
1

CSC258 Lecture Slides © Steve Engels, 2006 Slide 1 of 38

CPU Architectures

• Several CPU architectures exist currently:

– Motorola

– Intel

– AMD (Advanced Micro Devices)

– PowerPC

• Pick one to study; others will be variations on this.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 2 of 38

4

Select

Motorola 68000

• Arbitrary pick: Motorola 68000
(or m68k)

• CISC processor

– translates instructions
into microcode, and
executes a sequence
of micro-instructions
on a RISC architecture.

• 32-bit architecture

– all data is 32 bits long.

– addresses are 24-bits,
stored in 32-bit values.

• Datapath shown in diagram.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 3 of 38 CSC258 Lecture Slides © Steve Engels, 2006 Slide 4 of 38

M68000 Data

• Data is stored in “big endian” format

– most significant byte is stored in least significant segment of
address. “Little endian” stores the least significant byte in the
least significant portion of specified address.

– Mnemonic: “big end in”.

– Example: Data value 4A3B2C1D at memory location 0x1000

• Big endian:

• Little endian:

• A word in M68000 is 16 bits (2 bytes), and a long word
is 32 bits (4 bytes).

– Most data and address accesses are long word operations.

4A 3B 2C 1D

1D 2C 3B 4A

1000 1001 1002 1003

1000 1001 1002 1003

2

CSC258 Lecture Slides © Steve Engels, 2006 Slide 5 of 38

Other M68000 Updates

• MAR and MDR pretty much the same.
– uses signal called MFC (Memory Function Completed) which

is sent to the CPU after a memory operation is done.

• 8 data registers (R0 to R7) and 8 address registers
(A0 to A7)
– A7 is also known as SP, since it stores the stack pointer.

• Access to the components of the CPU (i.e. the arrows
in the diagram) is controlled by a latched input.
– The instruction decoder controls which latches are activated.

– The operation performed by the ALU is also controlled by
the instruction decoder.

– The result of the ALU’s operations (e.g. C, V, N) are
conveyed back to the instruction decoder through a status
register, usually located in the decoder itself.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 6 of 38

How It All Works

• Basic operation of the M68000 involves performing
one or more of the following functions:

1. Fetching contents of a memory location and storing these
contents in a CPU register.

2. Storing the contents of a CPU register into a location in
memory.

3. Transferring the contents of one CPU register to another.

4. Performing an arithmetic or logical operation and storing
the result in a CPU register.

• Let’s look at how to do some of these things…

CSC258 Lecture Slides © Steve Engels, 2006 Slide 7 of 38

BA

Z

ALU

Yin

Y

Z in

Zout

Riin

Ri

Riout

bus
Internal processor

Constant 4

MUXSelect

Basic Control Signals

• “Add the contents of R0 and R1,
and store the result in R0.”

• Instruction form:

• Need to activate addition
mode in the ALU, and get
the contents of R0 and R1
into inputs A & B at the
same time.

– Problem: Single-bus architecture
only allows one value on the bus.

– Solution: Use the Y register to store
a value temporarily.

Add R1, R0

CSC258 Lecture Slides © Steve Engels, 2006 Slide 8 of 38

BA

Z

ALU

Yin

Y

Z in

Zout

Riin

Ri

Riout

bus
Internal processor

Constant 4

MUXSelect

Basic Control Signals

• To perform add operation,
perform the following steps:

1. get R1 (or R0) into Y

2. get R0 (or R1) onto bus

3. tell ALU to perform addition

4. store result in Z

5. put contents of Z onto bus

6. store contents of bus in R0

• Of these steps, which have to be
done simultaneously in order for
the operation to succeed?

– number of grouped steps determines
the number of clock cycles per
instruction.

