
Functional Encryption: Constructions and Lower Bounds

by

Sergey Gorbunov

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

c© Copyright 2012 by Sergey Gorbunov

Abstract

Functional Encryption: Constructions and Lower Bounds

Sergey Gorbunov
Master of Science

Graduate Department of Computer Science
University of Toronto

2012

Functional encryption is an emerging paradigm for public-key encryption that enables fine-

grained control of access to encrypted data. Given a secret key for a circuit C and an encryption

of an input message x, a user should be able to learn the output C(x), but nothing else about

the input x. Moreover, security should hold against collusions amongst “key holders”, namely,

a collusion of users that hold secret keys for circuits C1, . . . , Cq and an encryption of x should be

able to learn C1(x), . . . , Cq(x), but nothing else about x. In this work, we address the question

of constructing functional encryption for all polynomial-size circuits. Our main contributions

are as follows:

• We show that a general functional encryption for all circuits for unbounded collusions is

impossible, under a weak simulation-based security definition. Furthermore, we show that

the size of the ciphertext in a functional encryption scheme must grow with the number

of collusions.

• We construct a functional encryption scheme secure against an a-priori bounded

polynomial number of collusions for all polynomial-size circuits. Our constructions require

only semantically secure public-key encryption schemes and pseudorandom generators

computable by small-depth circuits. The constructions are secure under a strong adaptive

simulation-based security notion.

ii

Acknowledgements

First and foremost, I would like to thank my advisor Vinod Vaikuntanathan. I thank him
for the countless hours of discussions, numerous advices, his inspiration and patience. Our
meetings are always full of excitement and fascinating science. I am grateful to be his student
and learn from him.

I thank Charles Rackoff for introducing me into the field and inspiring me to study it. Charlie
is always happy to discuss any “randomly chosen” topic and explain new concepts to me. I
thank him for these unconditional discussions.

I would like to acknowledge and thank my collaborators: Shweta Agrawal, Vinod Vaikun-
tanathan and Hoeteck Wee. The work in this thesis is mainly a result of my collaboration with
them [GVW12], [AGVW12].

I thank my family, parents and grandparents for their support.

iii

Contents

1 Introduction 1
1.1 Our Results . 3
1.2 Overview of the Thesis . 5

2 Preliminaries 7
2.1 Functional Encryption . 7
2.2 Public Key Encryption. 8
2.3 Shamir’s Secret Sharing . 8
2.4 Decomposable Randomized Encoding . 9
2.5 Weak Pseudo-Random Functions . 10

3 Security of Functional Encryption 11
3.1 Simulation-based Definitions . 11
3.2 An Indistinguishability-Based Definition . 14
3.3 Relations Between Definitions of Functional Encryption 16

4 Impossibility Results for Functional Encryption 18
4.1 Overview of the Results . 18
4.2 Incompressible Circuits . 20
4.3 The Impossibility Result . 22
4.4 Extensions: Impossibility of Weaker Simulation-based Definitions 24

5 Functional Encryption for All Polynomial-size Circuits 26
5.1 Overview of the Construction . 26
5.2 Background Constructions . 29

5.2.1 Adaptive, Singleton . 29
5.2.2 Adaptive, “Brute Force” . 30
5.2.3 One-Query General Functional Encryption from Randomized Encoding . 32

5.3 A Construction for NC1 circuits . 34
5.3.1 Our Construction . 34
5.3.2 Setting the Parameters . 36
5.3.3 Proof of Security . 37

5.4 A Bootstrapping Theorem for Functional Encryption 40
5.4.1 Proof of Security . 42

5.5 Yet Another Bootstrapping Theorem Using FHE 44
5.6 Probabilistic Proofs . 46

5.6.1 Small Pairwise Intersection . 46
5.6.2 Cover-Freeness . 46

iv

6 Conclusion and Open Problems 48

Bibliography 49

v

Chapter 1

Introduction

Traditional notions of public-key cryptography [DH76] allow only all-or-nothing access to data:
users who possess the secret key can recover the entire message from a ciphertext, whereas
those who do not know the secret key learn nothing at all. One of the advantages of a typical
public-key encryption scheme is that it is non-interactive. That is, a user who holds a public-
key typically sends a single message corresponding to a ciphertext. Also, a user who does not
have the corresponding secret key should not be able to learn anything about the message. On
the other hand, Multi-Party Computation (MPC) [Yao82] protocols allow users to compute
and learn arbitrary functions of their joint messages, without revealing anything except for the
final answer. This gives a fine-grained access control to the data, at the cost of interaction
between the users. A functional encryption scheme combines the benefits of the two worlds. In
particular, for certain classes of problems, it provides:

1. fine-grained access control to the data along with a

2. low communication round complexity mechanism.

Boneh, Sahai and Waters [BSW11] recently formalized the notion of functional encryption
towards this end, building on and generalizing a number of previous constructs including
(anonymous) identity-based encryption (IBE) [Sha84, BF01, Coc01, BW06], fuzzy IBE [SW05],
attribute-based encryption (ABE) [GPSW06, LOS+10], and predicate encryption [KSW08,
LOS+10]. Informally, a functional encryption scheme for a circuit family C associates secret keys
SKC with every circuit C ∈ C, and ciphertexts CT with every input x. The owner of the secret
key SKC and the ciphertext CT should be able to obtain C(x), but learn nothing else about
the input message x itself.1 Moreover, security should hold against collusions amongst “key
holders”, namely, a collusion of users that hold secret keys SKC1 , . . . ,SKCq and an encryption
of x should learn nothing else about x apart from C1(x), . . . , Cq(x).

Where does functional encryption come from? From one perspective, functional
encryption transparently captures as special cases a number of familiar notions of encryption,
such as identity-based encryption (IBE), anonymous IBE, fuzzy IBE, attribute-based encryption
and so forth. For example, an identity-based encryption scheme can be seen as a functional

1We do not require the circuit C to be secret throughout this work, and in most literature on functional
encryption. For the singular exception, see the work of Shi, Shen and Waters [SSW09].

1

Chapter 1. Introduction 2

encryption scheme for the following family of circuits parametrized by the identity:

Cid′(id, µ) =

 (id, µ) if id = id′

(id,⊥) otherwise

In this case, id denotes the public identity since the encryption does not hide it. In contrast, in
anonymous IBE (which is supposed to hide the user’s identity) a functional encryption scheme
would not output id explicitly. Another important special case of functional encryption is
predicate encryption with public index (which is also called attribute-based encryption by some
authors). This corresponds to a circuit family C parametrized by predicates g and defined as:

Cg(ind, µ) =

 (ind, µ) if g(ind) = true

(ind,⊥) otherwise

Here, ind is the so-called public index (since the encryption does not hide it), and µ is sometimes
referred to as the payload message. In a similar vein, fuzzy IBE schemes correspond to a
circuit that detects proximity between two strings. By itself, this “generalization standpoint”
underestimates the full potential of functional encryption. In particular, a mechanism for
allowing users to compute and learn arbitrary function of a message, without revealing the
actual message, can be built from MPC. In addition, a question of minimizing complexity of
MPC protocols was intensively studied in the community [FKN94, CCKM00, PR03, DI05]. So
what does functional encryption capture and help us solve better than the existing techniques?

We present a practical motivating example, where functional encryption seems to give us
the “best” solution. Consider a system gateway that checks incoming emails for spam and
viruses1. It deletes the emails that do not pass the detection and forwards the rest to the user.
We will assume that the code for the detection program is public and everyone can get a copy
of it. Now, assuming all the incoming emails are encrypted, how can the gateway perform the
check? We summarize some possible solutions below, all of which seem not practical.

