
CSC384 Assignment 1 : Sudoku

Introduction

9
52

 7

5 3
 9
 8

8
41

6
8

4 3
2

9 7

3 1

6
21

9
 1

38
5

 7
 6

4 2

5
74
6

Sudoku is the Japanese word for “single
numbers”, and refers to the newest numerical
puzzle game that has become popular in
newspapers and game publications all over the
world. Although the rules for this puzzle are
simple to understand, the solutions can range
from the very simple to the agonizingly
difficult. This is why it is the perfect domain
for the first assignment of the course.

Puzzle Background

The Sudoku puzzle is a 9x9 grid of squares, some of which contain number values from
the start. Your goal is to add additional digits so that each row, column and 3x3 square
contains the digits 1 to 9, inclusive.

Solving Sudoku

The brute force method of solving Sudoku involves a pencil and a large eraser. Filling in
the squares one at a time with number values, you continue until one of the rows,
columns or 3x3 squares contains a duplicate value. This method can take a while, and is
NP-complete for the generalized nxn puzzle case.

More elegant techniques exist of course, usually involving heuristics of some sort. In
most cases, Sudoku puzzles have a unique solution, so with careful analysis of the
numbers in the grid, the solution can be determined without a single use of the eraser.

Design

Objective

To create a Prolog program that takes in an incomplete Sudoku grid and returns the same
grid with all the completed values. The assignment will be done in two stages:

• Brute force search: devise a complete search that discovers and returns the puzzle
solution. If multiple solutions exist, return the first one found. If no solutions are
possible, then indicate that as well.

• Heuristic search: building on the brute force search, add heuristics that speed up
the solution process.

Work on the brute force search first, and then move onto modifying it for the heuristic
search. Both should employ techniques described in lectures. Only the heuristic search
version of your program is needed when handing in your final product. Hand in the brute
force version only if the heuristic version could not be completed in time.

Grid Layout
 6 2 4 5
47 6 83
 5 7 1
9 1 3 2
 12 34
6 7 9 8
 6 8 7
14 9 25
 8 3 5 9

Your program will read the layout for each Sudoku puzzle
from a file that contains a 9x9 grid of single characters. The
characters will be the digits from 1 to 9 inclusive, plus the
blank character for empty squares. For example, the file
contents for the grid layout above are show in the box on the
right.

Deliverables

Submit sudoku.pl, the Prolog file containing the program that completes the
objectives. Include in this file a predicate called solve(X,Y), where:

• X is the name of the file in which the Sudoku layout can be found
• Y is the name of the file into which the completed Sudoku puzzle is written

The grid layout must conform to the specifications outlined above. Other Prolog files
may be submitted as well, if needed. Be sure to document your code thoroughly, as marks
will be deducted for poor or unreadable designs.

Prolog files are submitted electronically at the following site:

 http://www.utm.utoronto.ca/submit

In addition to the electronic submission, a short report (max 4 pages, 12pt font, double-
spaced) will also be handed in during the class following the due date. The report will
outline the general approach and heuristics used in the program design, as well as other
design details you feel are pertinent for the marker to know when reading your program.
Also include some basic analysis of the effectiveness of the heuristics, using the search
criteria outlined in the lectures.

Mark Breakdown

 40% Correctness
 20% Style & Documentation
 40% Report (Technique & Analysis)

Hints and Tips

• The course web page has useful links to Prolog resources, including a
downloadable version of SWI-Prolog and related documentation for it.

• The website http://www.sudoku.com has many example grids to use in
testing your design. To create grids with multiple or no solutions, either remove a
value from the grid, or add an incorrect value to the grid.

6 94
5 28
1 37

513
796
284

782
341
695

8 15
9 43
2 76

927
658
341

436
217
859

4 61
3 82
7 59

879
165
432

523
974
168Solution to example puzzle:

	CSC384 Assignment 1 : Sudoku
	Introduction
	Puzzle Background
	Solving Sudoku

	Design
	Objective
	Grid Layout

	Deliverables
	Mark Breakdown
	Hints and Tips