3

CSC258 Lecture Slides © Steve Engels, 2006 Slide 9 of 38

BA

Z

ALU

Yin

Y

Zin

Zout

Riin

Ri

Riout

bus
Internal processor

Constant 4

MUXSelect

Basic Control Signals

• Translate grouped steps into control
signals from instruction decoder:

– Step 1: R1out, Yin

– Step 2: R0out, Select, Add, Zin

– Step 3: Zout, R0in

• Note: The operation “Add R1, R0”
is like pseudocode for CPUs.
We will use this for the next little
while, but assembly language is
typically used for implementing
these instructions in real-life
programs
– e.g. ADD.W D1, D0

CSC258 Lecture Slides © Steve Engels, 2006 Slide 10 of 38

4

Select

Basic Control Signals

• “Fetch the next instruction”

– Required part of every instruction.

– Two sets of steps needed…

• Operation #1: Fetch instruction

1. Put PC value into MAR

2. Fetch instruction from memory

3. Store retrieved instruction in IR

• Operation #2: Increment PC

1. Increment PC by 4

2. Store incremented value back in PC

• Can these two operations be
performed in parallel?

CSC258 Lecture Slides © Steve Engels, 2006 Slide 11 of 38

Basic Control Signals

• Translate operations into control signals:

– Fetch instruction

1. PCout, MARin, Read, WMFC

2. MDRout, IRin

– Increment PC

1. PCout, Add, Zin

2. Zout, PCin

• To determine how these could be done in parallel,
examine what signals are on the bus in each step…

���� PC (original)

���� IR (updated)

���� PC (original)

���� PC (updated)

1. PCout, MARin, Read, Add, Zin

2. Zout, PCin, WMFC
3. MDRout, IRin

CSC258 Lecture Slides © Steve Engels, 2006 Slide 12 of 38

Instruction Retrieval FAQ

• What is the “Read” signal, exactly?
– Sends signal to memory, requesting the data value stored at

the MAR’s address. When complete, the MDR will be storing
the retrieved data.

– “Write” is the only other memory operation, which stores the
MDR’s value into the memory location specified by the MAR.

• Why does WMFC get moved to the second step?
– WMFC suspends CPU activity until the memory access is

complete. Typically, this is much larger than any single CPU
instruction, so get everything else done before you WMFC.

• How does the PC get incremented?
– The mux either adds the Y value to the bus (if Select is high)

or just adds 4 (if Select is low). Instructions are 32 bits long,
and each memory location stores 1 byte. You do the math.

4

CSC258 Lecture Slides © Steve Engels, 2006 Slide 13 of 38

Instruction Retrieval Shortcuts

• Since this instruction retrieval step is so common,
designers try to find ways to shorten the steps.

– Memory access is always horribly slow, but that can’t be
helped. Advances in semiconductor devices and memory
technology are needed for this (see Moore’s Law).

– PC increments offer potential design enhancements:

• CPU designs sometimes create a dedicated increment circuit for
the PC, so that it doesn’t use the bus or involve the ALU.

• If the PC stores the instruction address divided by 4, the PC can
increment by one instead of 4 for each new instruction. The PC

will then be multiplied by 4 before being copied to the MAR.

• The PC and IR can have a direct connection to memory, much like
the MAR and MDR.

• Instruction memory can be made separate from main memory.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 14 of 38

Impact on Timing

• The structure of the datapath has a direct influence
on the clock speed of the CPU.

• Consider the delays involved in the Add operation:

– Activation time for tri-state buffer on R0out

– Transmission time for R0out onto bus

– Propagation delay through ALU

– Setup time for loading value into Z register

– Hold time for Z before lowering R0out.

Turn-on
time for
3-state
driver

Transmission
time

Propagation
delay

through ALU

Setup
time

Hold
time

Preparation
time for next
instruction

R0out

Zin

CSC258 Lecture Slides © Steve Engels, 2006 Slide 15 of 38

Addressing Modes

• While we’re talking about the Add operation, how
many ways are there to specify operands?

– Register direct mode = what we’ve seen so far.

– Register indirect mode = the register stores the memory
address of the operand.

Add R6, R0

Add (A0), R0

CSC258 Lecture Slides © Steve Engels, 2006 Slide 16 of 38

Addressing Modes

– Autoincrement mode = a version of register indirect mode,
where the address stored in the register is incremented by
1, 2 or 4 after the memory access, depending on the length
of the data being accessed.

