theorem

Theorem 59 Any deterministic read-once BP which solvesFT h
2 hasΩ(kh−1) states which query

leaves.

Proof: The proof is similar to that of the previous theorem, but now we use a different field, and
the node values are field elements, rather than pairs of field elements. Fix a deterministic read-once
branching programB which solvesFT h

2 .
Let d be an odd positive integer. We let the fieldF beGF (2d), and setk = 2d. In general the

nonzero elements of the fieldGF (q) form a cyclic group of orderq − 1, so if e is relatively prime
with q− 1 then the polynomialxe is a permutation polynomial of the fieldGF (q). (A permutation
polynomial of a field is a polynomial that permutes the elements of the field.) Since2d − 2 is
divisible by 3 whend is odd, it follows thatgcd(3, 2d − 1) = 1, sox3 is a permutation polynomial
of F = GF (2d) = GF (k).

We assumek > 3h−1, so that distinct polynomials overF of degree3h−1 represent distinct
functions onF .

We fix the functionfi assigned to each internal node ofT h
2 to be

fi(a, b) = a3 + b3

[NOTE: Alternatively we could takefi(a, b) = (a+ b)3]
With this assignment of functions to internal nodes, the following lemma is easily proved by

induction on the height of noder, using the fact thatx3 is a permutation polynomial.

Lemma 60 For each internal noder ofT h
2 and elementa ∈ F and each leafi in the subtree rooted

at r and each assignment of elements inF to the leaves other thani, there is a valuevi ∈ F for i
which makesvr = a, wherevr is the value of noder.

From this lemma it follows that, for each possible tuple(s1, s2, . . . , sh−1) of h−1 field elements
and each leafi, there is an assignment of field elements to the leaves other thani such that the values
of the siblings of the nodes on the path from the root to the node i (excluding the root itself) form
the sequence(s1, s2, . . . , sh−1).

Thus ifx is the value of the leafi then value of the root is

f1(x) = s1 + (s2 + . . .+ (sh−2 + (sh−1 + x3)3)3 . . .)3 (51)
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Lemma 61 For each distinct sequence(s1, s2, . . . , sh−1) of field elements the polynomialf1(x) in
(51) is distinct.

Proof: The proof is by induction onh. If we write the polynomialf1(x) as a sum of monomials
aix

i then the highest degree monomial isx3
h−1

and the second-highest degree monomial is the
same as the second highest one in(sh−1+x

3)3
h−2

, namely3h−2sh−1x
(3h−1−3). SinceF has charac-

teristic 2, the coefficient3h−2sh−1 is the same assh−1 in F . Hence the value ofsh−1 is determined
by the polynomialf1(x). If we sety = sh−1 + x3 (note that this map fromx to y is a bijection)
then (51) becomes

f1(x) = s1 + (s2 + . . .+ (sh−2 + y3)3 . . .)3

sos1, . . . , sh−2 are determined by the induction hypothesis. �

It follows from the above lemma that there arekh−1 distinct polynomials of the form (51).
Since we assumek exceeds their degree3h−1, there arekh−1 distinct functionsf1(x) of the form
(51).

To finish the proof of the theorem we need an analog of Lemma 58 in the proof of Theorem
53. This will show that for each tuples1, . . . , sh−1 ∈ F there is an assignment of elements to the
leaves ofT h

2 such that ifx is the value of the last leaf read by the program, then the value of the
root isf1(x) as given in (51). Hence there must be at leastkh−1 distinct states inB which read the
last leaf in some computation.

Recall from the proof of Theorem 53 that forj ∈ {1, . . . , h−1}, Cj(i) is the set of allj-siblings
of i. Then we definerootj(i) to be the root of the subtree whose leaves are the setCj(i), and we
defineSj(i) to be the value ofrootj(i).

Lemma 62 For any choice of valuess1, . . . , sh−1 ∈ F there exists an inputℓ = (v2h−1 , . . . , v2h−1)
such that ifi is the last leaf queried byB on inputℓ then for allj ∈ {1, . . . , h−1}, sh−j = (Sj(i))

3.

