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Abstract

Operational visibility is an important administrative capability and
a critical factor in deciding the success or failure of a cloud service.
It is becoming increasingly complex along many dimensions includ-
ing the need to track both persistent and volatile system state across
heterogeneous endpoints, as well as provide higher level services
such as log analytics, software discovery, anomaly detection, and
drift analysis. In this paper we present OpVis, our unified monitor-
ing and analytics framework to provide operational visibility, which
overcomes the limitations of traditional monitoring solutions and
provides a uniform platform as opposed to requiring the configura-
tion, installation, and maintenance of multiple isolated solutions.
We highlight our framework’s extensibility model, enabling custom
data collection and analytics based on the cloud user’s require-
ments, describe its monitoring and analytics capabilities, present
performance measurements, and discuss our experiences while
supporting operational visibility in our cloud.

CCS Concepts « Computer systems organization — Cloud
computing; « Software and its engineering — Cloud com-
puting; Virtual machines; « General and reference — Perfor-
mance; » Information systems — Document collection models;
Distributed retrieval; Information extraction; Document filtering;

1 Introduction

Traditionally, the operational visibility practices have been limited
to resource monitoring, collection of metrics and logs, and secu-
rity compliance checks on the underlying environment. In today’s
world, better equipped to manipulate massive amounts of data and
to extract insights from it using sophisticated analytics algorithms
or machine-learning techniques, it becomes natural to broaden the
scope of operational visibility to enable, for instance, deep log ana-
lytics, software discovery, network/behavioral anomaly detection,
configuration drift analysis, to name a few use cases.

To enable these analytics, however, we need to collect data from
a broader range of data sources. Logs and metrics no longer suf-
fice. For example, malware analysis is done based on memory and
filesystem metadata; vulnerability scanning needs filesystem data;
network analysis requires data on network connections; and so on.
At the same time, these data sources are potentially very different
in nature. Log events are typically continuously streamed, whereas
filesystem data changes are less frequent, and configuration changes
normally occur when an application is deployed.
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Yet another source of data for modern operational visibility stems
from the diverse and prolific image economy (DockerHub, Amazon
Marketplace, IBM Bluemix) that we witness as a result of pervasive
virtualization. The more cloud images are used, the more impor-
tant it becomes to proactively and automatically certify them by
performing security and compliance validation, which requires visi-
bility into dormant artifacts, in addition to running cloud instances.

Adding to the complexity of dealing with a multitude of data
types for modern operational visibility, cloud environments are
becoming larger and increasingly heterogeneous. For instance, it is
nowadays common for a cloud provider to support deployments on
physical hosts, virtual machines (VMs), containers, and unikernels,
all at the same time. As a result, for more effective visibility, opera-
tional data from this diverse set of runtimes needs to be properly
collected, interpreted, and contextualized.

As if heterogeneity were not enough, the lighter the virtualiza-
tion unit (e.g., containers and unikernels), the higher the deploy-
ment density, which leads to a sharp increase in the number of
endpoints to be monitored. Figure 1 summarizes the complexity of
modern cloud environments along multiple dimensions, including
deployment types and cloud runtimes, as well as some challenges
for which operational visibility is needed.

In this paper, we propose a novel approach to operational visi-
bility to tackle the above challenges. To enable increasingly sophis-
ticated analytics that require an ever-growing set of data sources,
we implemented OpVis, an extensible framework for operational
visibility and analytics. Importantly, OpVis provides a unified view
of all collected data from multiple data sources and different cloud
runtimes/platforms. OpVis is extensible with respect to both data
collection and analytics.

As opposed to traditional solutions, to scale to the increasing
proliferation of ephemeral, short-lived instances in today’s high-
density clouds, we propose an agentless, non-intrusive data collec-
tion approach. We further employ a holistic approach to analytics
by decoupling it from data collection, thereby uncovering relation-
ships across otherwise separated data silos.

Our implementation of OpVis supports multiple data sources and
cloud runtimes. We have been using it in a public production cloud
environment for over two years to provide operational visibility ca-
pabilities and several analytics applications to, among other things,
support security-related services to our cloud users.

We evaluate OpVis with both controlled experiments and real
production data in cases where we were allowed to publicize it. An
extended version of this paper is available as a technical report [18].

2 Existing techniques

To gain visibility inside VMs (beyond just black-box metrics), most
existing solutions typically require agent installation inside the
monitored endpoint’s runtime, and thus cause guest intrusion and
interference [1], as well as VM specialization [16, 29-31].
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Figure 1. Cloud operation management.

