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Abstract

Machine learning in natural language has been a widely pursued area of
research. However, few learning techniques model themselves after human
learning, despite the nature of the task being closely connected to human
cognition. In particular, the idea of learning language in stages is a common
approach for human learning, as can be seen in practice in the education
system and in research on language acquisition. However, staged learning
for natural language is an area largely overlooked by machine learning re-
searchers.

This thesis proposes a developmental learning heuristic for natural lan-
guage models, to evaluate its performance on natural language tasks. The
heuristic simulates human learning stages by training on child, teenage and
adult text, provided by the British National Corpus. The three staged learn-
ing techniques that are proposed take advantage of these stages to create
a single developed Hidden Markov Model. This model is then applied to
the task of part-of-speech tagging to observe the effects of development on
language learning.
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1 Introduction

The study of natural language has been an essential branch of artificial
intelligence, in part due to the importance of language to how humans func-
tion and interact in their daily lives. Much research into natural language
attempts to simulate language tasks that humans perform easily, such as
checking grammar and spelling, question answering, document summariza-
tion and extracting information from text, to name a few[5, 24]. Having
machines analyze, understand and generate human language has been a key
goal in the quest to create realistic, artificially intelligent software.

However, despite the interest in natural language research and the ad-
vances made over the years, machines have not been able to produce a
comprehensive model of human grammar. Humans are still able to per-
form natural language tasks easily, but have trouble instilling this language
knowledge in the machines that they design and program. Few natural
language researchers would consider this fact surprising, and most would
readily admit that the techniques currently employed could not reproduce
the complex cognitive mechanisms used by humans.

As machines are attempting to achieve human performance in language
tasks, it seems natural to suppose that human cognition could inspire ad-
vancement in the current state of the art. Machine learning in particular
could benefit from human heuristics. Machines generally use brute-force
techniques to learn a language model from data, a process that bears lit-
tle resemblance to the gradual, incremental way humans learn language.
It is reasonable to hypothesize that if humans are taught language knowl-
edge such as grammar and vocabulary in stages, the performance of com-
putational language systems might also improve through the integration of
staged learning techniques with their current learning algorithms.

In this thesis, I propose a heuristic that attempts to incorporate one
of the ideas behind human language development into a learning algorithm
for automatic text tagging. The premise of the heuristic is that a machine
should train initially on basic text, and then build on its knowledge with
training from texts that are more and more advanced. By mimicking how hu-
mans learn in stages by studying texts with increasingly sophisticated read-
ing levels, I investigate possible implementations of developmental learning,
and what effects they have on language learning tasks.
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2 Historical Background

The work in this thesis is an extension to research conducted in two areas:
cognitive language development and machine learning. As both areas have
been explored quite thoroughly, the hope is that a combined approach will
integrate the strengths of these two well-known areas of research.

The following sections describe the research that has been done in the
areas of human language development and machine learning of natural lan-
guage, in particular in how these areas would apply to developmental ma-
chine learning techniques.

2.1 Human Language Acquisition

The study of human language has always stimulated great interest among
psychologists, due to the difficulty in describing this unique, creative and
intelligent behaviour with any concise theory. Over the course of time,
the properties of language have been attributed to various theories, such
as innate cognitive knowledge[29], constructivist theories[29], connectionist
models[7, 14, 34] or other cognitive learning techniques.

Despite this wealth of psychological research, only a small subset is appli-
cable to the focus of this thesis. Much of the research on language learning
discusses reading skills such as word recognition and semantic understand-
ing, whereas the research in this thesis is mostly concerned with grammar
and vocabulary learning. These are areas that are more interested in the
structure of language, instead of the mapping of symbols to words, and
words to meaning.

Human learning studies have found that humans learn in stages, with
the greatest portion of this learning taking place during childhood[17]. Chil-
dren learn grammar quickly and unconsciously at a very young age, while
vocabulary knowledge is built up continuously over time, with the greatest
accumulation of words in the preschool and primary school years[27].

The fact that humans learn language so early in life makes it difficult
to determine whether teaching language in stages is a proper technique,
or whether it is dependent on cranial or cognitive development. Chomsky
and Piaget have argued that the learning is based on innate grammar ability
and cognitive construction, respectively[29]. In both cases, the implication is
that learning stages exist as a result of the overall development of the human.
However, staged learning is used in instructing adults as well, in particular
for adults learning the grammar and vocabulary of a second language[17, 27].
People who are learning English as a second language (ESL) tend to begin
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by learning phrases that are shorter and less complex, and then working up
to more difficult structure and content. In addition, ESL learners are forced
to learn more structured grammar and vocabulary rules, since the language
knowledge was not assimilated unconsciously during their childhood. This
gives credence to the idea that staged learning is beneficial for all language
learners, not just those in early stages of mental development[16].

2.2 Machine Learning Techniques

Several techniques exist at the moment for learning language models for
human grammar and vocabulary. Historically, this is still a recent phe-
nomenon. Until the 1980s, computational linguistics research was involved
in manually generating grammar and knowledge bases for natural language
processing (NLP). However, over approximately the past ten years there
has been a shift from this “hand-crafted” grammar knowledge to more au-
tomated, corpus-based learning[5]. This has been motivated by the success
of automated techniques for natural language tasks, and the improved power
of machines, making it possible to perform these computationally demand-
ing techniques.

Despite the fact that the automated language learning field is still de-
veloping, there are many techniques that have been well-explored over the
past decade. Each of these techniques features a learning component to a
different extent, depending on the degree to which the learning element is
considered the enhancement or the core concept of the technique. On the
one hand, some research applies learning techniques to existing parsing or
rule-based systems|8, 28], while on the other hand, others apply stochastic
models to capturing the elements of language knowledge[14, 34].

2.2.1 Applying Learning to Manually-Generated Systems

The benefits of applying learning techniques to manually-generated compu-
tational linguistic systems can be seen in work done by researchers such as
Brill, Charniak, Pereira and Schabes, to name a few[4, 8, 28]. These re-
searchers constructed systems with a significant component of hand-crafted
rules or structure. These systems then learned to weight the importance of
these hand-crafted components, based on natural language training data.
Brill invented the transformation-based tagger, which labels all of the
words in a sentence with the most likely part-of-speech(POS) tag, and then
uses transformation rules to decide whether to change a word’s tag based on
context[4]. These rules are manually generated, but the order in which they
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are applied is learned, until the tagging error rate is minimized (more in-
formation about POS tagging is discussed in Section 3.2.1). This is similar
to the decision tree technique, except that decision trees split the num-
ber of applicable transformation rules in half with each decision, making
transformation-based taggers strictly more powerful[4, 24].

Applying learning methods to context-free grammars also yields success-
ful techniques. Context-free grammars take advantage of the hierarchical
nature of language, to recursively decompose a sentence into smaller gram-
matical units, down to the word level. The final representation for this hier-
archical structure is a parse tree. For example, Charniak created a natural
language parser that learns a probabilistic context-free grammar (PCFG)
by training on the Penn Treebank, a collection of text that provides parse
trees for each sentence in the corpus(8, 9]. This technique collects frequency
statistics on a sentence’s parse tree components, based on each component’s
head (most important lexical item), its type (grammatical tag) and the type
of its parent. These statistics are then used to find the best parse for a sen-
tence by calculating the cumulative likelihood of each possible parse, and
selecting the highest likelihood as the correct parse. Although his approach
uses explicit grammar rules that reduce ambiguity, this causes sparse data
problems, which Charniak attempts to improve by using word “clusters”
(general grouping of similar words) in the algorithm instead of the word
itself. Michael Collins is also known for his work on creating an accurate
PCFG parser[12], which is similar to Charniak’s, without the adherence to
using strict grammar rules or considering the parent in the calculation of
statistics[8]. Collins’ technique finds sets of base phrases (NP fragments)
and phrase dependencies, and uses the probabilities attached to each of
these to calculate the most likely parse, correcting for phrase attachment
distance and sparse data problems. This technique achieves performance
of 88.1% recall and 88.6% precision on parsing tasks[12]. Finally, Pereira
and Shabes have an approach that takes a grammar of all possible decom-
position rules in Chomsky Normal Form, and learns which rules are most
compatible with tagged training data that has some constituents bracketed
within it[28]. Once learning is complete, the model consists of weighted
decomposition rules that are used to produce the most likely parses of a
sentence.