Proof: The proof is similar to the proof of Lemma 58. Steps 1. and 2. ofthe algorithm to
evaluate a leaf are the same as before, but the last two steps are replace by

3′. The valuevm of leafm is that which according to Lemma 60 makesvr = (sh−j)
1/3, where

r = rootj(i).
Now the invariant becomes

• Let i be any leaf whose value has not yet been specified. Then for every j ∈ {1, . . . , h− 1},
Sj(i) is either undetermined (due to some leaf inCj(i) still being unspecified) or is equal to
(sh−j)

1/3.

The proof of the invariant consists in observing that whenever the algorithm fixes the value of
any node of heightj, that value is(sh−j)

1/3. �

�

Corollary 63 Any deterministic read-once BP solvingFT h
2 (k) hasΩ(kh) states.
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Proof: This follows from Theorems 59 and 1. Difficult instances ofFT h
2 (k) are obtained by

assigning functions to the nodes in the toph − 2 layers according to the proof of Theorem 59
when the overall tree height ish− 1. The functions assigned to layer 2 from the bottom are those
described in the proof of Theorem 1 (i.e. zero everywhere except at some specific pairr, r′ of child
values). The values of the sibling pairs of the leaves arer, r′. �

6 Thrifty lower bound - alternative proof

Theorem 64 Any deterministic thrifty BP solvingFT h
2 (k) has at leastkh states.

Proof: The definition of critical states used in this proof is the same as in the original proof, but
the way of assigning pebbling sequences to inputs is slightly different, so to ensure consistency
we’ll start by repeating the definition of the critical statesequence of an input.

Fix an inputI, and letP = PI be its computation path. We will choosen states onP , one for
each node of the tree, as critical states forI. The critical stateqI1 for the root is the last state on
P that queries the root. In general for internal nodesi, the critical statesqI2i andqI2i+1 are the last
states onP beforeqIi that query nodes2i and2i+ 1 (the thrifty condition ensures that these states
exist). Note that ifj is a descendant ofi thenqIj occurs beforeqIi onP .

The pebbling algorithm associated with the computation path P is slightly different from be-
fore, in that now a nodei is pebbled (and the pebbles on the children removed ifi is not a leaf)
at the stateq′ following the critical stateqi rather than atqi itself. The intuitive reason for this is
(assumingi is not the root) by the thrifty propertyq′ ‘knows’ the value ofvi of nodei, since the
parent ofi will be queried beforei is again queried.

This revised pebbling algorithm assigns a pebbling configuration to each state onP , such that
the set of pebbled nodes in each configuration is a minimal cutof the tree or a subset of some
minimal cut, and any two adjacent configurations are either identical, or else the later one follows
from the earlier one by valid pebbling moves. This assignment can be described inductively by
starting with the last state inP and working backwards. The pebbling configuration for the output
state has just a black pebble on the root. Assume we’ve definedthe pebbling configurations for
q and every state followingq on P . Let q′ be the state beforeq on P . If q′ is not critical, then
its pebbling configuration is the same as that ofq. If q′ is critical then it must query a nodei
that is pebbled inq. The pebbling configuration forq′ is obtained from the configuration forq by
removing the pebble fromi and adding pebbles to2i and2i+1 (if i is an internal node - otherwise
you only remove the pebble fromi). This is the main property of the pebbling sequences that we
will use directly:

Fact 65 If non-root nodei is pebbled at critical stateqIj , then there is a later critical stateqIi′ of I
that queries the parenti′ of i, and there is no state (critical or otherwise) betweenqIj andqIi′ onP
that queriesi.

Define the supercritical stateqIc of I to be the last critical states ofI on P whose associated
pebbling configuration is a bottleneck. Hence by the black pebbling lower bound for binary trees
of heighth, there are at leasth nodes pebbled atqIc .
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Remark Similiar to the original proof, at this point we could restrict the set of inputs to be thekn

inputs whose functionsfi are zero everywhere except possibly when the arguments are the values
of the children of nodei. We would still get a lower bound ofkh states. However, doing so does
not simplify this proof, and might make it less robust in the following sense: Possibly this proof
could be adapted to work for subsets of the inputs that satisfy some statistical properties, but have
no obvious “simple” description, in contrast to the set ofkn inputs just mentioned.

