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Certainty in AI

• The main problem with techniques up to this point is 
the inability to deal with uncertainty
– searching: moves may or may not lead to the planned state
– game theory: opponent has a certain probability of making 

one move or another, based on unknown heuristic
– reasoning: axioms are only correct most of the time
– planning: actions do not always lead to subsequent state
– language: sentences do not always break down into part 

with equal frequency

• Example: PCFG (probabilistic context-free grammars)
– apply weights to decomposition rules and lexical entries
– P(“time” is N) = 0.7; P(“time” is V) = 0.25; 

P(“time” is Adj) = 0.05  influences likelihood of parse



CSC384 Lecture Slides  © Steve Engels, 2005 Slide 2 of 19

Let’s Make a Deal

• Classic probability problem:
– Assume you’re on the game show “Let’s Make a Deal”
– You are presented with three doors, behind one of which is 

a brand new car. The other doors have joke prizes.
– Monty Hall (the host) asks you to pick a door
– Once you pick a door, he reveals one of the other doors, 

with a joke prize behind it
– He then offers you a chance to 

switch the door that you picked. 
– What do you do? Stay, or switch?
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I’ll Take Door #1, Monty

• Classic mistake: assuming that prize has equal 
likelihood of being behind either remaining door

• Actual probability of winning:
– if you stay: 33%
– if you switch: 67%
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Probability Theory
• Assuming discrete events to start, probability theory deals with the 

prediction of the likelihood of an event
• Example: flipping 3 coins

– sample space (Ω) = all possible outcomes of an experiment 
• Ω = {HHH, HHT, HTH, … , TTT}

– event (A) = a subset of the sample space
• Ai = “2 heads flipped” = {HHT, HTH, THH}
• |Ai| = # of elements in set i = 3

– probability distribution (probability function) = assignment of probability 
value to events, such that P(Ø) = 0, P(Ω) = 1, and 0 ≤ P(Ai) ≤ 1

• for disjoint sets Aj ∈ F  (i.e. Ai ∩ Ak = Ø for j≠k) 

– probability space = collection of sample space Ω, field of events F and 
probability function P.

• P(Ai) = |A|/|Ω| = 3/8

P(∪Aj) = ∑ P(Aj)j=1 j=1
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Axioms of Probability

• Probability range:
– For all events A:  0 ≤ P(A) ≤ 1

• Probability limits:
– P(true) = 1,   P(false) = 0

• Disjunctions:
– P(A ∨ B) = P(A) + P(B) – P(A ∧ B)

• Marginalization:
– if ∪Aj = Ω, then ∑ P(Aj) = 1

Note: Probability is like a degree of belief, not a 
function like its appearance might make it seem

j j
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Joint & Conditional Probability

• Joint probability P(A,B) = the probability of two 
simultaneous events A and B
– given disjoint events Ai and Aj, P(Ai,Aj) = 0

• Conditional probability P(A|B) = the probability of 
one event occurring, given knowledge about another 
event
– probability of A alone the prior probability of A
– probability of A given B knowledge the posterior

probability of A
– conditional probability can also be written as:

P(A|B)  =                 =P(A,B)
P(B)

P(A,B)
∑ P(A,B)
A
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Monty Hall Revisited
• Assume that prizes are cars (C) and goats (G)

– F1: {CGG, GCG, GGC}
– A1: {CGG}, A2:{GCG}, A3:{GGC}; 
– P(A1)=P(A2)=P(A3)=1/3
– P(¬A1)=P(¬A2)=P(¬A3)=2/3

• Assume that Monty opens Door #1, #2 #3
– F2 = {“Door #1”, “Door #2”, “Door #3”}
– B1: “Door #1”, B2: “Door #2”, B3: “Door #3”
– P(B1|A1)=0, P(B1|A2)=1/2, P(B1|A3)=1/2

• Probability of winning if you pick Door #1 and stay after Door #2 
is opened (WLOG):
– P(A1|B2) = P(B2|A1)P(A1)/P(B2)

= [(1/2)(1/3)]/(1/2) = 1/3
• Therefore, 2/3 probability of winning if you switch
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Random Variables

• Instead of referring to values like “stay” and “switch”, 
random variables act as a function between X:Ω ℜ, 
where ℜ is the set of real numbers
– discrete random variable = a function X:Ω S where S is a 

countable subset of ℜ. If X:Ω {0,1}, then X is called an 
indicator random variable, or a Bernoulli trial

• Example: rolling a 6-sided die
– P(X) = general expression for the probability of some value 

stored in X
– For a “fair” die: P(X=1) = 1/6
– For a weighted, “unfair” die: P(X=1) = 1/2
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Expectation & Variance

• The expected value (µ) for a random variable X is the 
average value of X
– not the same as the average of X’s possible values.

• The variance (σ) of a random variable X is a measure 
of whether the values of the random variable are 
consistent over several trials, or whether they tend to 
vary a lot from the expected value

E(X) = ∑xP(x)
x

V(X) = E((X-E(X))2)
= E(X2) – E2(X)
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E(X) and V(X) Examples

• Expectation for rolling of a single die: 

• Expectation for rolling of two dice:

• Variance for rolling of two dice: 

– How do we get the values for these calculations?