• Users can send their secret keys to the gateway, in which case the gateway must be fully
trusted.

• Each time an email comes in, the gateway and the user can initiate an MPC protocol.
However, this requires the user to be online at that instance and communicate with the
gateway.

• Using fully homomorphic encryption [Gen09b], the server can compute an encryption CT′

of the result of its detection program over the ciphertext (that is, an encryption of 0 if
the email is clean and an encryption of 1 otherwise.) It then sends CT′ to the user, who
decrypts and returns the result. The drawbacks of this approach are similar to the above
MPC solution, except that fewer rounds of communication might be performed.2

A functional encryption provides us a mechanism to solve this problem most practically and
efficiently. In particular, a user can get the code C for the detection program (which we
assume is public and honestly generated) and send a special secret key SKC to the gateway.
Whenever the gateway receives a ciphertext CT of an email, it can run the functional encryption

1This example is borrowed from [KSW08].
2In fact, FHE gives us the most efficient MPC protocol to date [Gen09b].

Chapter 1. Introduction 3

decryption algorithm on the SKC and CT to learn whether or not the email contains spam or
viruses. It forwards the email to the users only if it is clean. Note, that this solution requires
the user to compute SKC once and for all, after which step the user no longer needs to be online.
Furthermore, if the program code gets updated (with new spam/virus signatures) the user can
come online, issue a new secret key to the gateway and go back offline.

Previous Results. In 1984, Shamir introduced the concept of identity-based encryption
scheme [Sha85]. The first constructions for IBE were shown only in 2001 by Boneh and
Franklin [BF01] and Cocks [Coc01]. Later, constructions with various parameters and security
settings were presented in [CHK03, BB04a, BB04b, Wat05, Gen06]. More recently, lattice-
based constructions were shown in [GPV08, CHKP10, ABB10]. Attributed-based encryption
was first introduced by Sahai and Waters [SW05]. Public index ABE constructions were
presented in [GPSW06, BSW07, LOS+10, GJPS08, Wat11]. Additional interesting special
cases of functional encryption include hidden vector encryption and inner product encryption,
which were constructed in [BW07] and [KSW08, LOS+10, AFV11], respectively. An interesting
extension for functional encryption for unbounded length inputs was recently introduced by
Waters and constructed for regular languages [Wat12]. Note, that most of the existing
constructions satisfy only a public index security setting, described as above. A much fewer
constructions satisfy the stronger secret index setting [BF01, BW06, KSW08].

The central and challenging open question in the study of functional encryption is:

Can we build a functional encryption scheme for the class of all poly-size circuits?

As mentioned above, all of the existing constructions are limited to predicate encryption
schemes, where the predicate itself is computable by a “low complexity” class and the user
learns the payload if and only if the predicate is satisfied. The “state-of-the-art” constructions
are shown only for families of Boolean formulas and inner products over fields, both of which
are computable in NC1. In particular, a large part of the difficulty in constructing functional
encryption schemes lies in the fact that we typically require security against a-priori unbounded
collusions, namely, adversaries who obtain secret keys for an unbounded number of circuits
C1, . . . , Cq.

1.1 Our Results

Definitional Relations. We present two flavors of simulation-based security definitions and
an indistinguishability-based definition largely based on works of [BSW11, O’N10]. Roughly
speaking, simulation-based security definition states that whatever information an adversary
is able to learn from a ciphertext and secret keys, a simulator can compute from the output
values only. Indistinguishability-based security states that no adversary should be able to
distinguish between two input messages that behave identically on all queries – that is, for all
C, C(x0) = C(x1). In the non-adaptive setting of these definitions the adversary can ask for
secret keys only before getting the challenge ciphertext. We distinguish between security for a
single input message and multiple messages. We show that security for a single input message
is equivalent to security for many messages under our second (and stronger) simulation-based
definition in the non-adaptive settings (Theorem 3.3.1). Note, the result of this form is only
possible in the non-adaptive setting, since in the adaptive setting we present a positive result
in Section 5.3 for a single input message and [BSW11] shows an impossibility result for many
messages.

Chapter 1. Introduction 4

New Lower Bound: Impossibility for Simulation-based Definitions. Our first main
result rules out general functional encryption under the weak one message secure, non-adaptive
simulation definition (wNA-SIM).

Theorem 1.1.1 (Informal). There exists a circuit family C for which there is no wNA-SIM-
secure function encryption scheme.

Specifically, assuming the existence of a family of weak pseudo-random function wPRF(·, ·), we
show that there does not exist a functional encryption scheme for the family:

Cd(x) = wPRF(x, d),where the input message x is the PRF seed

We show that the ciphertext size in a functional encryption scheme realizing this circuit family
must grow with the size of the collusion; this yields a contradiction, since the scheme must
handle unbounded collusions. In fact, the result is unconditional since any non-trivial functional
encryption scheme gives rise to a one-way function and thus pseudo-random functions.

The key observation is as follows. Suppose the adversary requests for q secret keys
corresponding to random inputs Cd1 , . . . , Cdq and then requests for an encryption of a random x.
Then, the simulated ciphertext together with the q simulated secret keys constitute a description
of the values wPRF(x, d1), . . . ,wPRF(x, dq), which is essentially a sequence of q truly random
bits via pseudo-randomness. By a standard information-theoretic argument, this means that
the length of the ciphertext plus the secret keys must grow with q. To obtain a lower bound
on the ciphertext size, we carefully exploit the fact that the simulator has to generate the
secret keys before it sees the output of wPRF(x, ·). Then, the simulator has to generate a
small ciphertext that “explains” all these pseudorandom values which is impossible using a
compressibility argument. More generally, we show that (1) weak pseudo-random family is
“incompressible”, and (2) wNA-SIM-secure functional encryption only exists for “compressible”
circuit families.

q-Bounded Functional Encryption for Circuits. To overcome the above impossibility
result, we consider general functional encryption schemes for all circuits that depend on the
number of secret keys that the adversary can obtain (i.e. number of collusions). Therefore, we
consider a natural relaxation and initiate a systematic study of functional encryption for bounded
collusions. We consider a notion of security where the adversary is given secret keys for an a-
priori bounded number of circuits C1, . . . , Cq of her choice (which can be made adaptively). This
notion, which we call q-bounded security (or security against q collusions), is a natural relaxation
of the strong definition above, and could be sufficient in a number of practical use-case scenarios.
Our second main result is a construction of q-bounded secure functional encryption schemes for
arbitrary polynomial-size circuit families under mild cryptographic assumptions.

The question of designing IBE schemes with bounded collusions has been considered in a
number of works [DKXY02, CHH+07, GLW12]. The functional encryption setting presents
us with a significantly richer landscape since (1) a secret key SKC can be used to obtain
(partial) information about many messages, as opposed to IBE where a secret key decrypts
only ciphertexts for a single identity, and (2) the partial information is a result of a potentially
complex computation on the message itself. Our constructions leverage interesting ideas from
the study of (information-theoretic) multi-party computation [BGW88, BMR90, DI05] and
randomized encodings [Yao86, IK00, AIK06].

We stress that q-bounded security does not restrict the system from issuing an unbounded
number of secret keys. We guarantee security against any adversary that gets hold of at most

Chapter 1. Introduction 5

q keys. Specifically, our security definition achieves security against multiple “independent”
collusions, as long as each collusion has size at most q. Indeed, it is not clear how to achieve
such a security notion for general circuits even in the stateful setting where the system is
allowed to maintain a counter while issuing secret keys (analogous to the early notion of stateful
signatures). We note that our construction does not require maintaining any state.