LetQc be the set of states that are supercritical for some input. Let E be the set of inputs and
letNE := (2h−1 − 1)k2 + 2h−1 be the number ofk-valued input variables. Thus|E| = kNE . Let
A (for ‘Advice’) be the set of tuples of[k] of lengthNA := NE − h. We will now define an onto
functionG : Qc × A → E, which implies|Qc| ∗ |A| ≥ |E| and so|Qc| ≥ kh, which completes
the proof.G will have the property that for everyI ∈ E there is some adviceaI ∈ A such that
G(qIc , aI) = I.

To be precise, we will defineG using a deterministic algorithmM which takes as input an
element ofQc×A. On input〈qc, a〉, algorithmM constructs a pathq0, e0, q1, . . . , em−1, qm through
the branching program, whereq0 = qc, the output state isqm, andet is an edge fromqt to qt+1. M
maintains a partial assignmentv∗ of values in[k] to nodes. Initiallyv∗(i) is undefined for all nodes
i.

The idea is thatM learns the values of the children of each node queried, because of the thrifty
property. It uses this information to answer a query to a nodei which is the child of a previously-
queried node. Otherwise it uses the next element in the advice stringa as the value ofi. There are
at leasth pebbled nodes in the bottleneck configuration, andM will query each of their parents
before they are queried, and hence learn their values. This is why the advicea can haveh fewer
elements than there are input variables.

Back to the formal description:M indexesa using the variablel, which is initially zero. The
main loop ofM follows. At stateqt,M does the following:

1. If qt is an output state, setv∗(1) to its label.4 Let i1 < i2 < · · · < iz be the entries ofv∗ that
are still undefined. Setv∗(i1) := a[l], v∗(i1 + 1) := a[l + 1], . . . , v∗(iz) := a[l + z − 1].5

Then exit this loop.
2. LetX be the input variable queried byqt, andi the corresponding node of the tree.
3. If X = fi(y, y

′), then setv∗(2i) := y andv∗(2i+ 1) := y′.
4. If v∗(i) is defined, then take the edgeet with that label (i.e. setqt+1 to the stateet points to).
5. Otherwisev∗(i) is undefined. Take the edgeet with label a[l]. Setv∗(i) := a[l]. Then

incrementl by 1.

Before giving the remainder of the algorithmM , we will recursively define the firstn − h
elements of the adviceaI for I. Suppose we’ve defined the firstm elementsa′I of aI for some
non-negative integerm < n − h. Consider the computation ofM on

〈
qIc , a

′
Ia

′′〉, for arbitrarya′′

of lengthNA −m. If the condition of (1) in the main loop is satisfied beforeM looks ata′′, then
define the nextn − h −m elements ofaI to be the valuesI takes on the undefined entries ofv∗

4This isn’t actually necessary: if the advice is good thenv∗(1) will already be defined by now
5We will argue later thatl + z − 1 will never exceed the length ofa when〈qc, a〉 =

〈
qI
c
, aI

〉
for someI
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(in increasing order of node indices). Otherwise,M reaches a stateqt where the condition of (5)
in the main loop is satisfied, and so far the computation does not depend ona′′. Let i be the node
queried byqt. Define the next element ofaI to bevIi .

Let p be the number of pebbles in the bottleneck configuration ofI. Let a′I be the firstn − h
elements ofaI , defined above. Leta′′ be an arbitrary tuple of elements of[k] of lengthNA − (n−
h) = NE − n. It follows from the earlier stated fact about the assigned pebbling sequences thatM
on input

〈
qIc , a

′
Ia

′′〉 will use at most the firstn − p ≤ n − h elements ofa′I before satisfying the
condition of (1). Alsov∗ will be defined for allp of the pebbled nodes.