The challenges inherent in each of these techniques are those of over-
coming sparse data problems and incorporating local context. Sparse data
problems occur not only because the task of creating parse tree data is more
taxing on human taggers, thus producing smaller quantities of training data,
but also because the lexical decomposition rules used by these approaches
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involve several component parts. As a result, these complex decomposition
rules can occur infrequently in training data, especially after smoothing.
These techniques also lose local context information, since decomposing a
sentence fragment into parts isolates the analysis of each part, preventing the
information contained in on part to improve the analysis of the other. There
are enhancements to each technique to improve this, but these problems are
less prevalent in the techniques of the following section.

2.2.2 Stochastic Models for Natural Language

An alternate approach to language learning has been to use stochastic mod-
els for sequences, and apply them to natural language problems. This con-
trasts with the approaches described above in that the core idea is the
stochastic model, instead of the traditional computational linguistic con-
cepts. The main examples of such research involve Markov models or neural
networks for tasks such as grammar learning and part-of-speech tagging.

Neural networks have been applied to grammar tasks for just over a
decade. They are composed of a layer of input nodes, a layer of output
nodes, and an optional hidden layer of nodes in between. In the case where
a hidden layer exists, each input node has a forward connection to each
hidden node, and each hidden node is in turn connected to each output
node. Observations are fed into the input nodes, and based on the weights
on each of the connections, these combined inputs activate certain hidden
nodes, which in turn activate certain output nodes that denote grammatical
information (part-of-speech for particular words, text category, for example).
This method works copes well sparse training data, performing language
tasks as well as other models[14, 34].

The other stochastic model that is prevalent in the natural language
community is the Markov model. Andrei Markov invented Markov models
in 1913, for modeling linear sequences of data, where the value of each
element in the sequence depends on the ones before it[25]. They appear in
several forms in language research, such as the n-gram model, for example.
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2.3 Developmental Learning and Natural Language

Some work has been done in the past, relating the developmental learning
approaches of Section 2.1 with Section 2.2. One example is through the use
of recurrent neural networks, which feed the output of a neural network back
into the inputs, to retain information about the network’s previous state.
Elman[14] showed that a recurrent neural network that is more successful
at tagging when trained first on sentences with certain English complexities
removed, and then gradually introducing on the full sentences into the train-
ing. However, contrary experimental evidence has been produced by Rohde
and Plaut[32], and Chalup suggests that this improvement is caused by the
developing neural architecture instead of the staged learning algorithm|7].

There are also developmental learning ideas that have been proposed in
areas outside of natural language. One is suggested by Prince[30] in his paper
on developing theories in artificial intelligence systems. In it, he justifies the
use of a development approach in building theories, suggesting that develop-
ment in natural language is a likely extension of this concept. Drescher[13]
also proposes a developmental schema that is based on Piaget’s theories of
staged learning, which is referenced often by developmental research.

In general, research does exist that relates to developmental algorithms
for natural language learning. However, this research is sparse and weakly
connected to the problem addressed in this thesis, which indicates the pos-
sibility for further discoveries in this area of study.

2.3.1 Scientific Motivation

In practice, stochastic language models such as n-gram models are widely
used in language and speech systems for their simplicity and strength. How-
ever, despite the general acceptance of these models in the natural language
community, researchers often attempt to incorporate elements of human cog-
nition to the task as well, in an attempt to improve their performance. As
Brill[4] puts it:

There is a continuing push among members of the speech recog-
nition community to remedy the weaknesses of linguistically-
impoverished n-gram language models. It is widely believed that
incorporating linguistic concepts can lead to more accurate lan-
guage models and more accurate speech recognizers|4].

This motivation for increased linguistic influence has led researchers to
produce models that trigger on salient features of words in text[2, 26], hand-
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crafted grammar rules[8, 9], and other techniques based on cognition and
psycholinguistics. As stated by Allen[1]:

...the technological goal cannot be realized without using sophis-
ticated underlying theories on the level of those being developed
by linguists, psycholinguists, and philosophers. On the other
hand, the present state of knowledge about natural language pro-
cessing is so preliminary that attempting to build a cognitively
correct model is not feasible. Rather, we are still attempting to
construct any model that appears to work.

This push for techniques that employ linguistic theories to produce ‘sys-
tems that work’ is the motivation behind many heuristics and new improve-
ments to stochastic models for language learning. For example, heuristics
that trigger on linguistic features reflect the human tendency to train on
verb endings, capitalization and other linguistic features when learning[16].
Similarly, the hand-crafted grammar rules reflect the intuitions put forward
by Chomsky that the understanding and generation of human language can
be modeled by a generative rule structure[29].

The motivation behind this thesis is the exploration of another aspect
of human language learning, namely that of incremental language acquisi-
tion. This concept is also based on human learning theory, as described in
Section 2.1. However, little modeling has been done in this area to date,
save for that of Elman[14]. Given the importance that humans place on lan-
guage learning in the education system, the lack of research into this area for
natural language systems either suggests that there is potential for new dis-
coveries in the application of incremental learning, or that the area is being
ignored as having no research value. This mail goal of this thesis is to inves-
tigate this issue, to determine whether developmental heuristics can imbue
a language model with a more human-like understanding of language[30],
or whether developmental heuristics are unable to capture any meaningful
human intuition[32]
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3 Technical Background

The research in this thesis attempts to discover whether the performance
of learned language models can be improved through the use of human
learning stages. In order to do this, experiments were designed to illustrate
the effects of staged learning techniques on a particular language task. By
scoring the performance of staged models against a model that does not
use a developmental heuristic, the experiments will confirm or refute the
hypothesis that these heuristics have a positive effect on existing learning
algorithms.
The creation of these experiments involved four design decisions:

1. The staging of the data
2. The natural language task
3. The language model

4. The learning mechanism

The following sections describe the specific implementation of these four
components, the factors that influenced the design decisions, and the impact
that each of these decisions will have on the experiments.
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3.1 Staging the Data

It is impossible to attempt to train a machine to learn language with exactly
the same incremental stages that humans use. Not only is the task of divid-
ing human learning accurately into stages entirely subjective, but also the
divisions would be either be too small to implement practically, or a crude
estimate.

In order to model the learning stages for these experiments, a more
approximate approach was used. A language model was chosen that could be
trained incrementally on a series of data sources. The learning stages were
achieved by obtaining data from a large corpus of text, where individual
pieces of text within the corpus are tagged with a human reading level.
These pieces of text are then grouped according to reading level, where each
grouping represents the training data for a stage in the incremental learning
model.

The model is then trained on the individual stages, started from the
lowest reading level and building on that with training on increasingly ad-
vanced reading levels. The result is a learning model whose training data
becomes increasingly advanced at each stage, much in the same way a hu-
man’s reading level would increase over time[17, 27].