The main result of this work is the construction of a q-query functional encryption scheme
for the class of all polynomial-size circuits. Our construction is based on the existence
of semantically secure public key encryption schemes, and pseudorandom generators (PRG)
computable in NC1. The former is clearly a necessary assumption, and the latter is a relatively
mild assumption which, in particular, is implied by most concrete intractability assumptions
commonly used in cryptography, such as ones related to factoring, discrete logarithm, or lattice
problems.

An important special case of functional encryption that we will be interested in is predicate
encryption with public index defined as above. For the case of predicate encryption schemes with
public index, our construction handles arbitrary polynomial-size circuits while relying solely on
the existence of semantically secure public-key encryption schemes, which is clearly the minimal
necessary assumption. In particular, we do not need the “bounded-depth PRG” assumption
for this construction.

We will henceforth refer to a functional encryption scheme that supports arbitrary
polynomial-size circuits as a general functional encryption scheme. Summarizing this discussion,
we show:

Theorem 1.1.2 (Main Theorem, Informal). Let κ be a security parameter. Assuming the
existence of semantically secure encryption schemes as well as PRGs computable in NC1, for
every q = q(κ), there exists a general functional encryption scheme secure against q secret key
queries.

Theorem 1.1.3 (Informal). Let κ be a security parameter. Assuming the existence of
semantically secure encryption schemes, for every q = q(κ), there exists a general predicate
encryption scheme with public index secure against q secret key queries.

1.2 Overview of the Thesis

In Chapter 2, we describe the preliminaries for our lower bounds and constructions. We also
present the syntax and the correctness definition for functional encryption.

In Chapter 3, we describe two variants of simulation-based security definitions and an
indistinguishability-based definition. We also present a few simple relations between the
definitions and informally argue why we choose these definitions for our results.

In Chapter 4, we first describe a notion of incompressible circuits. We then show that weak
pseudo-random functions are incompressible, and that functional encryption can only exist for
compressible functions. This gives us our first main result: the (unconditional) lower bound
that rules out a general non-adaptive simulation-secure functional encryption construction for
all circuits.

In Chapter 5, we describe our second main result: the construction of q-bounded adaptive
simulation-secure functional encryption for all poly-size circuits. Along the way, we present a

Chapter 1. Introduction 6

bootstrapping theorem that transforms an arbitrary functional encryption for NC1 circuits into
functional encryption for all poly-size circuits. We present a second bootstrapping theorem that
transforms functional encryption for NC1 circuits with special properties into a scheme for all
poly-size circuits, assuming fully-homomorphic encryption.

In Chapter 6, we summarize and present a few open problems in the area.

Chapter 2

Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x← D is used to denote

the fact that x is chosen from the distribution D. When we say x
$← S, we simply mean that

x is chosen from the uniform distribution over S. Unless explicitly mentioned, all logarithms
are to base 2. p.p.t. stands for a probabilistic polynomial-time algorithm. For n ∈ N, let [n]
denote the set of numbers 1, . . . , n. Let κ denote the security parameter. We say a function
is negligible in the security parameter if it decreases faster than an inverse of any polynomial.
More formally, f : N→ R is negligible if:

∀c,∃κ0, ∀κ > κ0, f(κ) <
1

nc

For simplicity, we often refer to such functions as negl(κ) without defining them explicitly.

2.1 Functional Encryption

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N denote ensembles where each Xκ and Yκ is a finite set.
Let C =

{
Cκ
}
κ∈N denote an ensemble where each Cκ is a finite collection of circuits, and each

circuit C ∈ Cκ takes as input a string x ∈ Xκ = {0, 1}κ and outputs C(x) ∈ Yκ.1 We are only
interested in the families where testing the membership of C ∈ Cκ can be performed efficiently.

A functional encryption scheme FE for C consists of four algorithms FE = (FE.Setup,FE.Keygen,
FE.Enc,FE.Dec) defined as follows.

• Setup FE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the
security parameter and outputs the master public and secret keys (MPK,MSK).

• Key Generation FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as input the master
secret key MSK and a circuit C ∈ Cκ and outputs a corresponding secret key SKC .

• Encryption FE.Enc(MPK, x) is a p.p.t. algorithm that takes as input the master public
key MPK and an input message x ∈ Xκ and outputs a ciphertext CT.

• Decryption FE.Dec(SKC ,CT) is a deterministic algorithm that takes as input the secret
key SKC and a ciphertext CT and outputs C(x).

1Note that all circuits C ∈ Cκ take inputs of the same length.

7

Chapter 2. Preliminaries 8

Definition 2.1.1 (Correctness). A functional encryption scheme FE is correct if for all C ∈ Cκ
and all x ∈ Xκ,

Pr

[
(MPK,MSK)← FE.Setup(1κ);

FE.Dec(FE.Keygen(MSK, C),FE.Enc(MPK, x)) 6= C(x)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

Refer to Chapter 3 for the security definition. When we refer to a functional encryption scheme,
we implicitly assume that it is correct.

2.2 Public Key Encryption

A public key encryption scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec), over message space
M = {Mκ}κ∈N where Mκ = {0, 1}κ, is a triple of p.p.t. algorithms as follows.

• Setup. PKE.Setup(1κ): takes a unary representation of the security parameter and
outputs public and private secret keys (PK,SK).

• Encryption. PKE.EncPK(M): takes the public encryption key PK and a message M ∈
Mκ and outputs a ciphertext CT.

• Decryption. PKE.DecSK(CT): takes the secret key SK and a ciphertext CT and outputs
a message M∗ ∈Mκ.

Correctness and security against chosen plaintext attacks are defined as follows.

Definition 2.2.1. A public key encryption scheme PKE is correct if for all M ,

Pr[(PK, SK)←PKE.Setup(1κ);PKE.DecSK(PKE.EncPK(M)) 6= M] = negl(κ) ,

where the probability is over the coins of PKE.Setup, PKE.Enc.

Definition 2.2.2. A public key encryption scheme PKE is (t, ε)-IND-CPA secure if for any
adversary A that runs in time t it holds that∣∣∣Pr[APKE.EncPK(·)(1κ,PK) = 1]− Pr[APKE.EncPK(0)(1κ,PK) = 1]

∣∣∣ ≤ ε ,
where the probability is over (PK, SK)←PKE.Setup(1κ), the coins of PKE.Enc and the coins of
the adversary A.

When we refer to a public key encryption scheme we implicitly assume that it is correct.

2.3 Shamir’s Secret Sharing

We assume familiarity with Shamir’s secret-sharing scheme [Sha79] which works as follows: Let
F be a finite field and let x = (x1, . . . , xn) be a vector of any distinct non-zero elements of F,
where n < |F|. Shamir’s t-out-of-n secret-sharing scheme works as follows:

Chapter 2. Preliminaries 9

• To share a secret M ∈ F, the sharing algorithm SS.Sharet,n(M) chooses a random
univariate polynomial µ(x) of degree t with constant coefficient M . The n shares are
µ(x1), . . . , µ(xn).

Note that any t or fewer shares look uniformly random.

• The reconstruction algorithm SS.Reconstruct takes as input t+1 shares and uses Lagrange
interpolation to find a unique degree-t polynomial µ(·) that passes through the share
points. Finally, it computes µ(0) to recover the secret.

An important property of this scheme is that it permits computation on the shares, a feature
used in many multi-party computation protocols starting from [BGW88]. In particular, adding
shares gives us µ1(i)+µ2(i) = (µ1+µ2)(i) and multiplying shares gives us µ1(i)µ2(i) = (µ1µ2)(i)
(where µ1µ2 denotes the product of the polynomials). Hence, given enough shares it is possible
to reconstruct the resulting polynomial. The main catch is that the degree of the polynomial
increases with the number of multiplications, requires more shares to recover the answer post
multiplication. In other words, the scheme per se is multiplicatively homomorphic for a bounded
number of multiplications (but an arbitrary number of additions).

