
1

Touchless and Always-on Cloud Analytics as a Service
S. Suneja, C. Isci, R. Koller, E. de Lara

Despite modern advances in automation and managed services, many end users of cloud services
remain concerned with regards to the lack of visibility into their operational environments. The
underlying principles of existing approaches employed to aid users gain transparency into their
runtimes, do not apply to today’s dynamic cloud environment where virtual machines (VMs) and
containers operate as processes of the cloud operating system (OS). We present Near Field
Monitoring (NFM), a cloud-native framework for monitoring cloud systems and providing
operational analytics services. With NFM, we employ cloud, virtualization, and containerization
abstractions to provide complete visibility into running entities in the cloud, in a touchless
manner, i.e., without modifying, instrumenting or accessing inside the end user context.
Operating outside the context of the target systems enables always-on monitoring independent of
their health. Using an NFM implementation on OpenStack, we demonstrate the capabilities of
NFM, as well as its monitoring accuracy and efficiency. NFM is highly practical and general,
supporting more than 1000 different system distributions, allowing instantaneous monitoring as
soon as a guest system gets hosted on the cloud, without any setup prerequisites or enforced
cooperation.

1. Introduction
Emerging cloud services enable end users to define and provision complex, distributed
applications and their compute resources with unprecedented simplicity and agility. Entire stacks
of software can be instantiated within minutes with various configurations and customizations of
the runtime environments. Various management and automation services further simplify the
entire lifecycle management of the modern born-on-the-cloud applications including their
continuous integration, delivery and testing; however, despite these great advances in automation
and managed services, visibility into the operational environments of the guest systems remains a
persistent concern for many end users.

To address these users’ desire for maintaining higher control and deeper visibility into their
operational environment [1], cloud service providers typically embed various kinds of agents or
software components inside both their infrastructure as well as the end-user systems. These
components facilitate extracting various metrics (i.e., resource use monitoring) and events (i.e.,
application and operational logs) from these systems, and expose these to the end users. Example
services include Amazon CloudWatch and CloudTrail [2], Dell Foglight [3], and VMware
vShield endpoint [4]. A comprehensive description of cloud monitoring platforms and services
can be found in [5].

A revised version of this draft features in IBM Journal of Research and Development, vol. 60, no. 2-3, pp. 11:1-
11:10, March-May 2016. doi: 10.1147/JRD.2016.2518438
Copyright 2016 by International Business Machines Corporation. Copying in printed form for private use is
permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the
Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied by any means or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must
be obtained from the Editor. 0018-8646/16 B 2016 IBM

2

Unfortunately, the defining principles of these approaches are borrowed from a different era of
computing that no longer applies, with long-running, dedicated systems that can tolerate ample
configuration times and resource overheads. In contrast, in today's cloud environments, the
building blocks of the end user environments, VMs and containers, are very much like the
processes of the cloud OS. They are strictly specified and controlled slices of resources that are
scheduled, descheduled, created and destroyed at unprecedented speed [6]. Existing approaches
become increasingly heavyweight and sluggish (in terms of resource consumption and
functionality initialization) relative to the highly dynamic and ephemeral nature of cloud
instances, with emerging lightweight virtualization and containerization trends. Many cloud
consumers already voice concerns regarding not getting a complete share of what they are
charged for in the fixed price per capacity of pay-as-you-go models [7]. While many end users
begin to expect services beyond operational visibility---operational insights and intelligence---
existing schemes still struggle to provide even basic monitoring, event detection, and alerting
capabilities.

In this work, we present Near Field Monitoring (NFM), a cloud-native framework for providing
systems monitoring and operational analytics services in the cloud. In NFM, we employ cloud,
virtualization and containerization abstractions to provide visibility into running entities in IaaS
(Infrastructure as a Service) clouds, without modifying, instrumenting or accessing inside the end
user context. We demonstrate how VM introspection and container namespace mapping
techniques can be used to monitor "processes" of the cloud OS in a "touchless" out-of-band
manner, i.e., without requiring any custom software components to be built in the guest system.
Specifically, to extract in-VM runtime state from outside, we use and extend VM introspection
techniques to traverse kernel data structures in exposed VM memory views. As for containers,
we use the namespace mapping functionality provided in the host kernel to extract the
container’s runtime state through standard OS exported functions.

We demonstrate an additional dimension of monitoring enabled by our framework, which we
refer to as "always on monitoring". A fundamental limitation of traditional monitoring services is
that rely on a functional system environment to perform their tasks. As they operate from the
context of the system they observe, once the target system is compromised, hung or even
disconnected from the network, many monitoring services become ineffective or inaccessible,
which ironically is precisely the circumstance when such visibility is most valuable [8]. As we
decouple monitoring from target system context (and therefore system health) in NFM, our
approach is inherently always on, regardless of system state.