The landscape is a bit different with containers, since the se-
mantic gap between the guest environment and the management
layer (host) is greatly reduced. In addition to container-image scan-
ning [2, 6, 22, 23, 28], some solutions are able to provide some level
of agentless, out-of-band container inspection by talking to the
Docker daemon [9, 24], querying kernel’s cgroups stats [5], moni-
toring containers’ rootfs [14], or tracing system calls [26]. Although
these solutions can provide basic metrics, for deep inspection most
resort to installing agents, plugins, scripts, instrumentation libraries,
or custom exporters [8, 21, 24] inside the guests.

Furthermore, most solutions only partially address operational
visibility. The ones that seem to cover all aspects among image
scanning, out-of-band basic metrics, and deep inspection [14, 22, 28]
are not open-sourced or extensible.

To the best of our knowledge, no existing solution provides all
of OpVis’ capabilities of a unified, agentless, decoupled, extensible,
and open-sourced operational-visibility framework, which does not
enforce guest cooperation or cause guest intrusion, interference,
and modification to cover the entire operational visibility spectrum
depicted by Figure 1.

3 Design and implementation

In this section we describe the design and implementation of OpVis,
our unified operational visibility and analytics framework. The
overall architecture of OpVis is depicted by Figure 2, which clearly
separates three layers: data collection, data service, and analytics.
We refer to OpVis data collectors as crawlers (see top of Figure 2).
They monitor cloud instances and images to take periodic memory-
state and persistent-state snapshots, which are then encoded into
an extensible data format we refer to as the frame. In addition to
discrete state snapshots, the crawlers track log files of interest from
cloud instances. Snapshots, in the form of frames, and streaming
log events enter the data service through a scalable data bus from
which they are fetched and then indexed on a data store for per-
sistence. A search service makes all collected data available and
queriable, enabling a variety of analytics applications, for instance,
to diagnose problems experienced by a cloud application, to dis-
cover relationships among application components, and to detect
security vulnerabilities. The rest of this Section describes the OpVis
data collectors (§3.1), data format (frame) for discretized state snap-
shots (§3.2), and backend data service (§3.3). We also present a few
analytics applications that take advantage of OpVis (§4).
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Figure 2. OpVis overview.

3.1 Data collectors: agentless crawlers

We take an agentless approach to data collection, that is, OpVis
crawlers collect data in an out-of-band, non-intrusive manner. Crit-
ically, an important role of the crawlers is to enable operational
visibility with a unified view across different cloud-runtime types
and for different forms of application and system state. We im-
plement out-of-band visibility into container runtimes, e.g., plain
Docker host, Kubernetes, and Mesos, and into VM runtimes, e.g.,
OpenStack.

We observe that monitoring live cloud instances (containers
and VMs) is important for reactive analytics; however, to enable
proactive analytics applications it is equally important to also scan
cloud images (Docker images and VM disks). For this reason, OpVis
crawlers provide visibility into these dormant artifacts as well.

To enable semantically-rich end-to-end visibility and analytics,
the crawlers collect in-memory, live system state, e.g., resource
usage and running-processes information, as well as persistent
system state, e.g., filesystem data and logs. This broad range of
data types requires proper manipulation of continuously-streaming
data, such logs, as well as state that needs to be taken at discrete
snapshots, such as process, network, and filesystem information.

Exposing and interpreting persistent and volatile state of VMs
and containers requires techniques specific to each runtime and
state type. Broadly, we apply introspection and namespace-mapping
techniques for VMs and containers, respectively. Despite slight dif-
ferences in the techniques’ nuances, the key tenet of our approach
remains unchanged: to provide deep operational visibility in near
real time and out of band, with no intrusion or side effects on the
cloud instances. Next, we delve into our implemented techniques.
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Figure 3. Mapping log files from containers to the host.

3.1.1 Container crawling

As container processes are simply host processes with a different
view of the system, they are visible from the host. We use two
OS virtualization techniques within the Linux kernel to collect
containers’ memory-state information: (1) the cgroups accounting
interface for resource utilization, and (2) the namespace APIs for
details on processes and network connections in the container
context.