– Autodecrement mode = same as autoincrement, only the
address is decremented before the memory access.

Add (A0)+, R0

Add -(A0), R0

5

CSC258 Lecture Slides © Steve Engels, 2006 Slide 17 of 38

Addressing Modes

– Immediate mode = the value of the operand is given in the
instruction itself. The ‘#’ character denotes an immediate

value.

– Absolute mode = the absolute address to be used in the
operation is found in the instruction itself. The ‘$’ character
denotes that the address is in hexadecimal notation (0x…).

• Absolute value can be either short or long. If long, then 24 bits
are given. If short, 16 bits are given and then sign extended.

Add #200, R0

Jmp $1200

CSC258 Lecture Slides © Steve Engels, 2006 Slide 18 of 38

Addressing Modes

– Basic index mode = a 16-bit signed offset and an address
register are specified in the instruction. The sum of the offset
and the register’s contents specifies the operand location.

– Full index mode = an 8-bit signed offset, an address register
and a data register are specified in the instruction. The sum
of the offset and the two registers specifies the operand
location.

Add 42(A0), R0

Add 53(A0, R1), R0

CSC258 Lecture Slides © Steve Engels, 2006 Slide 19 of 38

Addressing Modes

– Basic relative mode = same as basic index mode, only using
the program counter instead of an address register.

– Full relative mode = same as full index mode, only using the
program counter instead of an address register.

Add 42(PC), R0

Add 53(PC, R1), R0

CSC258 Lecture Slides © Steve Engels, 2006 Slide 20 of 38

Instruction Types

• Now that we’ve specified the different forms that
operands can take, what about the operations?

• Operations for the M68000 fall into one of three
major categories:

– Data manipulation (arithmetic, shifting, copying)

– Control flow (branching, jumping, subroutines)

6

CSC258 Lecture Slides © Steve Engels, 2006 Slide 21 of 38

Data Manipulation Instructions

• 5 principal methods for manipulating data.

– Arithmetic:

– Logical:

ADD(addition) SUB(subtraction)

MULU(unsigned multiplication) MULS(signed multiplication)

DIVU (unsigned division) DIVS (signed division)

NEG(arithmetic negation) CMP(comparison)

AND(logical AND) OR(logical OR)

NOT(complement) EOR(exclusive OR)

CSC258 Lecture Slides © Steve Engels, 2006 Slide 22 of 38

Data Manipulation Instructions
– Shifting

– Copying

– Binary Arithmetic

LSL (logical shift left) LSR (logical shift right)

ASL (arithmetic shift left) ASR(arithmetic shift right)

ROL(rotate left) ROR(rotate right)

ROXL(rotate left through X) ROXR(rotate right through X)

MOVE(move value) MOVEA(move address)

EXG(exchange values) LEA (load address)

ABCD(add BCD values) SBCD(subtract BCD values)

CSC258 Lecture Slides © Steve Engels, 2006 Slide 23 of 38

Control Flow Instructions

• 3 main types of control flow instructions.

– Branching:

– Jumping:

– Subroutines:

BRA(branch always) Bcc (branch conditionally)

BSR(branch to subroutine) DBcc (decrement, and Bcc)

JMP(jump to address) JSR (jump to subroutine)

RTS(return from subroutine) RTE(return from exception)

CSC258 Lecture Slides © Steve Engels, 2006 Slide 24 of 38

Control Flow Instructions
• Branch condition codes

Z ∨ (N ⊕ V) = 1Less or EqualLE1111

Z ∨ (N ⊕ V) = 0Greater ThanGT1110

N ⊕ V = 1Less ThanLT1101

N ⊕ V = 0Greater or EqualGE1100

N = 1MinusMI1011

N = 0PlusPL1010

V = 1oVerflow SetVS1001

V = 0oVerflow ClearVC1000

Z = 1EqualEQ0111

Z = 0Not EqualNE0110

C = 1Carry SetCS0101

C = 0Carry ClearCC0100

C ∨ Z = 1Low or SameLS0011

C ∨ Z = 0HighHI0010

Always falseFalseF0001

Always trueTrueT0000

Test ConditionNameCondition Suffix (cc)Machine Code

7

CSC258 Lecture Slides © Steve Engels, 2006 Slide 25 of 38

Data Details

• When moving or modifying data, it’s important to
specify the length of the data being moved or
modified.