Using an NFM implementation on OpenStack [9], we show that we can immediately start
inspecting an arbitrary, unmodified instance provisioned from the cloud, with no prerequisite
knowledge of the instance, making NFM practical to apply. Our approach is very general as
highlighted by the fact that we can support more than 1000 different system distributions ranging
across 10 years worth of Linux kernel versions, without requiring any manual configuration
setup for target systems. Our evaluation shows that monitoring with NFM can operate with high
accuracy and with negligible performance impact on guest systems. We demonstrate how we use
NFM today to provide basic cloud analytics services.

The rest of the paper is organized as follows. In Section 2, we describe the architecture of NFM,
the techniques employed to extract the runtime state from guest VMs and containers, and the

3

end-to-end flow of monitoring with NFM. Next, we highlight the major benefits of NFM-based
monitoring and analytics, as well as emphasize the practicality and generality of our approach, in
Section 3. Then we discuss our NFM deployment on our internal OpenStack-based cloud in
Section 4. Finally, in Section 5 we evaluate the quality of information extracted, as well as the
efficiency of monitoring over the NFM framework, before summarizing our work in Section 6.

2. Design of NFM
In NFM, we adopt a systems-as-data approach to convert runtime system state into ‘frames’-
structured documents representing point-in-time views of the system state. The cloud
monitoring and analytics applications then simply feed off of these frames to obtain runtime
system information. To completely decouple monitoring and analytics from actual guest
execution, the in-guest state is exposed from outside the boundary of the guest without requiring
any guest cooperation or modification. And then, the extracted state is fed (as structured frames)
into a database that acts as a repository of live and historic system states. The design of NFM
eliminates the need to reside inside in the scope of the target systems to carry out monitoring and
analytics operations as in existing solutions, thereby enabling touchless and always-on
monitoring. Figure 1 shows data flow of NFM for a cloud hosting containers and VMs as guests.
The flow remains the same for VMs and containers, the difference being in the underlying
techniques employed for exposing guest internal states, which is described next.

System State Extraction
For VMs as target systems, the execution - monitoring decoupling is achieved by extending VM
introspection (VMI) [10]. Although VMI has traditionally been used for security monitoring, it
has recently been adapted for cloud management operations [11]. We use VMI to extract the
volatile in-VM runtime state from outside the VM boundary by first exposing a read-only
memory view of the VM, and then converting the exposed raw byte level view into meaningful
structured information by traversing kernel data structures in it [12].

To obtain this read-only memory view of the target VM without its cooperation or modification,
we use custom high efficiency mechanisms [13] without modifying the VMs or the host, in
addition to other existing alternatives [11] ranging from dumping the VM memory to a file, to
mapping memory read-only. Specifically for the KVM/QEMU hypervisor (Kernel Virtual
Machine/ Quick Emulator, used in Section 4’s NFM deployment description), we use Linux
memory management primitives, and access VM memory directly via QEMU process’ memory
related files (mem and maps) in Linux’ process information pseudo-filesystem (/proc).

For reconstructing the in-VM semantic information from the exposed raw view, we map relevant
kernel data structures (such as task_struct, files_struct etc.) onto the VM memory view, and read
the data structure fields that contain important system runtime information (such as task_struct -
> pid for process IDs etc.) [12]. The relevant files required for in-memory data structure
localization and traversal--- System.map, build.config, vmlinux ---are extracted from the disk
image of the VM and kernel repositories. Access to the VM disk image also does not require any
guest cooperation, and utilizes standard filesystem methods, treating the disk image as a regular
file on the hosting machine. The persistent VM state residing on the VM disk, such as
configuration files, is extracted similarly.

Containers, on the other hand, are a type of OS-level virtualization [14,15] that provide resource

4

isolation similar to traditional VMs. The key difference between containers and VMs is that with
the former, the same kernel instance is shared by all containers as well as the host. This property
makes them convenient to monitor, as there is no semantic gap. Given that all processes are
visible from the host, the only missing information is the mapping between resources as seen
from inside the container and the outside, for example, each container can have an init process
with pid=1. In order to monitor the processes in this virtualized system, all we need is a list of all
the processes associated with it, and the mapping between PIDs of processes as seen from inside
the container and from the host. This mapping (namespaces) is maintained by the kernel for
accounting purposes, and is easily accessible from the host. For example, in Linux it is accessible
from the /proc file system [16].