The text was obtained from the British National Corpus (BNC), a tagged
text corpus of written works from various English sources. Each text is
segmented into sentences, within which each word is automatically assigned
one of 61 grammatical class (part-of-speech) tags. These grammatical tags
distinguish the main categories found in most English grammars, such as
nouns, verbs, adjectives, etc., and are similar to those used in the LOB
Corpus|[22, 23]. Certain ambiguous words are assigned combined tags and
certain multi-word phrases are assigned a single tag, but in general each
word has a single corresponding tag.

The reason for choosing the British National Corpus is because each of
the 4,214 texts in the British National Corpus is marked with one of three
reading levels: child, teenage and adult. This makes it ideal for staged
learning. By separating the corpus according to these reading-level labels,
three training sets were extracted from the corpus, each containing about
one-two million words.
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3.2 Language Task

Language tasks are practical applications of a language model, usually used
for testing purposes to evaluate the quality of the model. For this exper-
iment, as implied above, the language task is part-of-speech tagging. The
reasons for this are threefold:

1. The task is data-dependent. For example, tasks such as sentence pars-
ing require parsed sentences to train on to develop a language model.
As the main focus of this research is the impact of staged training data
on learning algorithms and the BNC provides staged datasets, the ex-
periments are constrained to tasks that operate on part-of-speech data.

2. Tagging is a useful problem. It can be a useful intermediate step
for parsing and understanding a sentence, or can be used directly in
information extraction applications[3, 2, 26]. By knowing a word’s
part-of-speech, one can disambiguate its meaning, and thus identify
the role that the word plays in the sentence.

3. Part-of-speech tagging has a relatively limited scope. Although it is
not as complete as parsing when describing syntactic structure, tagging
is a much easier task to solve than parsing (success rates are close
to 97% for the most successful approaches[24]). As a result, more
experiments may be conducted, since experiment designs for this task
are less complex and time-consuming than for more elaborate tasks.

3.2.1 Background on Part-of-Speech Tagging

Part-of-speech (POS) tags are labels assigned to words, denoting that word’s
syntactic or semantic category. Examples of tags are noun, verb, adjective,
third person singular present verb, and so on. The task of part-of-speech
tagging is thus the task of assigning a part-of-speech tag to each word in a
sentence. For instance, the sentence fragment, Mary had a little lamb could
be tagged either as:

Mary-NPO had-VHD a-ATO little-AJO lamb-NN1
or as:
Mary-NPO had-VHD a-ATO little-DT0 lamb-NN1

Despite being different, both of these taggings are valid. This is because
the word “little” has more than one syntactic category, and can be thought
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of either as an adjective (AJO) or a determiner (DTO0). The first tagging is
more likely, and corresponds to the nursery-rhyme meaning of Mary owning
a small baby sheep. The second tagging has a very different meaning, and
would be appropriate if Mary was a restaurant critic and chose to sample a
small portion of lamb chop. As one can see, the tags associated with each
word convey a great deal about the usage of the word, and can alter the
meaning of the sentence as a whole.

(A list of part-of-speech tags and their associated meanings can be found
in Appendix A.)

3.3 Language Models

A language model is basically a computational description of a language.
The model stores the representation of the language, and how the language
is to be interpreted, understood, and generated. As a result, the language
model for a natural language experiment has a large bearing on the results
of that experiment.

The choice of a model will determine the kind of structures that can
be captured within human language. For example, probabilistic context-
free grammars (PCFGs) are good at creating a hierarchical parse of a sen-
tence, consequently producing several valid interpretations of a sentence on
the fly and providing an intuitive representation of the structure of human
language[21]. However, they have trouble in other areas, such as incorporat-
ing local lexical context when tagging a word, coverage given sparse training
data and the cost in creating, maintaining, and running a PCFG tagger.

For this experiment, a Hidden Markov Model (HMM) was chosen as the
language model for the part-of-speech tagger. This is because it is a powerful
model, with a high success rate and strong statistical grounding[24, 31].
The theory behind Hidden Markov Models is also easy to implement and
understand, which helps in developing, manipulating, and analyzing various
experimental models. Finally, whereas other models require both positive
and negative training examples, HMMs benefit from being trained on large
amounts of positive tagged data in their learning algorithms, which is what
the British National Corpus provides[22, 23].

It should be noted that another key reason for choosing this language
model was because of its ability to integrate a staged learning algorithm.
Since HMMs have a learning algorithm that is elegant yet straightforward
to understand, it was easier to incorporate the staged training data into its
learning algorithm, thus making it a superior choice.
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Figure 1: Example of Markov Model Structure

3.3.1 Background on Hidden Markov Models

A Markov model is a probabilistic tool, used to model the probabilities of
linear sequences of events[24, 26, 31]. These sequences are often taken from
real-life sources, such as words from a text[20, 26], protein sequences in a
DNA strand[19], or even a sequence of coin tosses[24]. The models are of-
ten illustrated as non-deterministic finite state automata, with probabilities
attached to the arcs, as demonstrated in Figure 1.

The Hidden Markov Model is a special variation of Markov models that
is used in this research. HMMs are different from the Markov Models de-
scribed above in that the observed events are considered to be emissions
from a sequence of unobserved underlying states. The HMM describes the
transitions within the set of underlying states, and the observations emitted
from each underlying state[31].

The result of using this model is that given an observed sequence of
words from a sentence, an HMM can provide the possible underlying state
sequences that could generate the observed words. Since each state has
some syntactic or semantic meaning, by analyzing and deciding on the most
likely sequence, one can extract information about each word or about the
sentence as a whole.

For the purpose of this research, the states are associated with the 91
parts-of-speech in the BNC. Applying the HMM to a sentence will then label
the words with the most likely POS tags, as determined by the model.
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3.3.2 Formal Definition of HMM

As stated above, the HMM is a stochastic model that describes the prob-
abilities of the transitions between states and the observed emissions from
these states. The sequence of underlying states is represented mathemati-
cally as a linear sequence of random variables X = (X1, Xo,..., X7), where
the value of the random variables at each instant in time is one of the N
discrete state values S = (s1, $2,...,5n). These states in turn emit one of
the M possible observations K = (k1, ko, ..., kar) [2, 10, 24].
There are three sets of probabilities needed to describe an HMM:

1. A transition matrix A describes the probability of transitions between
any two states, where a;; = P(Xy11 = 5| Xy = ;)

2. Emission probabilities B describe the probability of observations from
each state, where b;(k) = P(O; = k;j| X, = ;)

3. Initial state probabilities II describe the probability of the sequence
beginning with a particular state, where m; = P(X; = s;)

This model is thus specified by the five-tuple (S, K,II, A, B), whose no-
tation is described below:

S = {s1,...,sn} (finite set of possible states)

V = {vi1,...,vp} (finite set of possible observations)

IT = {m}, s; € S (initial state probabilities)

A ={ayj}, si,sj € S (state transition probabilities)

B = {bi(k)}, s; € S,vx, € V (observed emission probabilities)

As changes in a model’s parameters are usually reflected in the latter
three probability measures, the model may also be expressed with the com-
pact notations A = (A, B,II). These probability descriptions assume the
following notation:

T = length of the sequence of observations
N = number of states (from training set)

M = number of possible observations (from training set)
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Obser ved

Figure 2: Example of HMM Structure for a Simple Sentence

X; = random variable denoting the state at time ¢ (state variable)
O, = random variable denoting the observation at time ¢ (output variable)
S; = value of state variable at time ¢

V; = value of observed emission at time ¢

As stated earlier, the Hidden Markov Model assumes that one only needs
to know the value of the current random value to predict future random
variables. Stated more formally, we are assuming that the model is based
on the two Markov properties[24]:

Limited Horizon: Each state in a sequence only depends on the previous
state, and not on any of the states previous to that.