2.4 Decomposable Randomized Encoding

Let C be a circuit that takes inputs k ∈ {0, 1}`, x ∈ {0, 1}n and outputs C(k, x) ∈ {0, 1}m.
Intuitively, a randomizing encoding for C(k, x) allows a user to learn the value C(k, x) but
nothing else about the inputs k and x. We distinguish between the inputs x and k since in
our applications of the randomized encodings one of the users will hold the input x and the
second user will hold the input k. Decomposability property assures that for all k, x, the
encoding of C(·, x) can be described as a list of pairs of strings, such that given one of the
strings corresponding to a bit ki for each pair a user can recover C(k, x).

A decomposable randomized encoding schemeRE consists of two algorithms (RE.Encode,RE.Decode)
satisfying the following properties:

1. Decomposable Encoding. RE.Encode(1κ, C, x, k): A p.p.t. algorithm takes as inputs a
security parameter, a description of a circuit C, inputs x and k generates a decomposable
randomized encoding:

(C̃1(·, x;R), . . . , C̃`(·, x;R))

where for i ∈ [`] C̃i(·, x;R) is a pair of strings C̃i(0, x;R) and C̃i(1, x;R). The output of
the algorithm is a list of strings (C̃1(k1, x;R), . . . , C̃`(k`, x;R)).

2. Decoding. RE.Decode((ỹi)
`
i=1): On input of an encoding of a circuit ỹi = C̃i(ki, x;R) for

some k = (k1, . . . , k`) output C(k, x).

3. Semantic Security. We say decomposable randomized encoding RE is secure if there
exists a p.p.t. simulator RE.Sim, such that for every p.p.t. adversary A the outputs of
the following two distributions are computationally indistinguishable:

Chapter 2. Preliminaries 10

ExprealRE,A(1κ): ExpidealRE,RE.Sim(1κ):

1: (C, k = (k1, . . . , k`), x)← A(1κ)

2: (C̃i(·, x;R))`i=1 ← RE.Encode(1κ, C, x)

3: Output (C̃i(ki, x;R))`i=1)

1: (C, k = (k1, . . . , k`), x)← A(1κ)

2: (C̃i(ki, x;R))`i=1 ← RE.Sim(1κ, C, C(k, x))

3: Output (C̃i(ki, x;R))`i=1)

Note that such a randomized encoding for arbitrary polynomial-size circuits follows from
Yao’s garbled circuit construction [Yao86, AIK06]. Furthermore, the construction based the
garbled circuits gives decomposability property for both inputs k and x.

2.5 Weak Pseudo-Random Functions

Intuitively, a function is weakly pseudo-random if no adversary can distinguish between its
output applied on a random secret key and random public inputs, and the output of a randomly
chosen function mapping applied on public random inputs.

Definition 2.5.1 (wPRF). Let wPRF = {wPRFκ}κ∈N denote a family of efficiently computable
functions where wPRFκ : {0, 1}n(κ) × {0, 1}m(κ) → {0, 1}k(κ), the first argument of which is
called the seed to the wPRF and the second argument is the input.

For every probabilistic polynomial time oracle distinguisher Dist, consider the following two
experiments:

• RealDist(1
κ): Choose x

$← {0, 1}n(κ) and run Dist with access to a probabilistic oracle
Oreal(x) which, when invoked, chooses a uniformly random d ← {0, 1}m(κ) and returns
the pair (d,wPRFκ(x, d)). This experiment outputs whatever Dist outputs.

• RandDist(1
κ): Choose a uniformly random function R : {0, 1}m(κ) → {0, 1}k(κ) and

run Dist with access to a probabilistic oracle Orand(R) which, when invoked, chooses a
uniformly random d← {0, 1}m(κ) and returns the pair (d,R(d)). This experiment outputs
whatever Dist outputs.

We say wPRF is a weak pseudo-random function if for all p.p.t. distinguishers Dist,∣∣Pr[RealDist(1
κ) = 1]− Pr[RandDist(1

κ) = 1]
∣∣ = negl(κ)

where the probabilities are over the choice of x and R, as well as the coin-tosses of Dist and
the oracles Oreal and Orand.

In our impossibility result, we will use a weak pseudo-random function with seed length
n(κ) = κ and output length k(κ) = 1.

Chapter 3

Security of Functional Encryption

In this chapter, we describe simulation-based and indistinguishability-based definitions, largely
based on the recent works of Boneh, Sahai and Waters [BSW11] and O’Neill [O’N10]. We
describe two flavors of simulation-based definitions: in Chapter 4 we use the first (and weaker)
definition for proving the lower bounds; and in Chapter 5 we use the second (stronger) definition
for proving positive results. In addition, we show relations between various flavors of the
stronger simulation-based and indistinguishability definitions.

3.1 Simulation-based Definitions

First, we present a weak simulation-based definition that is used to prove our lower bounds for
unbounded collusions (that is, the number of secret key queries that the adversary can request
is independent of the setup.) The definition is referred to as weak because the simulator is
allowed to “program” the setup parameters and the non-adaptive secret keys, and the security
must hold for a single input message only.

Definition 3.1.1 (wNA-SIM- and wAD-SIM- Security). Let FE be a functional encryption
scheme for a circuit family C. Consider a p.p.t. adversary A = (A1, A2) and a stateful p.p.t.
simulator S1. Let Ux(·) denote a universal oracle, such that Ux(C) = C(x). Consider the
following two experiments:

ExprealFE,A(1κ): ExpidealFE,S(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (x, st) ←AFE.Keygen(MSK,·)
1 (MPK)

3: CT← FE.Enc(MPK, x)

4: α ← A
O(MSK,·)
2 (MPK,CT, st)

5: Output (x, α)

1: MPK← S(1κ)

2: (x, st)← A
S(·)
1 (MPK)

3: CT← SUx(·)(1κ, 1|x|)

4: α← A
O′(·)
2 (MPK,CT, st)

5: Output (x, α)

We distinguish between two cases of the above experiment:

1. The adaptive experiment, where:

1One can replace a stateful simulator by a regular (stateless) simulator that outputs a state sts upon each
invocation which is carried over to its next invocation.

11

Chapter 3. Security of Functional Encryption 12

• the oracle O(MSK, ·) = FE.Keygen(MSK, ·) and

• the oracle O′(·) is the simulator, namely SUx(·)(·)

We call a stateful simulator algorithm S admissible if, on each input C, S makes just a
single query to its oracle Ux(·) on C itself.

The functional encryption scheme FE is then said to be weakly simulation-secure for one
message against adaptive adversaries (wAD-SIM-secure, for short) if there is an admissible
stateful p.p.t. simulator S such that for every p.p.t. adversary A = (A1, A2), the following
two distributions are computationally indistinguishable:{

ExprealFE,A(1κ)

}
κ∈N

c
≈
{
ExpidealFE,S(1κ)

}
κ∈N

2. The non-adaptive experiment, where the oracles O(MSK, ·) and O′(·) are both the “empty
oracles” that return nothing.

The functional encryption scheme FE is then said to be weakly simulation-secure for
one message against non-adaptive adversaries (wNA-SIM-secure, for short) if there is an
admissible stateful p.p.t. simulator S such that for every p.p.t. adversary A = (A1, A2),
the two distributions above are computationally indistinguishable.