• Example: move.b (a0), r1
– This moves the byte at a0 ’s location into the least significant

byte of r1 .

– It’s important to consider the endian of the system you’re
using (see slide 4).

• Also, register names can vary from system to system.

– M68000 often uses d0-d7 to represent data registers, e.g.

– Don’t get confused.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 26 of 38

Other Important Commands

• There are many more commands than the ones listed
here, but most are rather obscure and rarely used.

• A few important ones commands that were missed:

– dc (declare constant) = allocated space for a constant value,
which can be referred to in place of a data value.
• Example: value: dc.b 42

move.w value, r0

• In this case, value is like a global variable to the program.

– org (program origin) = set a location in memory for the
following assembly instructions should be written.
• Example: org $1000

• This starts the following code at location 1000 (hex) in memory.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 27 of 38

Other Important Commands

– trap (software interrupt) = call an interrupt subroutine,

such as printing to the screen, or receiving data from
standard input.

• Example: trap #14

• This calls the subroutine that goes to trap vector #14, which

loads whatever address is at memory location 14, and jumps
the program counter to that address (usually in read-only
memory).

• Often, the program that resides at the address in vector #14 is
responsible for printing characters to the screen (m68k only).

• Before jumping, the current PC and SP values are pushed onto
the stack. The RTE instruction pops these value back.

• Other trap locations will be responsible for other operations
(e.g. handling misaligned word addresses, reading from
keyboard, etc.)

CSC258 Lecture Slides © Steve Engels, 2006 Slide 28 of 38

Other Trap Details

• The first 256 long words in memory store the
memory addresses of vital processor subroutines.

– address 0 contains the address of the initial startup routine.

• This is also called the exception vector table.

• Locations 32-47 of this table are allocated to the trap
vectors, and the contents of these entries can be set
by the operating system (which you create).

• Calling Trap #14 would then look

up entry 46 in the exception table,
go to the address specified in that
entry, and execute the subroutine
at that address.

8

CSC258 Lecture Slides © Steve Engels, 2006 Slide 29 of 38

Memory-Mapped I/O

• The trap entries in the exception table contain the
address of the exception code. How does that
exception code actually read or write from external
devices?

• The trap code assumes that the information to write is
in a particular register, or that the information to read
should be stored in a particular data register.

– In the case of reading or writing strings, an address register
is used instead to store the initial address of the string. A null
character is used to indicate that the string has terminated.

• The actual address of the device’s IO location can
vary, depending on the hardware implementation.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 30 of 38

Memory-Mapped I/O

• When performing read or write operations, we’re
typically interested in the parallel or serial ports.
– Printer/monitor � parallel

– Keyboard/internet � serial

• To perform these actions, the M68xxx systems either
map specific devices to location in memory, or will
implement a multi-function peripheral (MFP) interface.

• The MFP interface is a series of registers in memory
that are responsible for the various aspects of I/O
operations:
– Data direction

– Control register

– Receiver/transmitter status register

– Data register

CSC258 Lecture Slides © Steve Engels, 2006 Slide 31 of 38

Multi-Function Peripherals

• Each register in the MFP interface is assumed to be an
odd offset from a given location in memory.
– Let’s assume that it’s at $E70000 (various sources give

different values for this starting address)

• General-Purpose I/O Register (GPIP) � offset of 1

• Universal Synchronous/Asynchronous Receiver/Transmitter
(USART) Control Register (USC) � offset of 0x29

• Receiver Status Register (RSR) � offset of 0x2B

• Transmitter Status Register (TSR) � offset of 0x2D

• USART Data Register (USR) � offset of 0x2F

– To perform an I/O operation, use the control registers to set
up the nature of the operation (synchronous, byte/word/long),
and then use the data and status registers to send information
and verify it was received.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 32 of 38

Opcodes

• When an assembly language program is compiled by
the assembler, it is translated into binary instructions
that can be recorded in memory and understood by
the instruction decoder.