P(Xp1 = spl X1, Xy) = P(Xpp1 = 8| X3) (1)

Time Invariance: The transition probabilities between states do not de-
pend on their position in the sequence.

P(Xe41 = s1lX0) = P(Xa = 5] X)) (2)

These properties establish the basis for using the state transition and
emission probabilities to calculate the probability of a sequence of states, as

described above.
As a result, a sentence that has been fully tagged by an HMM is often

represented as a chain of states, as shown in Figure 2.
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3.3.3 Training the HMM

In order to create an HMM that can accurately model language, it must first
be trained on a large corpus of tagged sentences. By providing the model
with examples of tagged sentences, it is able to capture the nature of the
language being modeled by learning the frequency of state transitions and
emissions.

The main probability components of the HMM are the transition matrix,
the emission probabilities, and the initial state probabilities[31]. Therefore,
in order to extract a model from tagged training data, the training algo-
rithm should use the frequency counts of the various tags to estimate these
probabilities.

The HMM probabilities can be estimated using the following calcula-
tions, where C(...) is the count, or number of times the event in parentheses
occurs:

Q5 = P(XtJrl = Sj|Xt = Sz) 1 < i,j < N
_ C(Xt = Sz‘,Xt+1 = 8]) (3)
C(Xt = Sz‘)
bz(k?) = P(Otzvk’XtZSi) 1<i<N,1<k<M
_ C(Xt = 54,0p = v,) (@)
C(Xt = Sz‘)
T, = P(Xt:SZ) 1§1§N
= C(X;=s) (5)

One of the implications of this training procedure is that the model that
the training produces might overfit the data, especially if the data originates
from a homogeneous source[24]. For instance, a model that is trained on text
from the Wall Street Journal would perform well in tagging an article from
the same source, but would not perform as well if presented with a chapter
from a Harry Potter book. For this reason, the training data has been
extracted from several different sources, so that the only common element
for all the text in a training set is the reading level associated with it.

3.3.4 Smoothing the Model

After training, certain transition and emission probabilities will have a zero
probability value, since they have never been observed in the data. Smooth-
ing a model eliminates these zero probabilities by giving them a small value,
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and adjusting the non-zero probabilities to maintain the same probability
weights, relative to each other. An ‘unknown’ entry is also added to the list
of observed emissions, with each part-of-speech tag having an equally likely
probability of being assigned to the ‘unknown’ emission.

Although it may seem foolish to assign a probability to certain ungram-
matical transitions or unobserved emissions, the intuition behind smoothing
is illustrated in the following passage from Through the Looking-Glass, by
Lewis Carroll:

"T'was brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogroves,

And the mome raths outgrabe.
Jabberwocky, [6]

This might appear to be an ungrammatical piece of text in the eyes
of a language model, but most humans would be able to understand the
structure of the passage, and be able to decipher some meaning as well. As
Alice puts it, “...somebody killed something, that’s clear at any rate”[6].
However, this meaning will be lost to the language model, if it fails to allow
for unobserved emissions such as “gyre” and “gimble”, or unseen transitions
such as “mimsy were” (since adjective/be-verb transitions might only appear
in poetic text).

These experiments use Katz smoothing[18]. In layman’s terms, this
smoothing technique steals from the rich and gives to the poor, where the
‘poor’ are the transitions and emissions with zero probability, and the ‘rich’
are the non-zero transitions and emissions. This technique was chosen be-
cause it was easy to implement, but didn’t skew the probability distribution
significantly. Alternate smoothing techniques that were considered are:

Additive Smoothing : The simplest smoothing technique, which adds
one to the number of counts for each transition and emission[11].

Good-Turing Smoothing : Taking transition probabilities as an exam-
ple, this smoothing method adjusts every transition that occurs r times
by pretending that it occurs r* times, where r* = (r + 1) - nr—tl
n, is the number of transitions that occur r times. This smoothing
method has to be smoothed to adjust for values of n, = 0, but it
is still considered to be the best smoothing technique available for
natural language[11].

and
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Jelinek-Mercer Smoothing : Instead of boosting all zero probabilities
equally, the Jelinek-Mercer method boosts a transition more if the
start state for that transition is generally more likely than other states.
This is based on the idea that if a state such as ATO (the, at, a)
occurs more often than the state ORD (first, sixth, 23rd), then unseen
transitions starting with ATO (the borogroves) are more likely than
unseen transitions starting with ORD (seventh borogroves)[11].

3.3.5 Extracting the State Sequence

Once the HMM has been fully trained, there is still the task of inferring
the most likely state sequence, given the model and the observations in the
sentence. To determine the most likely underlying state sequence S 7, we
find the states that would maximize the maximum a posteriori probability
of the observations, as shown in the following equation:

Sir = argmax [P(X =S17|0=Vi1)] (6)

1,T
P(O =Vir|X = S17)P(X = Sir)

— ) ) 2 7

e PO =Viz) "

= argmax [P(O=Vi7|X =S17)P(X =517)] (8)
1,7

= argmax [P(X; =51)-P(O1 =W|X1=5)

1,T

"P(Xo = S| X1 = S1) - P(Os = Va| Xy = Ss) -

9)
P(Xr = Sp|X7_1 = S7_1) - P(Or = V| X7 = S7)] (10)

= argmax [7r51 : b1(k‘vl) a8, 8, - bs, (kSQ)'
1,T
Coagp 5p - bsp(ksy) ] (11)

Bayes’ Rule is used to restate the equation in Step (7), and the Markov
Properties are used to separate the massive joint probability in Step (8) into
the chain probability in Step (10). The final step involves substituting the
HMM parameters for the probability terms in Step (10).

Since there are T parameters to evaluate, and IV values for each param-
eter, the Markov Properties must be used again to avoid having to evaluate
NT possible state combinations[24]. The calculation of the best state se-
quence Sy is done through the use of the Viterbi algorithm, which uses
dynamic programming to reduce the complexity of the calculation to T-N2.
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The Viterbi algorithm uses induction to find the most probable path of
states ending in state X;;1, based on the best paths that lead up to state
X;. This is done by defining a new quantity « for a model A:

Oét(i) = max P(Sl -SQ---StZi,Ol OQOt’)\) (12)
51,859,851
This equation expresses how the Viterbi algorithm determines the most
likely sequence of states for a given observation sequence. It initializes the
procedure with 7;b; probabilities for the initial states, then repeatedly in-
crements the time step ¢, inductively calculating the «; probabilities at each
time step. The algorithm halts when it reaches ¢ = T (the end of the se-
quence), and the state sequence that corresponds to the highest ar (i) value
is considered the ‘best‘ state sequence.
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4 Experiment Design and Implementation

Once the language task, language model, and training data are chosen, one
can begin designing experiments that test the hypothesis that incremental
learning will improve tagging performance. This is not a simple task, for the
nature of development in humans is still unclear. Do humans employ devel-
opmental learning because it is the best way to build language knowledge, or
because the human brain has learning limits when growing up? If develop-
ment is the correct approach, then what is the nature of that development,
and can it be represented in a computational model?