End-to-end flow
We now illustrate the end-to-end flow starting from a fresh guest system deployment to its
runtime state collection and subsequent monitoring/analytics over the NFM framework. If the
new instance is a container, then it can be directly monitored with host OS-exported functionality
without any detection, as the kernel of the guest container is the same as the host. For the case of
VMs, let’s say a cloud user downloads the latest Ubuntu image from the Ubuntu cloud public
repository, instantiates the image as a VM and runs it. This user wants his VM automatically
monitored, without any intervention or configuration. There are 4 steps to do so. First, we detect
the kernel version. One way is to get it from the file system of the current image, but a better one
is to detect it from memory state. The Linux kernel stores a string with the kernel version in
memory. We found that the range in memory where this version can be placed is 4.5MBs for all
kernels between 2.6.11 and 3.19, taking about 10ms for a scan and search. After detecting the
version, the second step is to reconstruct the semantic information for the specific kernel version.
Notice that this not only refers to the version of the kernel source code, but to the actual build.
The semantic information is extracted from the debugging information-enabled kernel build
image (vmlinux) corresponding to the guest kernel, and can be downloaded from public
repositories. The rules used to extract the information from the vmlinux file refer to global
symbols (System.map) and data structure field names for the kernel. For example, the hostname
is stored at a known global variable name (init_uts_ns -> name). The third step is then to use this
semantic information to read the guest memory, and parse it to extract information like the list of
processes. Finally, in the fourth step, this information is packaged into a frame, representing a
point-in-time view of the guest state, and sent over a data bus for storage and eventual querying
by monitoring and analytics applications.

3. Benefits of NFM
We now discuss the salient features of NFM, specifically two major benefits of NFM-based
monitoring and analytics, as well as the practicality and generality of our approach.

Analytics-as-a-Service
With NFM, we enable monitoring and analytics services to be instantly initiated in similar
fashion as cloud automation and managed services. Instead of requiring any custom hooks, i.e.,
software components to be installed inside the guest systems, services are now built on top of
NFM, feeding off of the extracted structured guest-state frames. With NFM, we enable cloud
analytics-as-a-service, where both the cloud service users and providers can seamlessly subscribe
and unsubscribe to various monitoring and analytics services with no impact on their execution

5

environments, development or deployment workflows. Figure 1 highlights some typical services
that can be built atop NFM, such as out-of-band resource monitoring, compliance or system
inspection, post-mortem system diagnostics, security analysis, as well as across-time and across-
systems analytics for anomaly detection and misconfiguration analysis, etc. To demonstrate the
capability of NFM to enable cloud-wide analytics specifically for containerized guests, Figure 2
shows an example analytics for a set of 200 containers running in our private cloud. It shows
memory usage clustered by host. This type of resource analytics is interesting for doing smart
placement of instances. An administrator could gather the data to generate this figure by only
querying the database. Compare this to the traditional approach of having to keep track of
memory usage based on deploy time allocations, or having to login into each host and take the
measurements manually or via scripts requiring guest cooperation (login credentials).

Always-on Monitoring
NFM based monitoring is capable of observing the target systems (i.e., containers or VMs) from
birth to death, including post-mortem as well dysfunctional system inspection. With NFM, since
there is no need to install any agent inside the target systems, the systems can be monitored
immediately as soon as they are created-- they do not need to be fully functional. To highlight
the always-on monitoring capability with our NFM framework, we measured the end-to-end time
for a fresh VM boot until termination, as well as in-guest monitoring agent installation and
initiation. We then compared the times and runtime states during which a guest VM gets actively
monitored with current in-guest techniques and NFM based monitors. We use a popular open
source monitoring agent- collectd v4.10 [17].

For a sample Ubuntu VM (version 12.04 / kernel 3.2), it takes about 5 seconds for it to boot up
(upto sshd up and running), and another 5-15 seconds for agent initiation. If the agent isn’t
already installed and configured, it takes an extra 5-10 seconds of package installation
(depending upon just the core package installation (collectd-core) as opposed to a full
installation (collectd) of the daemon including the configuration, and also upon the amount of
dependent packages already installed on the system). And this is when collectd does not emit
data to a backend, which can add further delays before remote monitoring can initiate. All values
were confirmed with system logs, package installer logs, and bootchart logs. On the other hand,
an NFM based monitor does not have such initiation overheads, with only a negligible one-time
per-guest automatic configuration, useful across all services unlike per-agent configuration. It is
thus able to monitor the guest throughout its lifespan, even in its bootup, starting right after the
initial image load (initrd).

We further divide the lifetime of a guest system into three phases and show the limitation of
current in-guest monitoring techniques. These include (i) bootup / init, (ii) normal operation, (iii)
reboot / shutdown / unexpected termination. There have been several accounts of scenarios in
each of these phases where the guest as well as its in-guest monitoring agents became
inaccessible (either no remote login, or agent not emitting data to backend) or incapable of
troubleshooting, leaving the user searching for answers from cloud admins. Scenarios during
phase I include VM taking long to boot due to network driver or dhcp issues, or not booting up
altogether due to filesystem mounting errors- for example misconfigured file systems table
(/etc/fstab) or missing modules after system upgrade. After the initial bootup phase, the guest and
the in-guest monitors might become inaccessible or incapable due to (i) network
misconfiguration on host or guest IP change (due to dhcp), (ii) a fork bomb in a buggy code

6

preventing a remote login after reaching the maximum admissible process count, (iii) the root
filesystem remounting into read-only mode due to some bug, again preventing remote login, (iv)
a (rootkit) compromised guest showing high network transfer statistics without the user initiating
any network heavy process. Finally, there are cases where the guest does not terminate smoothly
or encounters an unexpected termination, and the guest ends up in a hung state with neither
remote-login nor in-guest monitors active or available. These include cases where the VM
crashes due to kernel panic caused by a buggy or malicious process or module, or the VM being
stuck at unmounting filesystems (real, network or pseudo).