After the main loop,v∗ is defined for all nodes. Hence there are exactly|E|/kn = kNE−n

inputs consistent withv∗ (andI is one of them), and at most that many which also haveqIc as their
supercritical state. Hence we can use the remainingNE − n undefined elements ofaI to uniquely
specifyI. So after exiting the main loop,M outputs the inputI coded by the pair ofv∗ and the
lastNE − n elements ofa.

�

7 (k+1)h−k is exact for BPs that are both thrifty and read-once

This section is most-related to Section 4. We write TEh(k) as an abbreviation for “BTh2(k) or
FTh

2(k)”. We show that a BP solving TEh(k) has minimum depth (defined below) if and only if it
is both thrifty and read-once (Fact 68), and that the upper bound of(k + 1)h − k non-output states
for FTh

2(k) mentioned in Section 4 is the exact minimum for these (very restricted) BPs (Theorem
69).

Define the depth of a deterministic BP to be the maximum number of states visited by any
input, with the output state included. It is easy to prove that depth2h is required to solve TEh(k)
by considering those inputs all of whose internal node functions are quasigroups (see [Weh10] for
a proof). Let us say a BP solving TEh(k) is min-depth if it has depth2h. We will use the following
results from [Weh10]:

Lemma 66 Every min-depth BP solving TEh(k) is thrifty. 6

Lemma 67 For every inputI to a min-depth BP solving TEh(k), the2h−1 input variables queried
by I are exactly the2h − 1 distinct thrifty input variables ofI. Hence such a BP is read-once.

Theorem 69 is the goal. We will not use the next fact in the proof, but it may be worth noting:
Lemmas 66 and 67 charaterize the min-depth BPs solving TEh(k), in the following sense:

Fact 68 A BP solving TEh(k) is min-depth iff it is both thrifty and read-once.

Proof: The left-to-right direction follows from Lemmas 66 and 67. For the right-to-left direction,
we use the fact from [Weh10] (page 10, second paragraph and lemma 4) that in a thrifty BP, every
input must query all and only its2h − 1 thrifty variables. Since the BP is also read-once, every
input visits exactly2h − 1 states (including an output state). �

6Hence from the lower bound on thrifty programs in [Weh10], weget that every min-depth BP solving TEh(k) has
at leastkh non-output states. This is the bound that we are slightly improving on here.
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Theorem 69 Every min-depth BP solving TEh(k) has at least(k + 1)h − k non-output states.

Proof: ForB a min-depth BP that solves TEh(k) and for eachl ≤ h let States(B,l) be the
states ofB that query a height-l node variable. By Lemma 70 the theorem follows if we can show
for arbitrary suchB that:

|States(B,1)| ≥ (k + 1)h−1

and |States(B,l)| ≥ k2(k + 1)h−l for 2 ≤ l ≤ h
(52)

Lemma 70

(k + 1)h − k = (k + 1)h−1 + k2
h∑

l=2

(k + 1)h−l

Proof: Since(k+ 1)h− (k+ 1)h−1 = k(k+ 1)h−1, after subtracting(k+ 1)h−1 from both sides
we can write the equations as:

k(k + 1)h−1 − k = k2
h∑

l=2

(k + 1)h−l

We addk to both sides, divide both sides byk, and then prove the resulting family of equations

(k + 1)h−1 = 1 + k

h∑

l=2

(k + 1)h−l

by induction onh ≥ 2. Forh = 2 it is clear. Now leth ≥ 3 be arbitrary and assume the equation
holds forh− 1.

1 + k
∑h

l=2(k + 1)h−l = 1 + k(k + 1)h−2 + . . .+ k(k + 1) + k
= (k + 1) + k(k + 1)h−2 + . . .+ k(k + 1)
= (k + 1)[1 + k(k + 1)h−3 + . . .+ k]

= (k + 1)[1 + k
∑h−1

l=2 (k + 1)(h−1)−l]
= (k + 1)(k + 1)h−2 by I.H.

�

The next lemma shows that it suffices to prove the lower bound on the number of states that
query height-2 variables.