4.1 Developmental Hypothesis

Despite the uncertainties that surround the use of stages in language learn-
ing, there is evidence that developmental approaches in machine learning
might work, from how they correspond to human learning (see Section 2.1.
For example, staged learning is used for language learners of all ages, not
just for those in early stages of cognitive development. This implies that
developmental learning is not specific to children, and can therefore be used
on adult humans and machines of fairly fixed architecture.

If one assumes that developmental learning of some kind would be useful,
then there is still the issue of what aspect of the language model should be
developed. In the case of these experiments, the effects of development
are being tested through the creation of a Hidden Markov Model whose
parameters are a product of training on different reading levels. By using
various staged training methods and testing these methods by applying the
resulting model to a language task such as POS tagging, the experiments
will hopefully show the effects of stages on learning syntactic structure.

4.2 General Methodology

To test the hypothesis that incremental learning may be applied to natu-
ral language learning, the experiments evaluate the performance of part-
of-speech tagging with regular brute-force training against a series of pro-
posed incremental training techniques. These incremental techniques, de-
scribed in more detail later, simulate language development by developing
an increasingly-complex language model from the staged datasets of the
BNC. If the developmental heuristics are able to improve the performance
of the tagging task, then it would support the hypothesis that developmen-
tal heuristics would be useful to pursue as an enhancement to language
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learning systems. If the results show that these heuristics have a negative
or marginal effect on the performance, then the experiments will indicate
that this developmental intuition does not transfer over to this particular
language model and task.

The general method for each experiment is as follows. The text data is
read in from the training file and stored as a series of sentences. An untrained
HMM is then created, and the probability transitions A = (A, B,II) are
populated with the observed transitions in the training text. Depending
on the nature of the heuristic, either three models are trained on each of
the child, teenage and adult texts before being combined at the end, or a
model is trained on the child text, the teenage model, and the adult text
successively to create a fully learned model.

Not only are the various developed models compared with a regularly-
trained model, they are also compared internally by varying the proportions
of child, teenage and adult training data used to create each model, to see
what ratio of the three training sources produces the best overall tagging
performance.

4.3 HMM Design

The Hidden Markov Model implements the theory described in Section 3.3.
It is a basic bigram model, meaning that every state or emission is only
dependent on the previous state.

The training of the model is performed on the following training sets:

Dataset Corpus Size
Child Data : 1,086,316 words in 42 texts
Teen Data : 2,084,157 words in 77 texts

Adult Data : 2,924,389 words in 100 texts

These sets are composed of several full texts, each of which has been
categorized by hand by members of the BNC organization, based on the level
of complexity of the text. Observations on the nature of the each text show
that the children’s text is composed of shorter, less complex sentences. This
gives rise to a sparser transition matrix and smaller observed vocabulary
than the teen, which in turn is less complex than the adult model.

Individual child, teenage and adult models are trained on 90% of the
total data, with 10% held out to test performance later. When combining
models, the counts are scaled to make the proportions of child, teen and
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adult training approximately equal. In addition to the various observed
words, an ‘unknown’ word category is created to anticipate words that occur
in the test set but not in the training set. Finally, the parameters of the
trained models are smoothed to ensure that all transitions and emissions
have a minimal non-zero probability.

The performance measure for the experiments is the accuracy with which
the HMM tags unlabelled sentence data with POS tags.

4.4 Software Design

The software is programmed in C, on a Linux platform. The design of the
software is divided into four modules:

Tokenizer : Extracts sentences from file, and tokenizes them into sequences
of words and POS tags.

Training : Using sentence sequence, train A, B and II parameters for
HMM, as outlined in Section 3.3.3. Also has methods for combining
various models for developmental algorithms.

Test : Uses trained models and held-out test sets to test model’s accuracy at
tagging unlabelled data. Applies Viterbi algorithm (Section 3.3.5) to
determine the best state sequence for a sentence of unlabelled words,
and compares them with the correct tag sequence provided by the
BNC.

HMM Controller : Supervises sentence extraction, HMM training and
testing. Chooses developmental algorithm to test, and tests various
parameters for each algorithm.

4.5 Staged Learning Methods

When integrating child, teen and adult training into a full, developed model,
one has to consider the way these training stages come together in the human
brain. For instance, the manner in which one combines different stages would
be different if the effects of learning in humans are additive over time, or
if the lessons we learn earlier on reinforce the learning that takes place at
later stages.

In testing the effects of development, this research investigates a few ap-
proaches, including the cumulative and reinforced combinations mentioned
above. Not all produced viable results, but the more promising techniques
are presented below.
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4.5.1 Mixture Model Approach

The mixture model approach trains models for the child, teenage and adult
stages individually, and then performs a weighted linear combination of the
three to produce a final model. The weights are all non-negative, and the
resulting model is scaled down to have the same mean as the adult model.
This approach is based on the idea that language data is learned additively
at each of the child, teenage and adult stages, where the weights signify the
“importance” of that stage in development.

The prediction for this approach was that mixtures of the three mod-
els would perform better than any model alone, and that mixtures would
perform better if weighted more heavily on earlier reading levels. The rea-
son for this second intuition is that language knowledge that is learned as
a child consists of more fundamental language rules and vocabulary, and
would therefore be a stronger basis for a final language model than either
the teenage or adult stages. The major drawback of this technique is the
fact that mixture model approaches imply that learning stages are order-
independent, which goes against the intuition of human learning.

To test the performance of this method and the hypothesis mentioned
above, the parameters of the three models are combined with various weights,
and the result is tested on the held-out data to measure their tagging accu-
racy.

4.5.2 Balanced Mixture Approach

The balanced mixture approach is similar to the mixture model approach
in that it is based on an additive combination. However, it differs in how
it handles zero transitions and emissions in combining stages, and how it
incorporates the ordered nature of human learning.

This method combines the child and teen stages first by making the re-
sulting model equal to the teen model wherever the child model has zero val-
ues. In all other cases this technique performs the mixture model’s weighted
combination of the two stages. The combined portions of the model are
scaled to the same mean value of the teen portion before combination. Once
this is complete, the same operation is performed using the child-teen model
and the adult model, to produce a final model.

The intuition behind this approach is that the final model is similar to
a model trained entirely on adult data, which is the norm for most HMM
training. However, the model also incorporates the teenage and child data
in smaller amounts wherever these previous models and the adult model
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coincide, thus adjusting the adult model to compensate for earlier data
stages.

Testing for this technique is done in the same way as the testing for the
mixture model approach.

4.5.3 Reinforced Learning Approach

The reinforced learning approach abandons the additive combinations for
a multiplicative combination. The intuition here is that earlier learning
reinforces the importance of common transitions and emissions by enhanc-
ing the effect of future training on these parameters. As a result, any lan-
guage lessons learned as a teenager are reinforced by the “important” lessons
learned as a child.

This development method first builds a model based on the child data,
which is smoothed to eliminate non-zero transition and emission probabili-
ties. A model is then built from the teen data, and the parameters of the
child model are used as scaling factors for the parameters of the teen model.
The parameters of this child-teen model are similarly used as scaling factors
when building the adult model. The result is a model that is based on adult
data, but reinforced by data found in the teenage and child models.

Weights are also used in these tests, but instead of scalar weights, the
weights here are exponential, with the value of these exponential weights
being between 0 and 1. The reason for these limits is because the lower
limit causes a stage to have no effect on the final model, and exponents
higher than one cause the parameters of the final model to diverge wildly.
Tests for accuracy are the same as those in the mixture model and balanced
mixture approach.
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4.6 Implementation

As stated in Section 4.4, the implementation is divided into the tokenizer,
trainer, tester and controller. The controller is trivial, since it simply ex-
ecutes the other modules in the order in which they are listed. The three
main modules are described in more detail here.