– Also called opcodes (short for operation codes)

• How does it do this translation? What do these binary
instructions look like?

• Each instruction can be broken down into parts,

– to see what assembly language instruction it corresponds to

– to see how the instruction decoder understands its contents

9

CSC258 Lecture Slides © Steve Engels, 2006 Slide 33 of 38

Opcodes

• Note: See Appedix C
in the text and the
M68000 reference
manual on the web
page for opcode tables and more opcode information.

• The opcode is broken down into sections differently,
depending on the type of instruction.

• In order to know how to break down the instruction,
the first section of the instruction contains the
identifier for the instruction type.

– most significant 4 bits (15-12) of a 16-bit instruction.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 34 of 38

Opcodes

• The instruction decoder reads
the first 4 bits, and knows
more about how to handle
the instruction from there.

– Example: 0010 � Move Long

• Sometimes, a fifth bit is
needed to distinguish
instructions within the
general categories.

– Example: 1011

• if bit 8 is 0 � CMP

• if bit 8 is 1 � EOR
MC68040 & CPU32 Extensions1111

Shift/Rotate/Bit Field1110

ADD/ADDX1101

AND/MUL/ABCD/EXG1100

CMP/EOR1011

(Unassigned, Reserved)1010

SUB/SUBX1001

OR/DIV/SBCD1000

MOVEQ0111

Bcc/BSR/BRA0110

ADDQ/SUBQ/Scc/DBcc/TRAP0101

Miscellaneous0100

Move Word0011

Move Long0010

Move Byte0001

Bit manipulation/MOVEP/Immed0000

OperationBits 15-12

CSC258 Lecture Slides © Steve Engels, 2006 Slide 35 of 38

Opcodes

• After the instruction has been identified, the
remaining 16 bits can be interpreted according to the
tables in Appendix C from the text.

• Example: ADD

• This table entry specifies the operand types and sizes
for this instruction, the format for the opcode, the
underlying semantics of the instruction, and the
status register codes after the instruction takes place.

CSC258 Lecture Slides © Steve Engels, 2006 Slide 36 of 38

Opcodes

• Consider the first opcode format for this instruction:

• This instruction corresponds to: ADD Dn, X
– Dn is a data register (n is a value from 0 to 7)

– X is the other operand, which also acts as the destination

• What do the letter fields mean?
– DDD= Data register number (i.e. Dn)

– SS = Size (00 � byte, 01 � word, 10 � long word)

– EEEEEE= Effective address of destination operand (i.e. X)

• First three bits of EEEEEE� addressing mode

• Second three bits of EEEEEE� register number (if applicable)

1101 DDD1 SS EEEEEE

10

CSC258 Lecture Slides © Steve Engels, 2006 Slide 37 of 38

Opcodes

100111Immediate or SR

011111Relative full

010111Relative basic

001111Absolute long

000111Absolute short

Register Number110Indexed full

Register Number101Indexed basic

Register Number100Autodecrement

Register Number011Autoincrement

Register Number010Address register indirect

Register Number001Address register direct

Register Number000Data register direct

Register FieldMode FieldAddressing Mode• So given the format
1101 DDD1 SS EEEEEE

how would you
specify the instruction
ADD.W R1, (A6)

in opcode format?

• Specify parts:
– DDD= 001

– SS = 01

– EEEEEE:

• Address mode = 010

• Register no. = 110

• Result? 1101 0011 01 010110

CSC258 Lecture Slides © Steve Engels, 2006 Slide 38 of 38

Special Opcode Cases

• Branching instructions

– Branch instructions require an offset to tell them how far
forward or backward to branch.

– Keep in mind that the PC will have incremented already
(slides 10 & 11), so the address in the program counter will
be one instruction larger than expected.

• Supplemental information

– Some instructions (such as JMP) will involve an address or
other information that is too big to fit into the instruction
itself.

– When this happens, the instruction decoder understands
that the necessary information can be found in the 16 or 32
bits following the previous instruction, and will load that
information into a data register instead of the IR.