Lemma 71 If |States(B,2)| ≥ k2(k + 1)h−2 for everyh andB, then (52) holds for everyh and
B.

Proof: Assume the hypothesis holds. LetB be a min-depth BP that solves BTh
2(k) (the proof is

the same for FTh2(k)).
To show|States(B,1)| ≥ (k + 1)h−1, we transformB into a min-depth BPB′ that solves

BTh+1
2 (k). Replace each state that queries a leaf variable with a copy ofthe BP for FT22(k) in the
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obvious way. Each such replacement involves addingk2 height-2 querying states. Hence ifB has
less than(k + 1)h−1 leaf-querying states thenB′ has less thank2(k + 1)h−1 = k2(k + 1)(h+1)−2

height-2 querying states, which contradicts the hypothesis. We still need to argue that we haven’t
increased the depth by too much. Since every input toB visits exactly2h−1 leaf-querying states,
andB has depth2h, it is not hard to see that every computation path inB′ has length2h+2 ·2h−1 =
2h+1.

Now we assumeh ≥ 3 and give the argument for|States(B,3)| ≥ k2(k+1)h−3. It will be clear
how to generalize it to get|States(B,l)| ≥ k2(k + 1)h−l for all 3 ≤ l ≤ h. We transformB into a
min-depth BPB′ that solves BTh−1

2 (k). The height-3 querying states ofB will become the height-
2 querying states forB′. HenceB must have at leastk2(k + 1)h−3 height-3 querying states, since
otherwiseB′ would have fewer thank2(k + 1)(h−1)−2 height-2 querying states, which contradicts
the hypothesis. LetE1 be the inputs toB all of whose leaf values are1. The computation path of
each inputI ′ to B′ will be derived in a simple way from the computation path of some I ∈ E1.
First, remove every state inB that queries a variable in

{fu(a, b) | u is a height-2 node and〈a, b〉 6= 〈1, 1〉}

Also, for every leaf-querying stateq, remove thek − 1 out-edges ofq labeled2, . . . , k. Removing
those states and edges does not break the path of any input inE1; this is clear for the edges, and
for the states it follows from the thrifty property (Lemma 66). We need to be a bit more careful
about removing the leaf-querying states, since theyare visited by inputs inE1. Place a token on
the start state, which must be a leaf state by thriftiness. Repeat the following while there remains
some leaf-querying stateq. We knowq has a single out-edge labeled 1; letq′ be the state that edge
points to. Redirect all the edges going intoq so that they go intoq′ instead. If the token is onq
then move it toq′. Finally removeq. When this process finishes, the token will be resting on a
height-2 querying stateq∗ with no in-edges; specifically some state that queries a variable in the set
V = {fu(1, 1) | u is a height-2 node}. The last step is just to relabel the states that query variables
in V : for each height-2 nodeu, change every occurrence of the state labelfu(1, 1) to l⌊u/2⌋. The
start state of the resulting BPB′ is q∗.

Now we need to argue that we havedecreasedthe depth enough. Consider an inputI ∈ E1 to
B. The construction above determines the inputI ′ toB′ thatI gets mapped to. SinceI is thrifty,
it does not visit any of the height-2 querying states inB that were removed. We also know thatI
visits exactly2h−1 states inB that query leaf variables. It follows that the computation path ofI ′

is shorter than that ofI by exactly2h−1, and so it has length2h−1. �

Fix h, k and a depth2h BPB that solves TEh(k). LetE be the set of inputs toB. We want to
showB has at leastk2(k + 1)h−2 height-2 querying states. LetQ2 be the states ofB that query a
height-2 variable. Fort ≤ 2h−2 letQ2

t be the statesq ∈ Q2 such thatq is thet-thQ2-state visited
by some input toB.

Lemma 72 Q2
t1
∩Q2

t2
= ∅ for distinctt1, t2 ≤ 2h−2.