On the other hand, the NFM based monitor can actively inspect the guest in all these scenarios
by decoupling monitoring from the context of the guest system, and providing users with a
pseudo console to carry out standard troubleshooting via utilities such as lsmod, ps, ifconfig,
netstat etc. In fact, we have employed such a console to troubleshoot in quite a few such cases
during routine VM use.

Practicality and Generality
For easy deployability, we aim to provide monitoring and analytics functionality without
modifying or specializing the guests for monitoring, as well as without requiring any guest
cooperation such as login credentials. For generality, we aim to be able to monitor any type of
guest, that is, any version or type of OS running on VMs or containers. While we focus on Linux
VMs and containers as target systems, our approach is equally applicable for Mac and Windows
OSes as well, because although these OSes are closed source, researchers have been successful
in reverse engineering their kernel data structures, while in some cases their debugging
information enabled packages or symbol packages are also publically available [18,19,20,21].
Furthermore, their versions are few and change very slowly as compared to Linux.

Containers by virtue of their design have a convenient feature- they share the same kernel with
the host. So, if the host is running Linux, all containers must be running Linux as well.
Furthermore, the same system calls or other OS exported functionality used to query system
information from the host, can be used as is for its containers as well. Using this feature enables
us to monitor any container, irrespective of the OS version running inside the container. We
tested this with monitors running in Ubuntu and Redhat hosts monitoring a range of distributions
running in containers: Redhat, Ubuntu, Centos, and even hello-world containers that only have a
single executable [22]. Additionally, the container monitoring technique in NFM is easily
extensible to other operating systems like Solaris and Freebsd [15].

VMs on the other hand present a much harder problem. Monitoring of VMs with NFM relies on
kernel data structures and theoretically requires configuration effort per guest-OS version, but
studies [23] show small variations in the relevant data structures across major Linux versions.
Furthermore, the standardization trends in enterprise clouds also work in favor of this approach,
limiting the OS-version variability. We can now support more than 1000 different system
distributions to operate over the NFM framework (including distribution patches on top of
official vanilla kernels), without requiring any manual configuration setup for target systems.
Currently, it is possible to detect and monitor all the Linux kernel versions between 2.6.11 and
3.19 (years 2005 to 2015). Such a wide range of supported systems allows providing monitoring
and analytics to a large guest population, and that too instantaneously as soon as a guest system
gets hosted on the cloud infrastructure, without requiring any installation inside the guest or

7

enforcing any sort of guest cooperation, modification or specialization. This makes the NFM
framework practically applicable.

Our state extraction technique for VMs is based on source-code analysis, and is a type of rule
hand-crafting. The idea is that the rules reference source code structure and fields, and are
mainly used to extract field offset information (for example, the offset of state in struct
task_struct {volatile long state; … } is 0). These offsets are then combined with the location of
relevant structure instances in kernel memory (for example, the location of ‘struct task_struct
init_task;’ in memory). The interesting observation we made for the Linux kernel is that the
changes to core data structures related to runtime system state---like processes, connections,
modules, files opened and cached data, loaded libraries, and some metrics---are very rare. More
specifically, the number of rules for which there is more than one option was 5 out of 96
(versions 2.6.11 to 3.19). Most of our tests focused on recent Ubuntu and Redhat servers (kernels
3.x), but we generated the metadata needed to monitor 610 Ubuntu guests, 112 Redhat guests, 30
Fedora guests, and 47 Ubuntu servers with vanilla kernels.

4. NFM on OpenStack
We have implemented the NFM framework to interface with a higher-level platform layer such
as OpenStack [9]. We have integrated NFM to an OpenStack-based cloud made of KVM/QEMU
(Kernel Virtual Machine/Quick Emulator) VMs [24] and Docker [14] containers. The current
implementation is limited to Linux only. Figure 1 shows the details of the deployment. Using
OpenStack Nova API, guest VMs and containers are instantiated over nova compute hosts that
have NFM monitors running as host daemons. Similar to how the details about deploying a VM
or container are hidden by using OpenStack Nova, monitoring these systems is automatically and
transparently managed by using NFM. Monitors run in all of the docker and KVM hosts polling
for new containers and VMs. Based upon state extraction policies, the runtime state of the
containers and VMs is extracted, packaged as frames, and pushed into a Kafka scalable data bus
[25]. Asynchronous reads on these frames, via consumer applications, pushes them into a
database that provides an interface to query live as well as historic system state (frames). The
search server is implemented in ElasticSearch [26], and uses a distributed/sharded architecture
where each shard is a Lucene index [27].