Functional Encryption for Bounded Collusions. In Chapter 4 we show that the above
definition is impossible to achieve even in the non-adaptive setting. Therefore, we initiate
a systematic study of functional encryption for bounded collusions. We consider a relaxed
notion of security where the adversary is given secret keys for an a-priori bounded number of
circuits C1, . . . , Cq of her choice (which can be made adaptively). In addition, we strengthen
the definition by giving the simulator less power by running real setup and non-adaptive key
generation algorithms in the ideal world.

Definition 3.1.2 (NA-SIM- and AD-SIM- Security). Let FE be a functional encryption scheme
for a circuit family C. For every p.p.t. adversary A = (A1, A2) and a p.p.t. simulator S =
(S1, S2), consider the following two experiments:

ExprealFE,`,A(1κ): ExpidealFE,`,S(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (x1, . . . , x`, st) ←A
FE.Keygen(MSK,·)
1 (MPK)

3: CTi ← FE.Enc(MPK, xi)

4: α ← A
O(MSK,·)
2 (MPK,CT1, . . . ,CT`, st)

5: Output (α, x1, . . . , x`)

1: (MPK,MSK)← FE.Setup(1κ)

2: (x1, . . . , x`, st) ←A
FE.Keygen(MSK,·)
1 (MPK)

I Let (C1, . . . , Cq) be A1’s oracle queries
I Let SKi be the oracle reply to Ci
I Let V :=

{
yij = Ci(xj), Ci, SKi

}
.

3: (CT1, . . . ,CT`, st
′)← S1(MPK,V, 1|xi|)

4: α← A
O′(MSK,st′,·)
2 (MPK,CT1, . . . ,CT`, st)

5: Output (α, x1, . . . , x`)

We distinguish between two cases of the above experiment:

Chapter 3. Security of Functional Encryption 13

1. The adaptive case, where:

• the oracle O(MSK, ·) = FE.Keygen(MSK, ·) and

• the oracle O′(MSK, st′, ·) is the second stage of the simulator, namely S
Ux(·)
2 (MSK, st′, ·),

where Ux(C) = C(x) for any C ∈ C.

The simulator algorithm S2 is stateful in that after each invocation, it updates the state st′

which is carried over to its next invocation. We call a simulator algorithm S = (S1, S2)
admissible if, on each input C, S2 makes just a single query to its oracle Ux(·) on C itself.

The functional encryption scheme FE is then said to be (q,many)-simulation-secure for
many messages against adaptive adversaries ((q,many)-AD-SIM-secure, for short) if there
is an admissible p.p.t. simulator S = (S1, S2) such that for every polynomial function
` = `(κ) and for every p.p.t. adversary A = (A1, A2) that makes at most q queries, the
following two distributions are computationally indistinguishable:{

ExprealFE,A(1κ)

}
κ∈N

c
≈
{
ExpidealFE,S(1κ)

}
κ∈N

In the special case where `(κ) = 1, we will call the scheme (q, one)-AD-SIM-secure.

2. The non-adaptive case, where the oracles O(MSK, ·) and O′(MSK, st, ·) are both the
“empty oracles” that return nothing: the functional encryption scheme FE is then said to
be (q,many)-query simulation-secure for many messages against non-adaptive adversaries
((q,many)-NA-SIM-secure, for short) if there is a p.p.t. simulator S = (S1,⊥) such that
for every polynomial function ` = `(κ) for every p.p.t. adversary A = (A1, A2) that makes
at most q queries, the two distributions above are computationally indistinguishable. In
the special case where `(κ) = 1, we will call the scheme (q, one)-NA-SIM-secure.

Intuitively, simulation-based security definition states that any information that the adversary
is able to learn from the ciphertext and secret keys, can be obtained by a simulator from the
secret keys and the outputs of the circuit alone. A number of remarks on this definition are in
order.

1. In the non-adaptive setting, the simulator

(a) is not allowed to “program” the public parameters or the pre-ciphertext secret key
queries (as opposed to the wNA-SIM and wAD-SIM);

(b) given the real public parameters, adversary’s oracle queries, corresponding real secret
keys and circuit output values, is asked to produce a ciphertext indistinguishable
from the real ciphertext.

2. In the adaptive setting, in addition to the above bullets the second stage simulator

(c) is given the real MSK and is allowed to “program” the post-ciphertext secret keys.

3. Even if the the adversary does not request any secret keys, he learns the length of x and
therefore, the simulator should be given this information to be on even ground with the
adversary. This also ensures that the definition properly generalizes (regular) public-key
encryption.

Chapter 3. Security of Functional Encryption 14

4. We remark that our definitions imply (and are stronger than) those presented in the work
of Boneh, Sahai and Waters [BSW11], except we only consider a single ciphertext and
impose an upper bound on the number of secret key queries. More formally, for the
adaptive variant we can instantiate [BSW11] simulator (Sim1, SimO, Sim2) as follows.

• Sim1 runs FE.Setup and sets pp := MPK, σ := MSK.

• SimO runs FE.Keygen algorithm on MSK and updates σ to include all oracle queries
and replies (Ci,SKi).

• Sim2 computes yi = Ux(·) for all Ci using its oracle. Next, it runs our simulator
S1(MPK, {yi, Ci,SKi}) to obtain the ciphertext CT. It invokes A◦ on the ciphertext,
and on any FE.Keygen call it uses our S2 to obtain a secret key. Finally, output the
same α as A◦. The non-adaptive variant follows similarly.

Why do we prove positive results under this definition? First, as mentioned above,
our definition is at least as strong as the definition presented in [BSW11]. In addition, we show
the following relations between the definitions:

1. Relations between simulation and indistinguishability: We show that a single message
simulation definition implies single message indistinguishability definition for both non-
adaptive and adaptive worlds.

2. Relations between single and many messages (simulation): We show that a single message
non-adaptive simulation implies many messages non-adaptive simulation definition.
However, we cannot hope to achieve the same implication for adaptive world due to
the impossibility results presented in [BSW11].

3. Relations between single and many messages (indistinguishability): Finally, we show that
a single message indistinguishability implies many message indistinguishability definition
in both the adaptive and non-adaptive worlds.

These definitional implications are summarized in Figure 3.1 and proved below. As a result
of these definitional implications, we focus on proving that our constructions are secure under
the single message adaptive simulation definition ((q, one)-AD-SIM-security).

3.2 An Indistinguishability-Based Definition

Definition 3.2.1 (NA-IND- and AD-IND-Security). Let FE be a functional encryption scheme
for a circuit family C. For every function ` = `(κ), every p.p.t. adversary A = (A1, A2),
consider the following two experiments:

1This proof was not explicitly given in [O’N10], but a similar proof for single message definitions can be easily
extended.

2General functional encryption for this definition was shown impossible in [BSW11] when adversary makes
just 2 FE.Keygen calls (2-bounded collusion). Since we show a secure construction satisfying AD-SIMone, this
implication follows.

Chapter 3. Security of Functional Encryption 15

NA-SIMone

NA-INDone

NA-SIM

NA-IND

[O’N10] ×[BSW11]

Theorem 3.3.1

[O’N10]1 ×[BSW11]

Theorem 3.3.3

AD-SIMone

AD-INDone

AD-SIM2

AD-IND

×[BSW11]

×

×[BSW11]

Theorem 3.3.3

The Non-Adaptive World The Adaptive World

Figure 3.1: Relations between definitions of functional encryption in the non-adaptive and adaptive flavors.
Regular blue arrows indicate an implication between the definitions, and a red arrow with a cross on it indicates
a separation. The citations for all non-trivial implications and separations are also shown. Note that we omit
writing q in the abbreviations above (i.e. AD-SIM:=(q,many)-AD-SIM, AD-SIMone:=(q, one)-AD-SIM; similarly
for the rest of the abbreviations.)