4.6.1 Tokenizer Module

The tokenizer is composed of two parts: the preprocessor and the sentence
reader. The preprocessor is actually a Perl script that reads in a list of
the texts within the BNC that are labeled with child, teenage and adult
reading levels. It then finds the texts for a particular reading level in the
BNC directory structure, and reads in the raw BNC corpus data one line at
a time. Each line corresponds to a sentence in the text. As the preprocessor
reads in a sentence, it removes all the tags that do not correspond to the
part-of-speech or language level of the text. The resulting sentences are then
stored to be processed by the sentence reader.

The sentence reader takes in the processed sentences, and stores them
in a linked data structure, with each node in the link storing the word, the
actual part-of-speech and a space for the estimated part-of-speech. Once the
sentence structure is complete, it is passed to the trainer module to train
the HMM.

4.6.2 Trainer Module

The trainer is responsible for taking in tagged sentences from the tokenizer,
and producing the model parameters A = (A, B,II) for the HMM. The
transition probabilities A are stored in an array that records the number
of transitions from one part-of-speech to another, with each of the array
dimensions equaling the number of part-of-speech tags found in the corpus.
The emission probabilities B are stored in a dictionary list, where each entry
has a word from the text and the frequency of that word’s different part-of-
speech tags. In order to make the P(O; = k;| Xy = s;) calculations, an array
of the total occurrences of each part-of-speech must also be stored along
with this dictionary list. Finally, the initial probabilities II are stored in an
array that records the number of occurrences of each part-of-speech in the
start position of a text’s sentences.

As each a sentence is passed into the module, the initial part-of-speech
tag is added to the II array, and the module iterates through the sequence
of nodes, storing transition count information into A and word emission
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information into B at each step. Once complete, the sentence structure
is freed and the module awaits the next sentence. Once the last sentence
has been processed, the HMM parameters are stored in a file for debugging
purposes, and the completed model is passed to the testing phase.

4.6.3 Tester Module

Once the language model is complete, the tester takes in sentences from the
test dataset through the tokenizer, and creates an NxT matrix, where N is
the number of possible part-of-speech tags, and T is the number of words
in the current sentence. Each position in the matrix stores a reference to
the part-of-speech state that had the highest probability of leading to the
current state, and the probability of being in the current state, given that
that previous state. The mathematics behind this are described in Section
3.3.5.

Once the Viterbi algorithm has been used to determine the most likely
state sequence for the input sentence, this is compared with the actual state
sequence to evaluate the accuracy of the language model’s estimated tags.
The cumulative statistics are the ones presented in the results in Section 5.

4.6.4 Combining Training

As stated earlier, there are three proposed development heuristics for this
research: the mixture model, the balanced mixture model and the reinforced
learning model. To implement these combinations, the following approaches
were used.

Mixture Model: For this combination, separate models are trained on
the child, teenage and adult text data, and then the parameters of the
three models are combined by multiplying each by a scaling factor,
such that when the three scaled portions are added together, the linear
combination results in a model of similar size to the original three. The
scaling factor for each of the child, teenage and adult components is
thus proportional to the weight being given to that component for that
test.

The way this is accomplished is to declare a constant integer value k
and variable integers k., k; and k, for a particular set of tests, such
that k. + k¢ + ko = k. The components are then multiplied by % (for
the child component), % (for the teen component) and %‘1 (for the
adult component).
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Balanced Mixture: This combination is similar to that of the mixture
model, except that where one of the components has a zero value for a
particular parameter, that component is neglected for the calculation
of the new combined parameter. The linear combination takes place
as described above, but with only two components instead of three.
The same adjustment takes place if two components have zero values,
and with two zero components the result for that parameter will have
the same value as the parameter for the remaining component.

Reinforced Learning: For this technique, the components are not summed
together, but are instead multiplied by each other to create a combined
model. The integer variables k., k; and k, continue to add to a con-

stant integer k, but for the reinforced model, the fractions %, % and
% are exponent for the parameters in each of the child, teenage and

adult components, respectively. Once each component has been raised
to its respective exponent, the parameters are multiplied together, and
the result is scaled so that the parameters of the combined model have
the same overall magnitude as the parameters of the original datasets.
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5 Experimental Results

The following tables describe the results of various tests on the held-out
corpus data. The results tables are illustrated in Table 5 and can be read
as follows:

e Columns : increasing portions of child data, from leftmost column to
rightmost column.

e Rows : increasing portions of teen data, from top row to bottom row.

e Diagonals : increasing portions of adult data, from bottom right to

top left.
all adult child /adult
teen/adult child /teen

all teen

Table 1: Illustration of Relative Portions of Training Data in Result Tables

There are three tables for each learning method, denoting child, teen and
adult test data. These tests show how appropriate each resulting model was
on the various stages of data by showing the percentage tagging accuracy
that the different models had on the test data. The tables are best read
as height levels on a contour map, where higher values closer to the top-
right corner indicate that the child-weighted model performed best with
that input, higher values closer to the bottom-left corner indicate better
performance for the teen-weighted model, and higher values in the top-left
corner indicate better performance for the adult-weighted model.

The table for adult test data is the most meaningful indicator, since the
ideal target for the completed model is adult-level text, although the child
and teen test sets illustrate some interesting trends as well.

As a reference, the baseline comparison is against a regular adult-trained
model, which scored 93.12% on child text, 92.44% on teenage text, and
94.06% on adult text.
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5.1 Mixture Model Results
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The following tables illustrate the results of testing the mixture model
heuristic on the three test sets.

93.12%

95.48%

95.69%

95.76%

95.83%

95.55% |

93.74%

95.59%

95.78%

95.84%

95.81%

93.83%

95.64%

95.80%

95.60%

93.85%

95.67%

95.70%

93.86%

95.58%

92.72%

Table 2: Results of Mixture Model Testing on Child Data

92.44%

92.74%

92.78%

92.74%

92.58%

88.37% |

94.50%

94.59%

94.59%

94.50%

93.93%

94.55%

94.63%

94.64%

93.48%

94.59%

94.69%

94.18%

94.61%

94.25%

94.07%

Table 3: Results of Mixture Model Testing on Teenage Data

94.06%

94.14%

94.10%

93.95%

93.76%

84.82% |

94.30%

94.32%

94.24%

94.11%

90.81%

94.30%

94.30%

94.22%

90.00%

94.24%

94.25%

91.15%

94.17%

91.17%

90.81%

Table 4: Results of Mixture Model Testing on Adult Data

From these tables, it seems that the models that perform the best on
a given set of test data are the ones which are more heavily-weighted with
training data from the same source. Models that are trained solely on that
source of training data do not appear to have improved performance how-
ever, which indicates that certain portions of other training data are needed
for improved performance.
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5.2 Balanced Mixture Results

The following tables illustrate the results of the balanced mixture tests.