Proof: Otherwise, there aret1, t2 with t2 < t1 such that there is a stateq that is thet1-th state
visited by some inputI1 and thet2-th state visited by some other inputI2 6= I1. SinceB has depth
2h, by Lemma 67 we get thatI1 visits 2h − t1 states afterq andI2 visits 2h − t2 states afterq.
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However, sinceB is read-once, every syntactic computation path is a semantic (i.e. consistent)
computation path, so there must be some inputI3 whose computation path is the same as that ofI1
up toq, and then the same as that ofI2 from q until the output. But then the computation path of
I3 has lengtht1 + 2h − t2 > 2h, a contradiction. �

Next, for 2 ≤ l ≤ h we will define a sequence~zl of positive integers of length2h−l. To see
the purpose of~zl, consider the min-depth BPB∗ for FT4

2(k) that we get from the optimal black
pebbling that always pebbles the left subtree before the right subtree. If you draw the tree minus
the leaves, and label each nodeu with the number of states inB∗ that query au-node, then your
picture should look like this:

k2

k2 k3

k2 k3 k3 k4

~zl gives the exponents of the heightl nodes in such a picture, read from left to right. So forh = 4,
we have~z2 = 2, 3, 3, 4. Formally: ~zh = 2, and for2 ≤ l ≤ h − 1, ~zl is ~zl+1 followed by the
sequence obtained by adding 1 to each element of~zl+1. We write~zl(t) for the t-th element of~zl.
Later we will appeal to the following equivalent definition of ~z2.

Fact 73 Let #ones(t) be the number of 1s in the binary representation oft ≥ 0. Then~z2(t) =
2 + #ones(t− 1) for t ≥ 1.

Eventually we will get the quantityk2(k + 1)h−2 using the following simple lemma:

Lemma 74
∑2h−l

t=1 k
~zl(t) = k2(k + 1)h−l for every2 ≤ l ≤ h

Proof: Easy by induction onh− l. �

We assign to each inputI a pebbling sequenceCI of length exactly2h such that the following
Property 1 holds. Because of the depth restriction, which impliesB is thrifty (Lemma 66), there is
exactly one way to do this. The definition follows the statement of Property 1.

Property 1 For each pair of adjacent statesq1, q2 on the computation path ofI, if CI
1 andCI

2 are
the associated pebbling configurations, then a pebble is added to a nodeu in the moveCI

1 → CI
2 iff

q1 queriesu, and a pebble is removed from a non-root nodeu in the moveCI
1 → CI

2 iff q1 queries
the parent ofu.

Fix I and letP be the computation path ofI. The pebbling sequence assignment can be described
inductively by starting with the last state onP and working backwards. The pebbling configuration
for the last state inP (i.e. the output state) has just a black pebble on the root. Assume we have
defined the pebbling configurations forq and every state followingq onP , and letq′ be the state
beforeq on P . This inductive construction, together with Lemmas 66 and 67, ensures thatq′

queries some nodeu that is pebbled inq (see page 10 of [Weh10] for a more-detailed argument).
The pebbling configuration forq′ is obtained from the configuration forq by removing the pebble
from u and adding pebbles to both children ofu (if u is an internal node - otherwise you only
remove the pebble fromu).

We will use the next lemma in the proof of Lemma 76.
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Lemma 75 For every inputI andt ≤ 2h−2, if C is the pebbling configuration associated with the
t-thQ2-state visited byI, then there are at least~z2(t) pebbled nodes inC.

Proof:
LetC andt be as in the statement of the Lemma, and letu be the height2 node that gets pebbled

in the next configuration afterC. By Property 1, the two children ofu are pebbled inC. Also by
Property 1, there are exactlyt− 1 height 2 nodes –namely, the height 2 nodes pebbled earlier– that
are “covered” by a pebbled node inC, meaning eitherv or some ancestor ofv is pebbled inC.
Recall #ones from Fact 73. It is not hard to see that #ones(t − 1) is the smallest numberm such
that there exists a set ofm nodesU which, if pebbled, would coverexactlyt − 1 height 2 nodes;
#ones(t− 1) is the number of terms needed to representt− 1 as a sum of distinct powers of 2, and
the presence of the term2i corresponds to a node inU at height2+ i. Now, since the children ofu
are pebbled inC, and cannot cover a height 2 node,C must have a total of at least2+#ones(t−1)
pebbled nodes. Then by Fact 73 we concludeC has at least~z2(t) pebbled nodes. �

RecallE is the set of all inputs to the BPB. LetEq be the inputs that visit stateq.