5. Evaluation
In this section, we evaluate the quality of information extracted in terms of accuracy and
consistency, as well as the efficiency of monitoring over the NFM framework in terms of
scalability and guest performance impact. The evaluation deals only with VMs as target guest
systems. Since the containers share the same kernel as the host, directly using standard host OS-
exported functionality itself enables high quality container state extraction and high efficiency
monitoring.

Accuracy
To quantify the accuracy of information that gets extracted by using the NFM framework, we ran
a custom workload in a target VM, with time varying CPU and memory demands, configured to
stress the full range of available CPU and memory resources allocated to the VM. We then
captured multiple 10s-interval samples of the resource utilizations of the test process, using the
standard in-VM top utility as well as a remote monitor built on top of NFM. The remote monitor

8

correlates successive state frames to extracts process level resource usage without accessing the
VM itself at all. While comparing the average sample variation between the metrics captured by
both techniques, the remote monitor was confirmed to be accurate with only 1% and 2%
measurement differences for CPU and memory utilization metrics respectively, across the whole
sample set. The slight variation in measurements is because of unsynchronized sampling time
points across both techniques.

Furthermore, since monitoring with NFM is performed from outside the guest boundary, we can
observe state that might be concealed from in-guest monitoring components. To highlight the
better quality monitoring information that can be extracted with NFM, we employ a simple
security monitor to run on top of it. We introduced an open source rootkit [28] in a guest VM
that installs as a kernel module and hides itself by taking over kernel function hooks. Since
standard in-VM Linux utilities like ps, lsmod and netstat interface with OS exported functions
that have been compromised by the rootkit, they cannot discover a malicious process started (and
hidden from the OS) by the rootkit, as well as an unauthorized listener connection initiated by it.
However, since the security monitor, built on top of NFM, operates against the state frames
extracted by traversing kernel data structures, the security monitor can detect this rootkit module,
process, and network connection. This is only a simple example of how monitoring the guests
from outside their runtime can circumvent some of the issues that in-guest solutions are
susceptible to. More sophisticated attacks and VMI based defenses can be found in literature
[29,30].

Consistency
We use VMI in NFM to reconstruct in-VM state from outside, and VMI has its own consistency
issues. Specifically, since VMI operates outside the guest context, in an asynchronous manner,
there can be inconsistencies in observed data structures while traversing them as the VM
continues to run. These inconsistencies can be intrinsic to the OS and occur while traversing
kernel data structures for freshly created processes or those in different stages of their decay
(zombie, dying, dead but not reaped). Another kind of inconsistencies---extrinsic---are an artifact
of live introspection and occur while interpreting data structures of tasks that either die or change
their attributes (open files, network connections) during introspection. Figure 3 shows the
percentage of iterations where a runtime state extractor encounters errors due to the different
inconsistency categories, while reading in-VM process state for a fork heavy workload. The
occurrence rate of inconsistencies is independent of the state extraction frequency. As shown in
the figure, these inconsistencies occur very rarely. They can be reduced even further if the guest
can tolerate minor pauses during the state extraction (introspection) cycle-- about 50ms for a full
system crawl that involves extracting runtime information regarding processes, connections,
modules, files opened, etc. However, the impact of periodic guest halting can be prohibitive for
high frequency state extraction—as high as 35% hit on the guest workload for 10Hz monitoring.
Additionally, this can eliminate only the extrinsic inconsistencies that occur due to live
introspection, while the intrinsic ones still remain. Otherwise, a hardware-assisted approach [31]
for consistent introspection can be adopted to improve the reliability of NFM.

Efficiency
We use two metrics to discuss the efficiency of monitoring with NFM- (high) scalability and
(low) guest performance impact.

9

The current methodology of embedding in-VM monitoring components suffers from limited
scalability. With consolidation, multiple VMs are mapped onto each host. Recent studies [32,33]
report average VM densities between 16-29 VMs/host, where all the colocated VMs compete for
the shared physical resources. The monitoring processes within the VMs also compete for the
same resources, and with increasing consolidation they begin to have a noticeable impact on the
performance of the system as a whole.

