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Some parts of this manuscript are summaries of sections from “Cryptography Engineering” by
Niels Ferguson, Bruce Schneier, Tadayoshi Kohno.

1 RSA Public-Key Encryption Scheme

Invented in 1978 by Rivest, Shamir and Adleman [4], it is still the most popular public-key encryp-
tion algorithm!

• Keys Generation:

1. Randomly choose two large primes p, q. Compute n = p · q.
2. Sample two exponents e, d such that ed = 1(mod φ(n)).

3. Output e as the public key, and d as the secret key.

• Encryption(e,m):

1. To encrypt a message m, compute c = me(mod n)

• Decryption(d, c):

1. To decrypt a ciphertext c, compute m = cd(mod n).

Correctness Note that during decryption, the user computes

cd = (me)d = med = mkφ(n)+1 = mkφ(n) ·m1 = m(mod n)

as claimed. The last equality holds due to Euler’s Theorem, which states that if m and n are
coprime positive integers, then

mφ(n) = 1(mod n)

One great advantage of RSA is that it can be used to sign messages. In particular, the owner of
the secret key d can sign a message m by computing s = md(mod n). The pair (m, s) corresponds
to a signature. To verify the signature, anyone can compute se(mod n) and verify that the result
equals to m. The correctness follows similarly:

se = (md)e = mde = mkφ(n)+1 = m(mod n)
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Problems of “Black-Box” RSA First of all, given two signed messages (m1, s1,m2, s2), where
s1 = md

1(mod n) and s2 = md
2(mod n), an attacker can simply compute a valid signature of a

product of the two messages: s1 · s2 = (m1 ·m2)
d(mod n).

Next we note that it is always desirable to keep the public key exponent e as small as possible
to improve the efficiency of the encryption algorithm. Now, suppose e = 5 and we wish to encrypt a
message m < 5

√
n. Then, me = m5 < n. Hence, there is no modulus reduction that will take place

upon encryption! Therefore, an attacker can just take a fifth root of the ciphertext c to recover the
message, which is easy to do since there is modulus reduction.

The underlying problem with using a “black-box” implementation of RSA is that there is con-
nection between mathematical structure and the message. A typical solution in practice is to use
a special encoding function. In particular, an encoding function is first applied to a message the
result of which is then encrypted. After performing the RSA decryption, the message is recovered
by applying a decoding function. There are many standards to encoding functions available for use
(for example PKCS #1 v2.1 [2])

Also, encryption using RSA algorithm is very inefficient. Instead, we typically choose a key k
for a fast (and secure) block cipher and use RSA to encrypt k. Then, we use the block cipher and
the key k to encrypt the message m. The ciphertext then consists of two encryptions: one corre-
sponding to the RSA encryption of k, and another corresponding to the block cipher encryption of
m.

For signatures, using a simple encoding is however not sufficient. For one, the message m can
be arbitrary long. To solve this, and at the same time to break the structure of the message m, we
can apply a hash function h to m first (for example, SHA-256). However, SHA-256 hashes arbitrary
messages to a fixed output size: 256 bits, which is much smaller than the modulo n. Again, this is
a problem (think about the attack described for the encryption). Hence, we need to map h(m) into
a large number. For this, we can use a pseudo-random number generator r to map into a larger
fixed length output. By combining these two steps, we break the structure of the message m and
map it to a necessary and sufficiently large integer (mod n).

Finally, we note some of the latest attacks on RSA cryptosystem. We note that RSA would
be broken if we had an efficient factoring algorithm. Although we currently do not have one,
there are some major implementation issues that have been observed. In particular, a substantial
percentage of RSA keys are generated using common randomness. In this report [1], the authors
show that many RSA cryptosystems share a single large factor in common. Given two modulo
n1 = p ∗ q1, n2 = p ∗ q2, it is easy to recover p by using a GCD algorithm. In particular, out of 11.4
million RSA moduli, 26965 were found to be vulnerable. This offers at most security guarantee of
99.8% and affects RSA itself and PKI described below.

2 Public-Key Infrastructure (PKI)

This infrastructure allows you to recognize and validate which public keys belong to whom. On
the very high level it works as follows: A central authority (Certificate Authority) generates a pair
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of public and secret RSA keys. We assume everyone knows the public key of the authority. Now,
say Alice generates her own pair of public and secret keys. To allow everyone to validate her “iden-
tity” on the Internet, she comes to the CA with her public key and asks for a signature. The CA
verifies Alice’s “identity” and outputs a signature saying: “this public key belongs to Alice”. Now,
anyone can verify the validity of Alice’s public key (using CA’s public key) and use it for secure
communication with Alice. Bob can do the same to establish his pair of public. This process can
be used recursively establishing a chain of trust.

Some important considerations:

• Expiration date: no public-key should be valid forever.

• Validation of the Identity. What is an identity?

• Key-Management vs PKI.

3 Storing Secrets

There are various places where we can store secret keys: on disk, mobile device, memory and so
on. Storing a secret key on disk is a good solution, but it assumes that the computer is kept secure
from the attackers. In addition, it becomes inaccessible from remote machines. Alternatively, we
could store the secret on a mobile device: it becomes very portable, but we are much more likely
to lose it. Finally, storing a secret key in memory is not very infeasible: can you remember at least
256 random bits? A good solution would be to use a long sentence as a password which you can
easily remember, and derive as key from it using a Password-Based Key Derivation Function [3].
On the very high level, it applies a hash function multiple types to your password. If you do not
want to use a password-based derivation, then write your key on a piece of paper and keep it in
your wallet. It is probably more secure than any of your electronic devices.

Secret Sharing can help you both provide reliability and security in keeping your secrets. On
the high level, given a secret s, the algorithm generates shares s1, . . . , sn (for any desirable n) such
that:

• given all n shares, we can recover the original secret s.

• given any subset of less than n shares, the adversary learns nothing about s.

Hence, we could store a share on a remove server. Unless all but n servers collude (pull their shares
together), they learn nothing about n. However, assuming we have access to each of the servers,
we can recover the secret. To share a bit sj of the secret s we do the following:

• Choose random bits r1, . . . , rn−1. Each player i = 1, . . . , n− 1 is given a share ci = ri.

• The last player n, is given cn = r1 ⊕ r2 ⊕ . . .⊕ rn−1 ⊕ sj .

Clearly, given shares c1, . . . , cn, sj = c1 ⊕ c2 ⊕ . . .⊕ cn. Given any subset of less than n shares, sj
is information theoretically hidden. A much more useful tool is a threshold secret sharing scheme
(TSSS): A (t, n)-TSSS satisfies the following properties.
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• There is an algorithm Sharet,s(s) that takes a threshold value t, number of shares n and a
secret s and outputs shares c1, . . . , cn.

• There is an algorithm Reconstruct(ci1 , . . . , cit) that takes t shares and recovers the secret s.

• No subset of less than t shares reveals anything about about the secret s.

See Shamir’s Secret Sharing as an example http://en.wikipedia.org/wiki/Shamir%27s_Secret_
Sharing.
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