Lemma 76 For all t ≤ 2h−2 andq in Q2
t : |Eq| ≤ |E|/k~z2(t).

Proof: (sketch)
Here is theidea. Given Lemma 75, this proof is an easy adaptation of the thrifty lower bound
proof from [Weh10]. In fact, fort = 2h−2 it is exactly the same proof, since~z2(2h−2) = h and
for t = 2h−2 we are counting the statesq such thatq is the last height-2 querying state visited
by some input. Note it is necessary to use the fact that for every input I and all of the pebbling
configurationsC that we assigned toI, there is at most one pebbled node inC on any path from
the root to a leaf inTh. �

Using Lemma 72, we have:

|Q2| =
2h−2∑

t=1

|Q2
t |

Clearly{Eq}q∈Q2
t

is a partition ofE for everyt ≤ 2h−2. So from Lemma 76 we get that|Q2
t | ≥

k~z2(t) for everyt ≤ 2h−2. Combining this with the previous equation we have:

|Q2| ≥
2h−2∑

t=1

k~z2(t)

Finally, combining the previous equation with Lemma 74 (forl = 2), we finish the proof:

|Q2| ≥ k2(k + 1)h−2

�
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8 DAG Half-Pebble Lower Bound

Theorem 14 (due to Rahul) in the arXiv version of our journal paper on tree evaluation (15 May
2010) states

‘If a DAG D has a fractional pebbling usingp pebbles, then it has a black-white pebbling using
at most 2p pebbles.’

The proof idea is simple. We adapt the fractional pebbling procedure FRAC to the B/W proce-
dure WHOLE so that if at time t FRAC has a half or more black pebbleon nodev, then WHOLE
has a whole black pebble onv at timet. If FRAC has less than half a black pebble, then WHOLE
has no black pebble.

Similarly for white pebbles, but for consistency we need change ‘half or more’ to ’more than
half’, and ‘less than half’ to ‘half or less’.

This is easy to implement. The crucial point is that if at timet FRAC has a combined black-
white weight of 1 on nodev, then at timet WHOLE has either a whole black or a whole white
pebble onv at timet.

It is obvious that for each nodev and each timet, WHOLE has at most twice the weight of
FRAC onv at timet.

We can use the same idea to prove the following:

Theorem 77 [Steve] If a DAGD has a fractional pebbling usingp pebbles, then it has a fractional
pebbling using at most 1.5p pebbles such that the only properpebble fraction allowed is1/2.

Proof: We modify the above proof as follows. We choose parametersr, s such that

0 < r < 1/2 < s < 1

and
r + s = 1 (53)

Now given a fractional pebbling FRAC we modify it to form a pebbling HALF as follows. If at
time t nodev has a fractionb of black pebble, then HALF has black pebble weight given by the
following table:

FRAC HALF
0 ≤ b < r 0
r ≤ b < s 1/2
s ≤ b ≤ 1 1

Similarly, if v has a fractionw of white pebble at timet, then HALF has white pebble weight given
by

FRAC HALF
0 ≤ w ≤ r 0
r < w ≤ s 1/2
s < w ≤ 1 1
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By the constraints onr ands, it is easy to check that for any pairb, w for nodev at timet in
FRAC such that0 ≤ b + w ≤ 1, the total pebble weight forv at timet in HALF never exceeds 1.
Further, ifb+ w = 1, then the total pebble weight in HALF is 1.

The ratio of the weight ofv at timet of HALF/FRAC is at most

max{.5/r, 1/s}

This is minimized (subject to the constraints onr, s) whenr = 1/3 ands = 2/3. The maximum
blow-up ratio for thisr, s is thus 3/2. �
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