Figure 4 illustrates the effect that monitoring has on a VM (A) running a CPU-intensive task that
computes prime numbers [34]. Plotted are overheads on VM A (in terms of increase in time to
completion of the prime numbers computation benchmark) with respect to different number of
colocated VMs. The plot shows two configurations Colocation, where VM A is colocated with
idle VMs; and Monitoring, where VM A is colocated with VMs running a simple agent modeled
after the heartbeats sent by Hadoop TaskTracker nodes to report their health to the Hadoop
JobTracker [35]. The emulated heartbeat agent simply reads /proc/meminfo and /proc/net/dev
inside the VM to send memory (free memory/swap) and network (RX/TX dropped) stats to a
backend server, as sample health metrics per second. Otherwise, the monitoring VMs are all idle.
The system is provisioned with sufficient memory to host all VMs without swapping. The figure
shows that even a small scale up in consolidation with otherwise idle VMs, can lead to
significant overheads on the main VM-from 2.25% to 12% for 2 and 8 extra colocated VMs/core
respectively. It is important to see the dominant part of this overhead is not simply due to
colocation, but due to the impact of running agents themselves (3% vs. 12% for 8VM/core),
indicating that even light monitoring tasks can have a significant performance impact due to
context switching costs associated with running the short monitoring tasks. On the other hand, if
there existed a combined heartbeat service, working outside the VMs and on their behalf, inside
an administrator VM, it would either be run on a separate core or incur a small overhead of a
single VM CPU-colocation. We can currently sustain over 20 KVM VMs/core for 1Hz
monitoring over the NFM framework.

Furthermore, NFM based high frequency monitoring has minimal impact on target as well as
colocated guests, even when the resources allocated to the guest systems are fully stressed. We
confirmed this by extracting generic system state (like processes, connections, modules, files
opened) 10 times a second, while running individual benchmarks stressing the CPU and disk
subsystems, as well as a webserver workload stressing the full system. Thus, low impact guest
state extraction as well as high scalability enables high efficiency monitoring with NFM.

6. Conclusion
With NFM, we enable a highly practical monitoring and analytics solution, wherein as soon as
any guest system gets hosted on a cloud, it can instantaneously be monitored without enforcing
any sort of guest cooperation, modification or specialization. By decoupling monitoring from end
users' context, we enable always-on monitoring independent of system health. NFM is designed
to facilitate a different service model for operational monitoring and analytics in the cloud---
analytics-as-a-service. Cloud service users can simply register for or opt out of this service,
without needing to worry about how monitoring is done. Cloud operators can employ our
approach to provide deeper operational insights without intervening with user environment. Our
example analytics highlight what is potentially possible with such a seamless analytics service.
In this work, using an NFM implementation on OpenStack, we demonstrated the capabilities of
NFM, and its accuracy and efficiency while monitoring arbitrary, untainted guest systems.

10

Finally, we highlighted the generality of our approach by supporting more than 1000 different
system distributions ranging across 10 years worth of Linux kernel versions, without requiring
any manual configuration setup for target systems.

References
1. HP Blogs, Are your application owners satisfied with data protection?. [Online]. Available:
http://h30507.www3.hp.com/t5/Around-the-Storage-Block-Blog/Are-your-application-owners-
satisfied-with-data-protection-Think/ba-p/179446#.VU5njdpViko

2. Amazon CloudWatch. [Online]. Available: http://aws.amazon.com/cloudwatch/

3. Dell Foglight. [Online]. Available: http://software.dell.com/products/foglight-application-
performance-monitoring/

4. VMware vShield endpoint. [Online]. Available:
http://www.vmware.com/products/vsphere/features/endpoint

5. Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè. 2013. Cloud
monitoring: A survey. Computer Networks. 57, 9 (June 2013), 2093-2115.

6. Jack of all clouds, Recounting EC2 One Year Later. [Online]. Available:
http://www.jackofallclouds.com/2010/12/recounting-ec2/

7. B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers, and M. M. Swift. More for
your money: exploiting performance heterogeneity in public clouds. In Proceedings of the Third
ACM Symposium on Cloud Computing, SoCC ’12, pp. 20:1–20:14, 2012.

8. C. Colohan. The Scariest Outage Ever. CMU SDI/ISTC Seminar Series, 2012. [Online].
Available: http://www.pdl.cmu.edu/SDI/2012/083012b.html

9. OpenStack Cloud Computing Software. [Online]. Available: https://www.openstack.org/

10. T. Garfinkel, M. Rosenblum. "A Virtual Machine Introspection Based Architecture for
Intrusion Detection." In NDSS, vol. 3, pp. 191-206. 2003.

11. S. Suneja, C. Isci, E. Lara, and V. Bala. "Exploring VM Introspection: Techniques and
Trade-offs." In Proceedings of the 11th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pp. 133-146. ACM, 2015.

12. Mariusz Burdach. Digital forensics of the physical memory. 2005. [Online]. Available:
http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf.

13. S. Suneja, C. Isci, E. Lara, T. Mummert, and V. Bala, “Non-intrusive, Out-of-band and Out-
of-the-box Systems Monitoring in the Cloud,” The 2014 ACM international conference on
Measurement and modeling of computer systems (SIGMETRICS), pp. 249-261. 2014.

14. Docker. [Online]. Available: http://www.docker.com

11

15. FreeBSD Jails. [Online]. Available:
https://www.freebsd.org/doc/en/books/handbook/jails.html

16. Linux namespaces. [Online]. Available:
http://man7.org/linux/manpages/man7/namespaces.7.html

17. Collectd, The system statistics collection daemon. [Online]. Available: https://collectd.org/

18. M. Auty, A. Case, M. Cohen, B. Dolan-Gavitt, M. H. Ligh, J. Levy, and A. Walters.
Volatility - An advanced memory forensics framework. [Online]. Available:
http://code.google.com/p/volatility.