Exp
(0)
FE,A(1κ): Exp

(1)
FE,A(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (~x0, ~x1, st)← A
FE.Keygen(MSK,·)
1 (MPK)

I where ~x0 = (x0[1], . . . , x0[`])
I and ~x1 = (x1[1], . . . , x1[`])

3: CTi ← FE.Enc(MPK, x0[i]) ∀i ∈ [`]

4: b← A
O(MSK,·)
2 (MPK,CT1, . . . ,CT`, st)

5: Output b

1: (MPK,MSK)← FE.Setup(1κ)

2: (~x0, ~x1, st)← A
FE.Keygen(MSK,·)
1 (MPK)

I where ~x0 = (x0[1], . . . , x0[`])
I and ~x1 = (x1[1], . . . , x1[`])

3: CTi ← FE.Enc(MPK, x1[i]) ∀i ∈ [`]

4: b← A
O(MSK,·)
2 (MPK,CT1, . . . ,CT`, st)

5: Output b

Define an admissible adversary A = (A1, A2) as one which makes at most q oracle queries and
C(x0[i]) = C(x1[i]) for each query C and every i ∈ [`]. We distinguish between two cases of the
above experiment:

1. The adaptive case, where the oracle O(MSK, ·) = FE.Keygen(MSK, ·): the functional
encryption scheme FE is said to be indistinguishable-secure for many messages against
adaptive adversaries ((q,many)-AD-IND-secure, for short) if for every polynomial function
` = `(κ) and every admissible p.p.t. admissible adversary A = (A1, A2), the advantage of
A defined as below is negligible in the security parameter κ:

AdvFE,`,A(κ) :=
∣∣Pr[Exp

(0)
FE,`,A(1κ) = 1]− Pr[Exp

(1)
FE,`,A(1κ) = 1]

∣∣

Chapter 3. Security of Functional Encryption 16

where the probability is over the random coins of the algorithms of the scheme FE and that
of A. In the special case where `(κ) = 1, we will call the scheme (q, one)-AD-IND-secure.

2. The non-adaptive case, where the oracle O(MSK, ·) is the “empty oracle” that returns
nothing: the functional encryption scheme FE is said to be indistinguishable-secure for
many messages against non-adaptive adversaries ((q,many)-NA-IND-secure, for short)
if for every polynomial function ` = `(κ) and every admissible p.p.t. adversary A =
(A1, A2), the advantage of A defined as above is negligible in the security parameter κ.

In the special case where `(κ) = 1, we will call the scheme (q, one)-NA-IND-secure.

Note that this definition is identical to the definitions presented in [BSW11] and [O’N10], except
that they define it for a single message only.

3.3 Relations Between Definitions of Functional Encryption

Theorem 3.3.1. Let FE be (q, one)-NA-SIM-secure functional encryption scheme for a circuit
family C. Then, FE is also (q,many)-NA-SIM-secure.

Proof. Let S1 be the single message p.p.t. simulator. We construct a p.p.t. simulator
Sm. Intuitively, the multiple message simulator will just invoke the single message simulator
many times. Then, using the standard hybrid argument we can conclude that it produces
output indistinguishable from the real. Let ` = `(k) be arbitrary polynomial function and let
A = (A1, A2) be arbitrary p.p.t. adversary.

On input (MPK, {yij = Ci(xj), Ci, SKi}) the simulator Sm proceeds as follows: For each j, let

Vj := {yij = Ci(xj), Ci, SKi}i∈[q]

The simulator computes and outputs the ciphertext1:

(CT1, . . . ,CT`), where CTj ← S1(MPK, Vj)

Now, let D be the distinguisher between the real and ideal experiments. Then, by the hybrid
argument D can distinguish between the experiments where A2 is given

(CTr1, . . . ,CT
r
i−1,CT

s
i , . . . ,CT

s
`) vs (CTr1, . . . ,CT

r
i ,CT

s
i+1, . . . ,CT

s
`)

for some i, where CTr’s and CTs’s correspond to the real and simulated ciphertexts, respectively.

We now construct a single message adversary B = (B1, B2) and a distinguisher D′ as follows:

1. B
FE.Keygen(MSK,·)
1 (MPK) runs A1 and replies to its oracle queries appropriately to get

(x1, . . . , x`, st). It outputs

(xi, st
′ = (x1, . . . , xi−1, xi+1, . . . , x`, st, (Cj ,SKj)j∈[q])

1Note, that this theorem does not extend to the adaptive definition. In particular, the proof breaks down
when even trying to construct the multiple message simulator to “forge” the secret keys SK.

Chapter 3. Security of Functional Encryption 17

2. B2(MPK,CT, st′) first runs the real encryption algorithm on input messages x1, . . . , xi−1

to obtain CTr1, . . . ,CT
r
i−1. Then, for all j ≥ i+ 1 it sets

Vj := {yij = Ci(xj), Ci,SKi}i∈[q]

and runs the single message simulator to get a ciphertext CTsj ← S1(MPK, Vj).

3. Finally, it invokes A2(MPK,CTr1, . . . ,CT
r
i−1,CT,CT

s
i+1, . . . ,CT

s
`) and outputs whatever it

outputs.

4. The distinguisher D′ is the same as D.

We showed that if there exists a distinguisher for many message simulator, then we can
break the security for the single message simulator. This concludes the proof.

Theorem 3.3.2. Let FE be (q, one)-AD-SIM-secure functional encryption scheme for a circuit
family C. Then, FE is also (q, one)-AD-IND-secure.

Proof. Let A = (A1, A2) be the admissible adversary such that AdvFE,`,A is non-negligible. We
construct adversary B = (B1, B2) against (q, one)-AD-SIM-security.

• BFE.Keygen(MSK,·)
1 (MPK): Run the adversary A1 and reply to its oracle queries using its

own oracle to obtain (x0, x1, st). Output (xb, st
∗ := (st, x0, x1), where b

$← {0, 1}.

• BO
′(MSK,st′,·)

2 (MPK,CT, st): Run the adversary A2(MPK,CT, st) replying to its oracle
queries using its own oracle to obtain b′. Output α := (b′, st′).

Now, in the real experiment b = b′ with probability 1/2 + ε for some noticeable ε. In the
ideal experiment since the simulator is admissible, it must make the same oracle queries to
Ux(·) as B2 makes, which are the same queries as A2 makes. Hence, it must be the case that
Cj(x0) = Cj(x1) for all j. Therefore, information theoretically the simulator gets no information
about the bit b and hence cannot produce the corresponding ciphertext with probability better
than 1/2. Hence, we can distinguish between the ideal and real experiment.

Theorem 3.3.3. Let FE be (q, one)-AD-IND/NA-IND-secure functional encryption scheme for
a circuit family C. Then, FE is also (q,many)-AD-IND/NA-IND-secure, respectively.

Proof. These proofs follow a standard hybrid argument.

As a result, we focus on proving only (q, one)-NA-SIM and (q, one)-AD-SIM for our
constructions.

Chapter 4

Impossibility Results for Functional
Encryption

4.1 Overview of the Results

Our main result rules out general functional encryption under the weak one message secure,
non-adaptive simulation definition (wNA-SIM). In particular, this rules out a general unbounded
collusions construction for all circuit families for

• 1-message adaptive simulation-based security ((unbounded, one)-AD-SIM1) and

• many-message non-adaptive simulation-based security ((unbounded,many)-NA-SIM.

We compare the impossibility result from [BSW11] with ours in Figure 4.1.

Theorem 4.1.1 (Informal). There exists a circuit family C for which there is no wNA-SIM-
secure function encryption scheme.