To collect persistent-state data, our crawlers identify the location
of each Docker container’s root filesystem in the host filesystem and
then extract containers’ filesystem data and metadata, information
on configuration files, and installed packages. The corresponding
state from dormant images is extracted similarly, by creating a
dummy container when a new image is pushed to the cloud or an
existing one is modified. Another technique is to mount the image
on the crawler host and perform the inspection offline.

To deal with log events, all log files of interest in the guest con-
tainers are mapped onto a special location in the host filesystem,
from which all log events are continuously tracked and streamed
to the data service in near real time via Logstash [11]. Figure 3
illustrates this process. The top directory of all monitored log
files in the host is /var/log/container_logs, where one sub-
directory per cloud tenant (user) gets created. Under a tenant sub-
directory, one directory per container is created when a newly-
created container is discovered. New log files to be monitored are
independently discovered by watching recursively the contents of
/var/log/container_logs/**/*, which is populated by a sepa-
rate process that identifies the log files to be tracked through a
per-container LOG_LOCATIONS environment variable and cre-
ates symbolic links to them from the container filesystem.

These techniques provide us with the non-intrusiveness char-
acter we seek, by not requiring any special agent or library inside
the containers. The approach works even if the container is unre-
sponsive or compromised, since the crawler still gets the overall
system view from outside the container.

3.1.2 VM crawling

Since VMs have their own OS kernel and therefore keep their in-
ternal memory state hidden from the host, they are more difficult
to monitor than containers. We use and extend VM introspection
(VMI) techniques [15] to gain an out-of-band view of VM runtime
state. We have developed solutions to expose VMs’ live memory
with negligible overheads for KVM VMs. Since KVM is part of
a standard Linux environment, we leverage Linux memory man-
agement primitives and access VM memory via QEMU process’
/proc/<pid>/mem pseudo-file, indexed by the virtual address space
backing the VM’s memory from /proc/<pid>/maps. The logical
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interpretation of this raw, byte-array memory view is achieved via
in-memory kernel data structure traversal. Further details can be
found in our previous work [25].

Exposing and collecting a VM’s persistent state non-intrusively
requires VM disk introspection. Our design follows certain key
principles: (1) the persistent-state collection of offline and live VMs
must be identical; (2) it must have negligible impact on the VM’s
runtime; and (3) it must be done from outside the VM and not lead
to any runtime or persistent-state change.

First, we use OpenStack and QEMU APIs to determine disk layers
for running VMs. Next, as the VMs are running while the crawler
accesses the disks out of band, we expose all identified disk layers
as read-only pseudo-devices to ensure that no action can alter the
device state at the physical level. Moreover, because the disks being
accessed out of band are live and hence inherently dirty, we use
Linux device mapper reverse snapshots to wrap each pseudo-device
with a separate Copy-on-Write (CoW) layer. Then, this new device
view can be exposed as either a local storage device or a network-
attached one (e.g., iSCSI). Finally, the exposed device is mounted by
the crawler process so that it can access the target VM’s filesystem
over the entire device view to collect the exposed persistent state,
such as configuration files, installed packages, etc.

This technique works for both raw and QCoW2 images, and
can be applied uniformly to offline and live VMs. After a VM’s
filesystem is exposed by the above actions, log streaming follows
the same approach as in the container case.

3.1.3 Crawler extensibility

Extensibility is a key design principle for the OpVis crawler. We
envisioned various sources of heterogeneity (Figure 1) in the oper-
ating environment, configurations, and monitored endpoints. As a
result, we adopted the plugin architecture shown in Figure 4.

Crawl plugins. Logic for every data type collected by the crawler
is implemented as a separate crawl plugin. This allows flexibility
in configuring the crawler to selectively collect different data for
different environments. Crawl plugins can extract both application
and system state. A well-defined interface makes it easy to extend
OpVis with a new data type and to implement a crawl plugin respon-
sible for its collection. A similar extensibility model is supported
for emitters, filters, and environment plugins.

Emitter plugins. The OpVis crawler supports combinations of
different output data formats (e.g., CSV, JSON, Graphite) and target
endpoint types (e.g., stdout, file, HTTP, Fluentd, Kafka), allowing it
to cater to various types of specialized data stores for analytics and
monitoring.

Environment plugins. Environment information is an orthog-
onal dimension for data collection but is important to establish
the context for the entity being crawled. For example, multiple
containers from different subnets could have the same IP address;
therefore, in addition to collecting network state of a container, the
tenancy information and network topology is important to resolve
and further analyze the collected data. Environment plugins pro-
vide this contextual information by adding structured metadata to
each state snapshot containing, among other things, environment-
specific elements such as container labels and pod ids in the case
of a Kubernetes environment.
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Filter plugins. These plugins provide data aggregation and fil-
tering capabilities atop the extracted data. Examples include the
metrics aggregator plugins (min, max, average), as well as diff
plugins to send only deltas to the backend.