80.98% | 95.38% | 95.42% | 95.47% | 95.33% 73.82%|
93.72% | 95.52% | 95.62% | 95.62% | 73.03%
93.79% | 95.56% | 95.66% | 72.56%
93.78% | 95.61% | 71.96%
93.68% | 71.79%
69.78%

Table 5: Results of Balanced Mixture Testing on Child Data

80.04% | 92.62% | 92.57% | 92.42% | 92.15% 68.27%|
94.50% | 94.55% | 94.46% | 94.30% | 71.34%
94.52% | 94.54% | 94.44% | 71.07%
94.52% | 94.55% | 70.86%
94.48% | 70.78%
70.97%

Table 6: Results of Balanced Mixture Testing on Teenage Data

80.89% | 94.08% | 93.99% | 93.86% | 93.59% 66.42%|
94.28% | 94.24% | 94.13% | 93.89% | 69.72%
94.26% | 94.19% | 93.89% | 69.50%
94.18% | 94.09% | 69.32%
94.01% | 69.30%
69.23%

Table 7: Results of Balanced Mixture Testing on Adult Data

From these tables, it seems that the balanced mixture model has similar
results as the mixture model, in that the regions with the best performance
in the result tables occur where the training data is weighted more heavily
towards the same source as the test data. However, the peaks in this table
are not as distinct as in the mixture model tables, so the region of high
performance are more diffused than the high-performance regions in the
mixture model tables.
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5.3 Reinforced Learning Approach

The following tables illustrate the results of testing the reinforced learning
model on the three test sets.

95.16% | 95.56% | 95.79% | 95.85% 95.86%|
95.18% | 95.62% | 95.80% | 95.86%
95.24% | 95.62% | 95.78%
95.24% | 95.58%
95.37%

Table 8: Results of Reinforced Learning Testing on Child Data

94.21% | 94.24% | 94.23% | 94.08% 93.87%|
94.27% | 94.42% | 94.32% | 94.24%
94.37% | 94.48% | 94.40%
94.48% | 94.53%
94.61%

Table 9: Results of Reinforced Learning Testing on Teenage Data

94.30% | 91.01% | 94.06% | 93.73% 93.23%|
94.19% | 94.15% | 93.95% | 93.54%
94.12% | 94.10% | 93.74%
93.98% | 93.86%
93.91%

Table 10: Results of Reinforced Learning Testing on Adult Data

The performance illustrated in the reinforced approach indicates that
the models heavily favour models whose training data is taken completely
from the same source as the test data. In this case the models do not favour
the addition of other training data like the previous two models.
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6 Discussion

From the results, it can be seen that the combination of models has a positive
effect on the performance of the language model for the POS tagging task.
This is encouraging for the developmental hypothesis. It shows that at the
very least, staging the training data slightly enhances the performance of
the model.

6.1 Observations

There are a few other observations about the data to note:

1. The performance of the data falls into a few regions of statistical signif-
icance. The data in the middle of the table is one region, for the results
in that region have the highest tagging accuracy, but the difference be-
tween adjacent results in this region is not statistically significant. The
regions of lowest accuracy are in the corners, where the model is made
up entirely of one component. The third region is on the edges of the
table, where the performance is between that of the center and corner
regions.

2. There is a trend for each model to perform better on certain test sets
than others. In general, given a test set with a particular reading
level, the model that performs best is the model trained mostly on
that level. In the case of the mixture models, the best case also has
small portions of training on the other two reading levels, whereas the
reinforced models perform best when trained entirely on the target
reading level.

3. Each method manages to perform around 0.30% better than the base-
line, when examining performance on the adult test data. When com-
paring the baseline to performance on the other test sets, the per-
formance is understandably better for the combined models, for the
reasons stated in the preceding point.

4. When compared to each other, the mixture model approach seems to
have a slightly better performance of the three, but drops off a little
when training and test data are mismatched. The reinforced method
has nearly the same best performance as the mixture model, and seems
to exhibit the fewest performance differences across mixtures. The
balanced method had the poorest performance of the three, barely
matching the best cases for the adult tests, and having irregular and
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severe drops in performance for bad mixtures, especially those with
little adult component.

5. Before the models were smoothed to eliminate zero transition and
emission probabilities, there were several “missed” words, caused by
these zero probabilities. The number of missed words was highest in
the models trained on child data, second-lowest for the models trained
on teen data, and third-lowest on the models trained on adult data.
The mixed models tended to have the optimal (lowest) missed word
count.

6.2 Insight

The results of these developmental experiments are hard to interpret, since
there are few sharp trends to illustrate the effects of staged learning tech-
niques. At the very least, the developmental heuristic provides a minor en-
hancement to the performance of the part-of-speech tagger implementation.
A more optimistic interpretation is that the heuristic shows the potential to
be a worthwhile addition to POS tagging, and natural language techniques
in general. After all, when results are in the range of 95% tagging accu-
racy, a difference of a percentage point can make a noticeable difference in
the number of whole sentences correctly tagged[24]. Not only this, but this
developmental heuristic might improve the performance of other language
tasks more dramatically, which is something that could not be explored here.

The difficulty with reducing the 6% error for the baseline adult case is
that one must determine whether a technique would be capable of correcting
those tags being mislabeled by the baseline approach, without compromising
the performance on those tags that are already correct. The developmental
approach did not address this particular challenge directly by focusing on
the incorrect cases, but since it attempted to introduce a human concept to
a human problem, there was the hope that it would provide some of what
past algorithms were lacking.

In order to test this theory, it has to be shown somehow that the POS
categories that are being mislabeled have a certain correspondence to the
POS coverage of the teen and/or child training sets. Once there is evidence
that the overlap value has surpassed a certain threshold, implementing the
development algorithm should allow the learning stages to produce more
accurate tagging results. Without this sort of measure, the results will be as
in this experiment: Marginally helpful, but not enough to justify widespread
application to general POS taggers.
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6.3 Future Direction

The idea of training language models with developmental techniques is still
a promising one, and further possibilities have opened up over the course of
this research:

The first is the idea to continue researching various model combina-
tions, in the hope of finding one that produces higher accuracy through the
emulation of human learning. One such possibility is to implement a vot-
ing algorithm, that produces state sequences using the three models listed
above, and chooses the result of one as the true result. This choice would be
based on a confidence measure that such as the relative probability of the
best state sequence for each model. Although computationally expensive,
this extension would model the cognitive decision-making that takes place
when reasoning between two interpretations of the same sentence. A similar
approach would be to have an agent or other result analyzer that selected a
model to use based on the perceived type of test data. This takes advantage
of the fact that models trained on certain data perform better on data of
the same type.

The second research possibility is to ignore the training issues, and in-
stead focus on evolving the model itself over various development stages.
Since this research assumes a fixed model, it is possible that better results
could be obtained if the language model and its connections could develop,
by spontaneously growing and extinguishing connections between nodes the
way a human brain develops new connections while growing and learning.
This could be done by having the model adapt its weights based on occur-
rences of certain words in the data, or by generating additional nodes to
represent other variables that affect the model.

A final research direction would examine the effects of developmental
approaches on different tasks, such as deducing rules for parse trees, or
estimating tag classes from unlabelled data. The former would be more
complicated, since staged data for parsing tasks isn’t as readily available,
but the second could be pursued with the data at hand.
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7 Conclusion

The developmental learning algorithm is able to improve the accuracy re-
sults of a part-of-speech tagger with a basic stochastic model. These taggers
generally perform better with combinations of models where the largest com-
ponent is from the same source as the test data, and the degree to which
this effect is felt depends on whether it is an additive combination (slight ef-
fect) or a multiplicative combination (significant effect). Further studies are
warranted to determine whether this minor improvement can be enhanced
either through a better measure of how applicable development techniques
would be for this problem, or through newer extensions of development ideas
to this or other language models.
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A The British National Corpus Tagset

(Data cited herein has been extracted from the British National Corpus
Online service, managed by Oxford University Computing Services on behalf
of the BNC Consortium. All rights in the texts cited are reserved)

Each tag consists of three characters. Generally, the first two characters
indicate the general part of speech, and the third character is used to indicate
a subcategory. When the most general, unmarked category of a part of
speech is indicated, in general the third character is 0. (For example, AJO
is the tag for the most general class of adjectives.)