Specifically, assuming the existence of a family of weak pseudo-random function wPRF(·, ·), we
show that there does not exist a functional encryption scheme for the family:

Cd(x) = wPRF(x, d),where the input message x is the PRF seed

We show that the ciphertext size in a wNA-SIM-secure scheme realizing this circuit family
must grow with the size of the collusion; this yields a contradiction, since the scheme must
handle unbounded collusions. In fact, the result is unconditional since any non-trivial functional
encryption scheme gives rise to a one-way function and thus pseudo-random functions.

The key observation is as follows. Suppose the adversary requests for q secret keys
corresponding to random inputs Cd1 , . . . , Cdq and then requests for an encryption of a random x.
Then, the simulated ciphertext together with the q simulated secret keys constitute a description
of the values wPRF(x, d1), . . . ,wPRF(x, dq), which is essentially a sequence of q truly random
bits via pseudo-randomness. By a standard information-theoretic argument, this means that
the length of the ciphertext plus the secret keys must grow with q. To obtain a lower bound
on the ciphertext size, we carefully exploit the fact that the simulator has to generate the
secret keys before it sees the output of wPRF(x, ·). Then, the simulator has to generate a

1“Unbounded” here refers to the schemes that must remain secure for any q polynomial number of collusions,
independent of the setup.

18

Chapter 4. Impossibility Results for Functional Encryption 19

Our impossibility result Boneh, Sahai and Waters
(Theorem 5.4.1) ([BSW11, Theorem 2])

adaptive vs. non-adaptive non-adaptive adaptive

one vs. many messages one message many messages

one vs. many secret-key queries many queries one query

class of circuits weak PRFs IBE

Figure 4.1: A comparison between the BSW lower bound and ours for functional encryption.
The underlines indicates the stronger result. For example, the first row says that our
impossibility result rules out even a non-adaptive notion of security and is thus, stronger than
the BSW result that rules out an adaptive notion.

small ciphertext that “explains” all these pseudorandom values which is impossible using a
compressibility argument. More generally, we show that (1) weak pseudo-random family is
“incompressible”, and (2) wNA-SIM-secure functional encryption only exists for “compressible”
circuit families. (In particular, the circuit family for all public-index predicate encryption is
compressible.)

This idea is reminiscent of the obfuscation impossibility result of Goldwasser and Kalai [GK05],
although the precise settings are quite different (in particular, functional encryption and
program obfuscation seem incomparable, although related, objects).

Implications. The basic idea described above can be extended to a lower bound for even
weaker forms of the simulation-based definition, including (a non-adaptive variant of) the
definition of Boneh, Sahai and Waters [BSW11]. Here, we mention yet another implication
of this idea.

In Chapter 5 we show (q, one)-AD-SIM-secure functional encryption scheme for all circuits,
assuming that the adversary can only corrupt an a-priori bounded number of users (and thus,
get the corresponding secret keys). One of the shortcomings of their bounded-collusion security
notion as well as their construction is that the parameters of the system, and especially the
size of the ciphertext depends on the collusion bound q. A natural question is whether their
ciphertexts can be made to have size independent of q (or, at the very least, o(q)).1 Indeed,
in light of the results of Dodis, Katz, Xu and Yung [DKXY02] and most recently, Goldwasser,
Lewko and Wilson [GLW12] in the context of bounded-collusion IBE, one might expect that
achieving “short” ciphertexts is actually be possible in general.

Unfortunately, our techniques result in a strong negative answer to this question.

Corollary 4.1.2. There exists a family of circuits C such that for every q = q(κ), there are no
q-collusion resistant (unbounded, one)-AD-SIM-secure (resp. -NA-SIM) functional encryption
schemes with ciphertexts of size o(q).

In this section, we present our main lower bound for wNA-SIM-secure functional encryption.
We begin with a notion of “incompressible” circuits. Then, we show that (1) weak pseudo-
random functions are “incompressible”, and (2) wNA-SIM-secure functional encryption only
exists for “compressible” circuits. Putting the two together yields our lower bound.

1The previous lower bound for (unbounded,many)-AD-SIM IBE in [BSW11] (which says that the secret key
size must grow with the number of challenge ciphertexts) is not applicable here as our construction considers
only a single challenge ciphertext.

Chapter 4. Impossibility Results for Functional Encryption 20

4.2 Incompressible Circuits

We first define a family of compressible circuits. Informally, we say that a family of circuits {Gκ}
is (`, t)-compressible if for a list of uniformly random circuit descriptions G1, . . . , G` ∈ Gκ and a
uniformly chosen input x, there is some efficiently computable description of G1(x), . . . , G`(x)
of size t. Note that if there is no efficiency requirement, then any family is (`, |s|)-compressible.

Definition 4.2.1 (Incompressible Circuits). Let ` = `(κ) and t = t(κ) be functions of the
security parameter κ. A family of circuits G = {Gκ}κ∈N is (`, t)-compressible if there exist a
family of (deterministic) compressor circuits {Cκ}κ∈N and a family of decompressor circuits
{Dκ}κ∈N such that:

• (polynomial size) the circuits Cκ and Dκ have size poly(κ, `).

• (mild compression) for sufficiently large κ,
∣∣Cκ(G1, . . . , G`, y1, . . . , y`)

∣∣ = t, where yi =
Gi(x).

• (correctness) there is a polynomial p = p(κ) such that

Pr[x
$← {0, 1}κ,G1, . . . , G`

$← Gκ, yi = Gi(x) :

Dκ(G1, . . . , G`,Cκ(G1, . . . , G`, y1, . . . , y`)) = (y1, . . . , y`)] ≥ 1/p(κ)

where the probability is taken over the choice of x as well as the circuits G1, . . . , G`.

The family G is (`, t)-incompressible if it is not (`, t)-compressible.

We now give examples of (in)compressible circuits. First, consider the notion of pre-
image samplable family of circuits introduced by O’Neill [O’N10] which requires that given
G1(x), . . . , G`(x), there is a polynomial-time algorithm that returns an arbitrary x′ such that
Gi(x

′) = Gi(x) for all i. In our language, this says that the family G is (`, |x′|)-compressible;
the compression algorithm simply outputs x′.

Next, consider an arbitrary public-index circuit family parametrized by predicates P and
given by:

GP (ind, µ) =

 (ind, µ) if P (ind) = 1

(ind,⊥) otherwise

It is easy to see that this circuit family is (`, |(ind, µ)|)-compressible. On input

GP1(ind, µ), . . . , GP`(ind, µ)

If Pi(ind) = 1 for some i, then the compression algorithm outputs (ind, µ). If Pi(ind) = 0 for all
i, then the algorithm outputs (ind,⊥).

On the other hand, as we show below (see Lemma 4.2.1), any family of (weak) pseudo-
random functions is incompressible in a strong sense. More precisely, consider a family of
circuits G = {Gdi(·) = wPRF(·, di)} where di serves as the input to the pseudo-random function.
Informally, the incompressibility is due to the fact that a sequence (Gd1(x), . . . , Gd`(x)) =
(wPRF(x, d1), . . . ,wPRF(x, d`)) is indistinguishable from a sequence of uniformly random bits,
which are clearly incompressible.

Chapter 4. Impossibility Results for Functional Encryption 21

Lemma 4.2.1 (weak PRFs are (`, ` − κ)-incompressible). Let wPRF = {wPRFκ : {0, 1}κ ×
{0, 1}m(κ) → {0, 1}}κ∈N be a family of weak pseudo-random functions, where m(κ) = ω(log κ).
Define Gd(x) = wPRF(x, d). Consider a family G = {Gκ}κ∈N defined as

Gκ =
{
Gd(·) : |d| = m(κ)

}
Then, G is (`, `− κ)-incompressible.