3.2 Frame: state snapshot

A frameis a structured representation of a system snapshot, encom-
passing memory and persistent state, taken by the crawler using
the data collection techniques previously presented. Log events are
not part of a frame, as they are streamed rather than discretized.
We refer to each element in a frame as a feature, which in turn
embodies a collection of key-value pairs where the keys are fea-
ture attributes. The set of attributes of a feature depends on the
feature type. Each feature type corresponds to a type of memory
or persistent state collected by the crawler. The feature types we
define include: os, representing general information on the operat-
ing system, process, corresponding to OS processes, connection,
encapsulating information on network connections, file, associ-
ated with metadata of filesystem objects, config, representing the
contents of filesystem objects identified as configuration files, and
package, for metadata on OS-level and programming-language-
level packages. We also define types for discretizing resource-usage
metrics, e.g., for CPU and memory. Our framework can be extended
with a new type declaration and the corresponding crawl plugin.
In addition to features, a frame has metadata to capture important
aspects of the snapshot. In particular, a timestamp indicates when
the snapshot was taken, allowing analytics applications to run
temporal queries to reason about state evolution. Also, associated
with a frame is a namespace, which is used to identify the cloud
instance in question, typically as a combination of a cloud-assigned
id and a user-provided string with a name and version of the cloud
application/service. Other pieces of metadata provide provenance
information to identify image versions and cloud users.

3.3 Data service backend

The OpVis data service is illustrated in the middle part of Figure 2. It
comprises a data pipeline whose entry point is a scalable, replicated,
and fault-tolerant data bus. To realize our data-bus cluster we use
Apache Kafka [3]. One key function of the data bus is to provide
buffering, which is critical when the data-ingestion rate exceeds
the data-consumption rate. Kafka allows data producers to publish
data to different topics. Thus, frames and log events emitted by the
crawler enter the data pipeline through two different Kafka topics.

In the next stage of the data pipeline, clusters of indexers fetch
data from Kafka. Frame indexers subscribe to the frame topic and
store the incoming frames on the Elasticsearch [10] store. Once
indexed on Elasticsearch, a frame becomes a searchable document.
We refer to this general management paradigm as state as docu-
ments. Using the Elasticsearch query language, users, operators,
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or analytics applications can execute semantically-rich queries to
find frames and frame features. Every attribute of every feature of
indexed frames can be used as a query key, and so can the frame’s
metadata fields. This notion of applying search to manipulate op-
erational data (system state) made visible, derived from the state-
as-documents paradigm, is extremely powerful, as the analytics
applications presented in §4 demonstrate.

We used Logstash [11] to implement our frame indexers. In
particular, we relied on two Logstash plugins: Kafka input plugin
and Elasticsearch output plugin, while adding a new filter plugin to
process crawler frames.

Backend extensibility. The annotators (see Figure 2) are also an
important element of our data pipeline. An annotator’s key goal
is to read frames of interest to create and index a different type of
document. This is done to support certain analytics applications
that might need to search for these special, curated documents.

We distinguish between two categories of annotators: privileged
and regular. Privileged annotators typically originate from the cloud
provider to support analytics applications that have general appli-
cability, e.g., to detect vulnerabilities in all cloud-user images (see
§4.1). These annotators fetch frames directly from Kafka, like the
indexers. Regular annotators, on the other hand, can be provided
by users for creating document types not supported by other anno-
tators. User-provided regular annotators are deployed on a sandbox
environment provided by our serverless cloud infrastructure, and
they read frames from Elasticsearch, not Kafka.

Log indexing. Log indexers subscribe to the log topic and store
incoming log events on Elasticsearch. Like the frame indexers, we
used Logstash to implement them. Unlike frames, which have a well-
defined structure, cloud application logs can have any format, since
many of them are application-specific. This implies that performing
semantically-rich Elasticsearch queries on logs (using attributes in
log records as keys) might not be possible, unless the log indexers
know what log format to expect. Before emitting logs, the crawler
tries to apply the Logstash JSON filter plugin; thus, if logs coming
from cloud applications are in the JSON format, our log indexers
will guarantee that log records can be queried by log attributes,
whatever they might be. Note that free-text queries are still possible,
even if logs are emitted in an unknown format.