E(X) = ∑xP(x) = 1/6 ∑x = 21/6 = 3½
x=1

6

x=1

6

E(Y) = E(X) + E(X) = 3½ + 3½ = 7

V(Y) = E((Y - E(Y))2) = 5 5/6
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Obtaining Probabilities

• When the cases are not as obvious as coins and dice 
(e.g. occurrence of words in English), P is often 
found through estimation

• C(u) = the number of times that u occurs over N 
trials, with u≤N, obviously.
– unreliable in some cases, since occurrence of certain data 

values (i.e. words) are rare or non-existent in the data, 
especially if dataset is relatively small

– practically, give token probability to all unseen data, to 
ensure that probability calculations are not zero
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Some Probability Rules

• If A and B are independent events, 
– P(A,B) = P(A)P(B)
– P(A|B) = P(A)

• Multiplication Rule:
– P(A,B) = P(B)P(A|B) = P(A)P(B|A)

• Chain Rule:
– P(A1,A2,…,An) = P(A1)P(A2|A1)P(A3|A1,A2)…P(An|A1,A2,…,An-1)

• Bayes’ Theorem:

– extremely important theorem in the field of probability, 
where B cannot be observed directly from data

P(B|A)  =                 =P(A,B)
P(A)

P(A|B)P(B)
P(A)
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Importance of Bayes’ Theorem

• Example #1: Medical diagnosis
– if P(cough | lung cancer) = 0.95, is that useful information to 

somebody who has a cough?
– more interesting would be P(lung cancer | cough), but how 

does one find that out?
– also need P(cough) = 0.3 and P(lung cancer) = 0.001
– P(LC|C) = P(C|LC)P(LC)/P(C) = (0.95)(0.001)/(0.3) = 0.3%
– On the other hand, if the probability of a cold is about 1 in 4,

then P(cold|cough) = 79%
– Note:

• P(C) cannot be 0 in these cases
• It is not possible for P(C|LC)P(LC) to be greater than P(C)
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Importance of Bayes’ Theorem

• Example #2: Courtroom verdicts
– Given that an evidence test E is valid whenever a suspect is 

guilty (G) of committing a crime ( P(E|G)=1 ), can we infer 
that finding such evidence implies that the suspect is guilty?

– It all depends on the reliability of the test, and how guilty 
people are in general

– Let’s say that 1% of people are generally guilty of this 
crime, and that the evidence occurs 5% of the time naturally

• P(G) = 0.01
• P(E) = 0.05
• P(G|E) = P(E|G)P(G)/P(E) = (1)(0.01)/(0.05) = 20% guilty

– What about if 0.05% of people are guilty of this crime, but 
the evidence occurs rarely (DNA evidence ~ 10-4%)

• P(G|E) = (1)(0.0005)/[(0.0005)(1) + (0.95)(10-6)] = 99.8%
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Standard Distributions

• Binomial distribution
– results when an event has two possible outcomes (i.e. 

Bernoulli trials), where each trial is independent of all the 
others

– the term     counts the number of different possibilities for 
choosing r objects out of n, not considering the order in 
which they are chosen.

n
r

b(r; n,p) =        pr(1-p)n-r,     where        = n!/(n-r)!r!   0≤r≤nn
r

n
r
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Standard Distributions (cont’d)

• Normal distributions
– for continuous cases, sums become integrals and random 

variable values become ranges
– the normal distribution is the most commonly-occurring 

phenomenon in nature, and what occurs in most random 
situations

– defined in terms of the mean µ and variance σ:

– in addition to “normal distribution”, this can also be called a 
“bell curve”, but the AI community always refers to these 
functions as “Gaussians”, after Carl Friedrich Gauss

n(x; µ,σ) = e-(x-µ)2/(2σ2)1
√2πσ
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Distributions Illustrated

• Binomial:

• Gaussian (2-d):
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Applied Probability

• Game playing:
– Use past performance to determine the probability of 

particular moves, given the present situation
– Changes heuristic values of certain states, since the 

opponent might not necessarily choose the “best” move 
available. This means that some potential dangerous moves 
can be explored, in the hopes that a more beneficial position 
can be reached

– Can compensate for differing heuristics, because moves that 
the AI agent might not anticipate are still possible, and are 
not completely discounted in the calculation
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Applied Probability

• Reasoning under uncertainty
– As mentioned before, some propositions might not be 

absolute
– Instead of stating absolute truths, reasoning systems would 

indicate a degree of belief in a particular fact, based on the 
cumulative probabilities of the steps leading up to that fact.

– Probabilities are derived from empirical observations

• Planning under uncertainty
– Plan steps do not lead to definite outcomes, any more than 

reasoning steps lead to definite facts
– Path explosion potentially very expensive
– Multiple paths to goal are possible; choose the path with the 

highest likelihood of success