19. Nirsoft. Windows Vista Kernel Structures. [Online]. Available:
http://www.nirsoft.net/kernel_struct/vista/

20. Docker. Mac OS X Docker Documentation. [Online]. Available:
https://docs.docker.com/installation/mac/

21. Docker. Microsoft Windows Docker Documentation. [Online]. Available:
https://docs.docker.com/installation/windows/

22. Docker registry, hello-world image. [Online]. Available:
https://registry.hub.docker.com/u/library/hello-world/

23. Y. Padioleau, J. L. Lawall, and G. Muller. Understanding collateral evolution in linux device
drivers. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems. pp. 59-71.

24. KVM. [Online]. Available: http://www.linux-kvm.org/page/Main_Page

25. J. Kreps, N. Narkhede, and J. Rao. "Kafka: A distributed messaging system for log
processing." In Proceedings of 6th International Workshop on Networking Meets Databases
(NetDB), Athens, Greece. 2011.

26. ElasticSearch. RESTful, distributed search and analystics. [Online]. Available:
https://www.elastic.co/products/elasticsearch

27. A. Białecki, R. Muir, and G. Ingersoll. "Apache lucene 4." In SIGIR 2012 workshop on open
source information retrieval, pp. 17-24. 2012.

28. M. F. Linux Rootkit Implementation. [Online]. Available: http://average-
coder.blogspot.com/2011/12/linux- rootkit.html

29. S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan,J. Rhee, and D. Xu. DKSM:
Subverting Virtual Machine Introspection for Fun and Profit. In SRDS, pages 82 –91, 2010.

30. S. Vogl. A bottom-up Approach to VMI-based Kernel-level Rootkit Detection. PhD Thesis,
Technische Unversitat, Munchen, 2010.

12

31. Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen. Concurrent and consistent virtual machine
introspection with hardware transactional memory. In High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on , vol., no., pp.416,427, 15-19 Feb. 2014.

32. Dell VKernel. Virtualization Management Index. [Online]. Available: http:
//www.vkernel.com/files/docs/white-papers/ virtualization-management-index-report.pdf

33. VMWare. [Online]. Available: Get Low Total-Cost-of-Ownership (TCO) with Maximum
Virtual Machine Density. http://www.vmware.com/virtualization/ advantages/total-cost.

34. A. Kopytov. SysBench: System performance benchmark. [Online]. Available:
http://sysbench.sourceforge.net.

35. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System. In
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10, 2010.

Bios
Sahil Suneja University of Toronto, CANADA (sahil@cs.toronto.edu). Mr. Suneja is a Ph.D.
student working with Dr. Eyal de Lara in the Computer Science Department at University of
Toronto. He received his B.Tech and M. Tech degrees from Indian Institute of Technology
Kanpur in 2010. In the past, he has interned at Microsoft Research Redmond in 2008
(Networking Research Group), Microsoft Research India in 2011 (Mobility, Networks and
Systems Group), and IBM Research T.J. Watson NY in 2012 and 2013 (Virtualization Runtime
& Tools Group).

Canturk Isci IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights,
NY 10598 USA (canturk@us.ibm.com). Dr. Isci is a Research Staff Member in the Cloud
Computing Division at the IBM T. J. Watson Research Center, where he leads the Scalable Data
Center Analytics team in Research and the Operational Analytics Squad within IBM Cloud
Services. His research interests are cloud computing, operational and devops analytics, novel
monitoring techniques based on virtualization and containerization, and energy-efficient
computing techniques at various computing abstractions, from microarchitectures to data centers.
He received a B.S. degree in electrical engineering from Bilkent University, an M.Sc. degree
with distinction in VLSI System Design from University of Westminster, and a Ph.D. degree in
computer engineering from Princeton University.

Ricardo Koller IBM Research T.J. Watson, NY (kollerr@us.ibm.com). Dr. Koller is a Research
Staff Member at IBM interested in systems in general, and currently working on system
monitoring and analytics. He received his Ph.D. from Florida International University under the
guidance of Dr. Raju Rangaswami, where he worked on storage systems optimizations. After
graduating in 2012, he worked for 2 years at VMware in the live migration team, specially
focusing on long distance migrations.

Eyal de Lara University of Toronto, CANADA (delara@cs.toronto.edu). Dr. de Lara is a
Professor in the Department of Computer Science at the University of Toronto. He received his

13

Ph.D. and M.Sc. from Rice University in 2002 and 1999, and a B.Sc. from Tecnologico de
Monterrey in 1995. His research interests include distributed systems and mobile computing. His
research has been recognized with an IBM Faculty Award and the Canadian Association of
Computer Science Outstanding Young Computer Science Researcher Prize.