4 Analytics applications over OpVis

Our operational visibility pipeline has been running in our pro-
duction cloud for over two years. It has been the foundation for
analytics applications providing security-oriented insights to our
clients. We highlight four such applications in this Section, focus-
ing specifically on Docker images and containers, although the
analytics presented are independent of the target runtime.

4.1 Vulnerability analyzer (VA)

VA discovers package vulnerabilities in users’ Docker images and
containers in our public cloud, and points them to known fixes
in terms of relevant distribution-specific upgrades. Once a frame
enters the OpVis pipeline, the VA annotator extracts the package
list from it and compares it against publicly-available vulnerability
databases (e.g. NVD) to report vulnerable packages with their cor-
responding CVE ids. We currently target Ubuntu security notices,
while support for other distributions is in the process. VA has
been integrated as part of a DevOps pipeline where, based upon
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user-specified policies, images tagged as vulnerable by VA cannot
be deployed as containers.

Recently, we have also added support for application-runtime-
specific packages such as Ruby gems and Python pip packages. An
interesting security dimension this feature addresses is defense
against typo-squatting attacks on application libraries [27]. In this
case, malicious packages similar in names to legitimate ones make
their way into a user’s system when the user inadvertently makes
a typo while executing an installation command, for example, pip
install reqeusts instead of requests. By comparing installed
packages against permutations of white-listed ones, such malicious
packages can be detected and protected against.

4.2 Security configuration (SecConfig)

Software misconfiguration has been a major source of availability,
performance, and security problems. For an application developer
using third-party components shipped as standard Docker images,
it is non-trivial to ensure optimal values for various configuration
settings spread across different components. To aid in this process,
SecConfig scans applications and system configuration settings to
test for compliance and best practices adherence from a security
perspective. SecConfig gives container developers a view into their
runtimes’ security properties, and provides guidance as to how
they should be improved to meet best practices in accordance with
certain industry guidelines like HIPAA, OWASP, PCI, and CIS [19],
taking into account internal deployment standards. For details, we
direct the reader to our SecConfig paper [13].

4.3 Drift analysis

One key tenet of DevOps automation is enforcing container im-
mutability. Once a container goes into production, the expectation
is that it would never be accessed manually (login or ssh) and thus
its contents or behavior should be the same thereafter. However,
it has been observed that systems inevitably “drift” [12], i.e., de-
ployed containers change over time and show unexpected behavior;
changes can be either persistent or reside in memory.

With our OpVis pipeline, we can detect such drifts by tracking
the evolution of all monitored systems over time. Specifically, by
computing the differences of collected container frames over time,
we can discover which systems violate the immutability principle,
and then investigate the deviation origin by uncovering potential
causes ranging from package-level changes to even fine-grain ones
that manifest as altered application configuration settings.

For instance, an analysis of our production cloud over a 2-week
period showed that almost 5% of the containers exhibited unex-
pected deviations from their images in terms of detected vulner-
abilities and compliance violations. Although changes in the vul-
nerability database itself could explain a few cases, our analysis
uncovered that “in-place” updates to the containers, both benign
and undesirable, were taking place via ssh, docker exec, automated
software updates, and software reconfiguration via web front-ends.

4.4 Malware analysis

For containers, the scope of vulnerability exposure by rootkits is
smaller than that for VMs or physical servers. For example, certain
kernel-mode rootkits are developed as loadable kernel modules in
Linux, but application containers do not generally have privileges to
load kernel modules. Therefore, for malware detection we focused
on detecting file-based malware in container images and instances.
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To that end, we maintain a repository of known malwares and
their corresponding offending file paths by pulling their definitions
from available open-source targets[20][4]. Our malware analysis
application then checks the file paths crawled from images and
containers against this repository to identify potential malwares.

5 Experiences

In this section we discuss a few experiences and lessons we learned
while running OpVis in production for over two years.

Choosing the right APIs for monitoring. A critical monitoring
aspect is choosing the stack layer to get data from. Different stack
layers may pose different challenges, one of which is API stability.

One of the crawler functions is to collect data from containers.
Doing so can be achieved at different layers and with different
methods. For example, to collect the CPU usage of a container, we
can use either Docker APIs or cgroups at the host level. We observed
that the Docker APIs have been changing rapidly, compared to the
cgroup APIs, which are provided by the Linux kernel. Using more
stable monitoring APIs will require fewer changes to OpVis as a
result of updates to the underlying systems.