A.1 The Basic Tagset
AJO Adjective (general or positive) (e.g. good, old, beautiful)

AJC Comparative adjective (e.g. better, older)
AJS Superlative adjective (e.g. best, oldest)

ATO Article (e.g. the, a, an, no) [N.B. no is included among articles, which
are defined here as determiner words which typically begin a noun
phrase, but which cannot occur as the head of a noun phrase.]

AVO0 General adverb: an adverb not subclassified as AVP or AVQ (see be-
low) (e.g. often, well, longer (adv.), furthest. [Note that adverbs,
unlike adjectives, are not tagged as positive, comparative, or superla-
tive.This is because of the relative rarity of comparative and superla-
tive adverbs.|

AVP Adverb particle (e.g. up, off, out) [N.B. AVP is used for such ”preposi-
tional adverbs”, whether or not they are used idiomatically in a phrasal
verb: e.g. in ’Come out here’ and 'l can’t hold out any longer’, the
same AVP tag is used for out.

AVQ Wh-adverb (e.g. when, where, how, why, wherever) [The same tag is
used, whether the word occurs in interrogative or relative use.]

CJC Coordinating conjunction (e.g. and, or, but)
CJS Subordinating conjunction (e.g. although, when)

CJT The subordinating conjunction that [N.B. that is tagged CJT when
it introduces not only a nominal clause, but also a relative clause, as
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in ’the day that follows Christmas’. Some theories treat that here as
a relative pronoun, whereas others treat it as a conjunction.We have
adopted the latter analysis.]

CRD Cardinal number (e.g. one, 3, fifty-five, 3609)
DPS Possessive determiner (e.g. your, their, his)

DTO General determiner: i.e. a determiner which is not a DTQ. [Here a
determiner is defined as a word which typically occurs either as the
first word in a noun phrase, or as the head of a noun phrase. E.g. This
is tagged DTO both in "This is my house’ and in "This house is mine’.|

DTQ Wh-determiner (e.g. which, what, whose, whichever) [The category
of determiner here is defined as for DTO above. These words are
tagged as wh-determiners whether they occur in interrogative use or
in relative use.]

EXO0 Existential there, i.e. there occurring in the there is ... or there are
. construction

ITJ Interjection or other isolate (e.g. oh, yes, mhm, wow)

NNO Common noun, neutral for number (e.g. aircraft, data, commit-
tee) [N.B. Singular collective nouns such as committee and team are
tagged NNO, on the grounds that they are capable of taking singu-
lar or plural agreement with the following verb: e.g. 'The committee
disagrees/disagree’.|

NN1 Singular common noun (e.g. pencil, goose, time, revelation)
NN2 Plural common noun (e.g. pencils, geese, times, revelations)

NPO Proper noun (e.g. London, Michael, Mars, IBM) [N.B. the distinction
between singular and plural proper nouns is not indicated in the tagset,
plural proper nouns being a comparative rarity.]

ORD Ordinal numeral (e.g. first, sixth, 77th, last) . [N.B. The ORD tag
is used whether these words are used in a nominal or in an adverbial
role. Next and last, as ”general ordinals”, are also assigned to this
category.]

PNI Indefinite pronoun (e.g. none, everything, one [as pronoun|, nobody)
[N.B. This tag applies to words which always function as [heads of]



A THE BRITISH NATIONAL CORPUS TAGSET 40

noun phrases. Words like some and these, which can also occur before
a noun head in an article-like function, are tagged as determiners (see
DTO and ATO above).]

PNP Personal pronoun (e.g. I, you, them, ours) [Note that possessive
pronouns like ours and theirs are tagged as personal pronouns.|

PNQ Wh-pronoun (e.g. who, whoever, whom) [N.B. These words are
tagged as wh-pronouns whether they occur in interrogative or in rela-
tive use.]

PNX Reflexive pronoun (e.g. myself, yourself, itself, ourselves)

POS The possessive or genitive marker ’s or ’ (e.g. for "Peter’s or somebody

else’s’, the sequence of tags is: NPO POS CJC PNI AV0 POS)

PRF The preposition of. Because of its frequency and its almost exclusively
postnominal function, of is assigned a special tag of its own.

PRP Preposition (except for of) (e.g. about, at, in, on, on behalf of, with)
TOO Infinitive marker to

UNC Unclassified items which are not appropriately classified as items of
the English lexicon. [Items tagged UNC include foreign (non-English)
words, special typographical symbols, formulae, and (in spoken lan-
guage) hesitation fillers such as er and erm.|

VBB The present tense forms of the verb BE, except for is, ’s: i.e. am,
are, 'm, 're and be [subjunctive or imperative]

VBD The past tense forms of the verb BE: was and were
VBG The -ing form of the verb BE: being

VBI The infinitive form of the verb BE: be

VBN The past participle form of the verb BE: been
VBZ The -s form of the verb BE: is, ’s

VDB The finite base form of the verb BE: do

VDD The past tense form of the verb DO: did

VDG The -ing form of the verb DO: doing
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VDI The infinitive form of the verb DO: do

VDN The past participle form of the verb DO: done

VDZ The -s form of the verb DO: does, ’s

VHB The finite base form of the verb HAVE: have, ve

VHD The past tense form of the verb HAVE: had, ’'d

VHG The -ing form of the verb HAVE: having

VHI The infinitive form of the verb HAVE: have

VHN The past participle form of the verb HAVE: had

VHZ The -s form of the verb HAVE: has, ’s

VMO Modal auxiliary verb (e.g. will, would, can, could, 11, 'd)

VVB The finite base form of lexical verbs (e.g. forget, send, live, return)
[Including the imperative and present subjunctive]

VVD The past tense form of lexical verbs (e.g. forgot, sent, lived, returned)

VVG The -ing form of lexical verbs (e.g. forgetting, sending, living, re-
turning)

VVI The infinitive form of lexical verbs (e.g. forget, send, live, return)

VVN The past participle form of lexical verbs (e.g. forgotten, sent, lived,
returned)

VVZ The -s form of lexical verbs (e.g. forgets, sends, lives, returns)
XX0 The negative particle not or n’t
ZZ0 Alphabetical symbols (e.g. A, a, B, b, ¢, d)

A.2 Punctuation Tags

PUL Punctuation: left bracket - i.e. (or |
PUN Punctuation: general separating mark -ie. . ,! ,:;-or?

PUQ Punctuation: quotation mark - i.e. ’ or

PUR Punctuation: right bracket - i.e. ) or |
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A.3 Ambiguity Tags

(tags for words with an ambiguous or unclear part-of-speech category)
AJ0-AV0 Ambiguous adjective/adverb

AJO-VVN Ambiguous adjective/past participle

AJO-VVD Ambiguous adjective/past tense verb

AJO-NN1 Ambiguous adjective/common noun

AJO-VVG Ambiguous adjective/gerundive verb

AVP-PRP Ambiguous adverb particle/preposition

AVQ-CJS Ambiguous Wh- adverb/subordinating conjunction
CJS-PRP Ambiguous subordinating conjunction/preposition
CJT-DTO0 Ambiguous subordinating conjunction that/general determiner
CRD-PNI Ambiguous cardinal number/indefinite pronoun
NN1-NPO Ambiguous common noun/proper noun

NN1-VVB Ambiguous common noun/verb base form

NN1-VVG Ambiguous common noun/gerundive verb

NN2-VVZ Ambiguous plural common noun/third person verb

VVD-VVN Ambiguous past verb tense/past participle