Figures and Tables

Figure 1 Near Field Monitoring (NFM) architecture. The red arrows represent the deployment
flow, and the blue ones show the monitored data flow. Refer to Section 4 for details.

14

Figure 2 Memory utilization by containers clustered by host for a set of 200 containers running
in 5 cloud hosts. Container IDs are shown as ‘cxxx’ when space permits.

15

Figure 3 VMI inconsistency occurrence probabilities for a fork heavy workload. Different
categories on the X-axis signify the state of an in-VM process when its data structures are being
interpreted from outside. Refer to subsection ‘Consistency’ in Section 5.

the strength of agentless VM monitoring: Topology Dis-
covery, which illustrates the potential for cloud analytics
by mapping the network flows between applications run-
ning on different VMs; RConsole, a shell-like tool that
support realtime fine grain resource and security moni-
toring; a system that monitors VM integrity over time;
and, a paging-aware virus scanner that greatly outper-
forms its in-VM counterpart.

2 Motivation: Challenges with Agent Ap-
proach in Cloud

In addition to running customer workloads, datacenter
operation requires the execution of a variety of manage-
ment, monitoring and analytics tasks that track the health
of the system and ensure the efficient operation of the in-
frastructure. Some examples include:
• Resource Monitoring- Runtime tracking of system-
wide and per-process VM’s resources - CPU, memory,
network and disk.

• Compliance Conformity- Ensuring policy compli-
ance such as patch levels, network and security con-
figurations, detecting blacklisted applications, etc.

• VM Sizing and Consolidation- Tracking and cross-
mapping application-level resource demands with VM
configuration and demand to detect VM resizing re-
quirements or opportunities, and guiding VM consoli-
dation with application-level resource requirements.

• Anomaly Detection- Monitoring to detect (i) Rouge
processes, (ii) System thrashing, such as via process’
memory usage patterns or swap daemon’s activity, (iii)
Bottleneck nodes or spurious connections.

• Cluster Patch Management- Identifying tightly cou-
pled clusters for parallel patching to minimize overall
service for distributed applications.

• Inter-VM Network Topology- Cluster-level analyt-
ics for discovering communicating VMs, which can
be used to guide VM placement to optimize network
utilization.

• Security Scanning- Searching for signatures of
known viruses or malware.

Even in modern virtualized data centers, the main-
tenance methodology employed is still the traditional
agent-based approach, requiring installation of multiple
monitoring agents within each VM, with the agents usu-
ally being re-purposed versions of those originally de-
veloped for managing physical systems. Unfortunately,
these traditional monitoring techniques face several chal-
lenges in the modern virtualized setting:
Availability: Many of the monitoring solutions rely on
VMs to be online, networked and to have passed certain
configuration and compliance prerequisites. As VMs be-

Figure 1: Overhead on main VM due to agents on colocated VMs

have more like transient processes in the cloud, the tradi-
tional techniques are left only with intermittent observa-
tions leading to incomplete system views and incorrect
deductions.
Manageability: With increasing VM proliferation and
application diversity, the provisioning and continuous
maintenance and update of the in-VM components for
the wide range of solutions poses a major challenge for
administrators.
Inaccurate Knowledge: In-VM techniques are further
susceptible to potentially unreliable and inaccurate view
of the system and its resource use characteristics, as
the guest view of its environment and resources can
deviate substantially from reality. For example, prior
studies [13, 21] show that different ”identical” small
EC2 instances have different CPU and IO characteristics.
This unpredictable variability affects the reliability of a
guest’s and an agent’s view of resource availability. This
inaccuracy of traditional tools for VM resource monitor-
ing is also demonstrated in [4] that proposes alternative
cloud monitoring, such as Amazon’s CloudWatch [2].
Limited Knowledge: An agent running inside a VM
has limited knowledge about the status of the system.
For example, ‘Compliance storms’ are sometimes pos-
sible, when large numbers of VMs simultaneously be-
gin their conformity-check processes, swamping the pos-
sibly already heavily utilized hardware resources under
high consolidation scenarios.
Security Vulnerability: Agents introduce security
monoculture vulnerability in data centers owing to VM
homogeneity. Also, prior work [26] shows that a cloud
provider cannot trust the guest VMs to install its security
solutions inside them.
Limited Scalability: With consolidation, multiple VMs
are mapped onto each host. Recent studies [42, 15] report
average VM densities between 16-29 VMs/host, where
all the colocated VMs compete for the shared physical
resources. The monitoring processes within the VMs
also compete for the same resources, and with increas-
ing consolidation, they begin to have a noticeable impact
on the performance of the system as a whole.
Figure 1 illustrates the effect that monitoring has on

a VM (A) running a CPU-intensive task that computes
prime numbers [31]. The plot shows two configurations:

2

Figure 4 Overhead on main VM due to agents on colocated VMs