Burst and sampling bias. The number of crawler processes cre-
ated by the main thread can be one or more and is provided as
an option. When multiple threads are created, their cumulative
activity may result in spikes for CPU utilization. By staggering the
activity of the threads, the overall consumption can be amortized
leading to an average lowering of CPU activity.

Watching out for starvation. To monitor the crawler’s behavior
with respect to log collection, one of the things we did was to
deploy on each cloud host a test container emitting log events at a
low frequency: 2 log events per minute. We created a dashboard to
verify whether and when the logs from our test containers were
being indexed on the data store. We noticed that, occasionally,
some containers generating logs at an extremely high frequency
were deployed to a few hosts and, when that happened, our low-
frequency test logs from those hosts were significantly delayed.

Our investigation revealed that the root cause was not in the
data service; the indexers were working properly and there was no
backlog on the data bus. To corroborate our suspicion of starvation
caused by the crawler behavior, we experimented with throttling
high-frequency logs, which indeed mitigated the problem.

Operational visibility systems need global, distributed admission-
control policies in place to allow fair and timely visibility into all
systems across all monitored cloud runtimes.

6 Contribution

We made both internal (production cloud) and external (GitHub)
contributions. OpVis’ crawler, with container inspection and VM
introspection capabilities, has been open-sourced [7] and has thus
far seen contributions from 19 developers internationally.

The OpVisbackend is closed-sourced and offers analytics services
to customers of our container clouds. The full OpVis pipeline has
been in production for over two years. Our VM monitoring capabil-
ities were previously part of our OpenStack cloud that supported
over 1000 OS versions. Multiple instances of the crawler alone have
been deployed as data collectors for internal departments.
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7 Evaluation

To evaluate OpVis’ efficiency and scalability we first assess the
monitoring frequency achievable by the out-of-band crawler. Then,
we contrast the performance of out-of-band and in-band monitor-
ing, measure the frames’ space overhead, and present numbers for
production-scale log-event streaming. The experiments focus on
container clouds; the corresponding benefits for VM clouds have
been demonstrated in our previous work [25]. In the experiments,
the hosts have 16 Intel Xeon E5520 (2.27GHz) cores and 64 GB of
RAM, and run CentOS 7, Linux kernel 3.10.0-514.6.1.el7.x86_64, and
Docker version 1.13.1. The guest containers are created from the
Apache httpd-2.4.25 DockerHub image.

7.1 Monitoring latency and frequency

We measured the maximum frequency with which the crawler can
extract state from containers. Figure 5 shows the time it takes to
extract different runtime-state elements (features) from 200 Web
server containers. Shown are two sets of bars for each feature. The
left bar represents the case where the crawler synchronizes with
the Docker daemon on every monitoring iteration to get metadata
for each container, whereas the right bar shows the optimization
where the crawler caches the container metadata after the first
iteration and subscribes to Docker events to update its cache asyn-
chronously for container creation or deletion. The optimization
yields an average improvement of 4.4s to crawl 200 containers.
Another point to note is the crawl-time reduction when names-
pace jumps are avoided. Figure 5 shows 11.6s vs 4.8s to crawl pack-
ages with and without namespace jumping, respectively. Finally,
although we show the latencies for extracting individual features,
for feature combinations one can just add the individual times.
We observed that the crawler can easily support over 10 Hz of
monitoring frequency per container, and can go beyond 100 Hz for
certain feature types. This observation considers a single crawler
process consuming a single CPU core, although for many feature
plugins only 70% of a core is consumed, with time spent waiting
for either the disk while reading containers’ rootfs, or the kernel
while reading cgroups stats and/or during namespace jumping.

7.2 Performance impact

Next, we measure the OpVis agentless crawler performance impact
and compare it with that of agent-based in-guest monitoring. We
run 200 Web server containers on the host, and configured the
crawler to extract CPU, memory, and package data from each con-
tainer. The first two plugins provide metrics data, whereas the third
allows periodic vulnerability analysis (see Section 4.1).
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Figure 7. Size accounting for each crawled feature.

Each container was given equal CPU shares and 256 MB of mem-
ory. To minimize interference, we pinned the containers to 10 cores
and the Docker daemon and its helper processes to the remain-
ing 6 cores. Further, various Web server and kernel parameters
were tuned appropriately to enable high throughput operations.
The workload consisted of random 64-byte static files, requests
for which were made to each container from another host via
httperf [17] workload generators. We carefully selected the file
sizes to prevent network saturation, and recorded throughput and
response time after a warm-up phase to ensure all data was served
from memory and thus impose maximum stress on the system.

The maximum sustainable throughput of the Web server aggre-
gated across all 200 containers was 28000 requests/s (140 requests/s
per container), with an average response time of 30ms per request.
With continuous out-of-band crawling, we observed no impact on
the throughput. However, the average response time degraded by
50% to 45ms. Interestingly, not all containers were affected by the
increase in response time, as can be seen in Figure 6 which plots
the CDF of response times for the 200 containers with and without
the OpVis crawler. The crawl latency itself increases from 6s to 8s.

To mimic an agent-based monitoring methodology, we next
ran the crawler process inside each container, configured to crawl
every 8s as per the above out-of-band crawling experiment. With
such in-guest monitoring, the aggregate sustainable throughput
decreased 14%, and response times increased 65%. The in-guest
monitor process competes for resources with the user workload,
whereas the out-of-band crawler has its own dedicated core.

For completeness, we evaluated the out-of-band crawler restrict-
ing it to use only the cores that were running the Web server
containers. In this case we still saw no impact on throughput, but
with a 75% response-time increase (up from 50% with a dedicated
core). Alternatively, baseline response times could be achieved but
with a 7% throughput decrease (still better than a 14% degradation
incurred by in-guest monitoring, which goes to 21% to meet the
baseline response times). Note that being able to use a separate core is
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in fact desirable and indeed a benefit of OpVis’ decoupled execution—
monitoring framework, which enables offloading monitoring tasks
outside the critical workflow path, thus minimizing interference.

7.3 Space and network overhead

Disaggregated delivery of analytics functions is a key feature of
OpVis, enabled by the separation between data collection (crawler)
and data curation (backend annotators). Consequently, there is
the need to transfer data between crawlers and annotators, which
are typically separated by low-latency, high-bandwidth local-area
network connections. We measured the overhead of transferring
and storing crawled data. Figure 7 shows the size of crawled data
for each individual feature type from a single Web server container.
During this experiment we used a popular crawler output format
(JSON); it is important to note that the space overhead differs for
different emitter formats. Such overhead can be reduced by using
data compression, which has its own performance implications by
adding data-curation latency during decompression.

7.4 Performance of annotators

From the cloud users’ perspective, it is critical that violations of se-
curity policies on their containers be discovered quickly. In certain
cases it depends on external factors, e.g., how quickly a newly-
discovered package vulnerability is added to standard CVEs. In the
OpVis context, we measure the time taken by each annotator to
produce a verdict. We measured the average latencies of 3 OpVis
security-related annotators. Remote Login Check checks all account
passwords inside containers for weaknesses. For containers with
weak passwords the security report is produced quickly (within
a second), and for those with strong passwords it can take up to
15 seconds. Compliance Check validates 21 standard security rules
within 7 seconds. Finally, Vulnerability Analyzer checks packages
against any known vulnerabilities within 1 second.

7.5 Log streaming in production

We now present data on the crawler’s log-streaming behavior ob-
served during 1 month, while it was exercised by external users and
internal core services of our production cloud. Over this period, the
crawler was tracking several hundred containers per host and thou-
sands of containers, collecting approximately 250, 000 log events
per minute per host on average. Figure 8 shows the data for one of
our cloud hosts. The top plot shows the rate of new log files created
per minute, exhibiting the level of dynamism and live activity in
the cloud, with many new log files discovered every minute as
instances come and go. It also shows a trend of increasing adoption
and scale at the macro level as the month progresses. The bottom
plot shows the number of log events processed per second.

8 Conclusion

In this paper we presented OpVis, our unified monitoring and ana-
lytics framework to achieve operational visibility across the cloud.
We described the various techniques employed to enable agentless,
non-intrusive extraction of volatile and persistent state from VM
and container guests. We emphasized the extensible nature of our
framework, enabling custom data collection as well as analysis. We
described four of the analytics applications we built atop the OpVis
pipeline, which have been in our public cloud for over 2 years. We
experimentally highlighted OpVis’ high monitoring efficiency and
low impact on target guests.
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Figure 8. New log files per minute (top) and logs processed per
second (bottom).
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