Proof. Assume, for the sake of contradiction, that G is (`, ` − κ)-compressible. Namely, there
are families of compressor and decompressor circuits (C,D) that satisfy Definition 4.2.1. We
show how to construct a distinguisher DistO that distinguishes between the case where O =
wPRF(x, ·) is a pseudo-random oracle that outputs pairs (di, yi = wPRFκ(x, di)) where di are
uniformly random, and the case where O outputs strings (di, yi = R(di)) where di and R are
uniformly random strings and function, respectively. DistO proceeds as follows.

• Choose a sufficiently large κ such that∣∣Cκ(G1, . . . , G`, y1, . . . , y`)
∣∣ = `− κ

• Query the oracle O to obtain pairs of strings of the form (di
$← {0, 1}m(κ), yi). Define the

circuit Gdi(·) := wPRF(·, di).

• Run the compressor Cκ to get a string

γ ← Cκ(Gd1 , . . . , Gd` , y1, . . . , y`)

• Outputs 1 if and only if

Dκ(Gd1 , . . . , Gd` , γ) = (y1, . . . , y`)

We now show that the distinguisher succeeds with non-negligible advantage 1/p(κ) − 2−κ

in breaking the weak pseudo-random function family wPRF.

If O is the pseudo-random oracle, then the samples DistO gets are of the form (di, yi ←
wPRF(x, di)). Hence, by correctness of C and D,

Dκ(Gd1 , . . . , Gd` ,Cκ(Gd1 , . . . , Gd` , y1, . . . , y`)) = (y1, . . . , y`)

with probability at least 1/p(κ). Thus, the distinguisher in this case outputs 1 with probability
at least 1/p(κ) as well.

On the other hand, if O outputs pairs of strings of the form (di, yi ← R(di)) for a
randomly chosen function mapping R, we now show that the distinguisher above outputs 1
with probability at most 2−κ. In the analysis below, we assume that d1, . . . , d` are distinct, for
which we need to pay a price of an additive `2 · 2−m(κ) = negl(κ) term in the distinguishing
error.

Chapter 4. Impossibility Results for Functional Encryption 22

Pr[DistO outputs 1]

≤ Pr
d1,...,d`

$←{0,1}m(κ)

y1,...,y`
$←{0,1}

[
∃γ : |γ| = `− κ and Dκ(Gd1 , . . . , Gd` , γ) = (y1, . . . , y`)

]

≤
∑

γ∈{0,1}`−κ
Pr

d1,...,d`
$←{0,1}m(κ)

y1,...,y`
$←{0,1}

[
Dκ(Gd1 , . . . , Gd` , γ) = (y1, . . . , y`)

]
(via a union bound)

=
∑

γ∈{0,1}`−κ
2−` (since y1, . . . , y` are random and independent of d1, . . . , d`, γ)

≤ 2`−κ · 2−` = 2−κ

This yields the required contradiction to the security of wPRF.

4.3 The Impossibility Result

We are now ready to state and prove our main theorem.

Theorem 4.3.1. There exists a family of circuits G for which there are no wNA-SIM-secure
functional encryption schemes.

Proof. We consider two cases.

Case 1: Assume there exists a circuit family of weak pseudo-random functions

wPRF = {wPRFκ : {0, 1}κ × {0, 1}m(κ) → {0, 1}}κ∈N

where m(κ) = ω(log κ). Let Gd(x) = wPRF(x, d) and consider a family G = {Gκ}κ∈N defined as

Gκ =
{
Gd(·) : |d| = m(κ)

}
Assume, for the sake of contradiction, there exist a wNA-SIM-secure function encryption

scheme FE for G, and let |CT| denote the length of a ciphertext in the scheme. Let ` = `(κ) =
|CT|+ κ.

From Lemma 4.2.1, we know that G is (|CT+κ, |CT|)-incompressible. However, Lemma 4.3.2
below tells us that since there is a wNA-SIM secure scheme for G, the family G is (|CT|+κ, |CT|)-
compressible. This gives us the desired contradiction, and therefore, there cannot exist a
wNA-SIM-secure functional encryption scheme for G.

Case 2: Assume there does not exist a family of weak pseudo-random functions. Also, for the
sake of contradiction, assume there exists a wNA-SIM-secure function encryption scheme for all
families of circuits G.

In particular, this means that there is a functional encryption scheme for the empty circuit
family (namely, a family G that does not contain any circuits at all). A wNA-SIM-secure scheme
FE for G is also a secure public-key encryption scheme. Since public-key encryption implies
one-way functions, which in turn imply pseudo-random functions [GGM86, HILL99], we obtain
the desired contradiction.

Chapter 4. Impossibility Results for Functional Encryption 23

Lemma 4.3.2 (wNA-SIM⇒ (`, |CT|)-compressibility). Let G = {Gκ}κ∈N be a family of circuits.
Suppose there exists a wNA-SIM-secure functional encryption scheme for the G. Then, the family
G is (`, |CT|)-compressible for any polynomially bounded ` = `(κ), where |CT| denotes size of
the encryption of input x.

Informally, the compression algorithm works as follows: on inputG1, . . . , G` andG1(x), . . . , G`(x),
the output is the simulated ciphertext corresponding to an encryption of x. The decom-
pression algorithm then evaluates the decryption algorithm, which is guaranteed to produce
G1(x), . . . , G`(x).

Proof. Let (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) denote the encryption scheme for the family
G. Consider the adversary A = (A1, A2) in the wNA-SIM security experiment that acts as
follows:

• A1 chooses G1, . . . , G`
$← G independently at random and requests for the corresponding

secret keys SK1, . . . ,SK`. In addition, it chooses x
$← {0, 1}m(κ) and outputs x as the

challenge message, and (G1, . . . , G`, SK1, . . . ,SK`) as the state.

• A2 outputs α composed of the challenge ciphertext and the state (G1, . . . , G`, SK1, . . . ,SK`).

Let S denote the (admissible) stateful p.p.t. simulator guaranteed by wNA-SIM security.
We show how to use the simulator to construct a family of (deterministic) compressor and
decompressor circuits Cρ and Dρ, indexed by a random string ρ corresponding to the random
tape for the simulator:

• The compressor Cρ, on input G1, . . . , G` and y1, . . . , y` works as follows: first, compute
MPK← S(1κ; ρ) and secret keys {SKi : SKi ← S(Gi; ρ)}i∈[`]. Then compute and output
CT as the compressed string, where queries Gi(x) are answered with yi:

CT← SUx(·)(1|m(κ)|)

• The decompressor Dρ, on input G1, . . . , G` and CT first reconstructs the master public
key MPK← S(1κ; ρ) and the set of secret keys:

{SKi : SKi ← S(Gi; ρ)}i∈[`]

Note that Dρ has the same randomness ρ hard-wired, and so the secret keys SKi are
exactly the same as those used by Cρ. Finally, it computes and outputs:{

yi ← FE.Dec(SKi,CT)
}
i∈[`]

Formally, we output (Cρ,Dρ) for a random ρ, which is a pair of polynomial-size circuits.
Clearly, we achieve (`, |CT|)-compressibility, since the size of CT is determined by the functional
encryption scheme and independent of `. To establish correctness, it suffices to show that:

Pr
ρ,x,G1,...,G`

[Dρ(G1, . . . , G`,Cρ(G1, . . . , G`, G1(x), . . . , G`(x))) = (G1(x), . . . , G`(x))] ≥ 1− negl(κ)

Here, we will rely on the correctness of the functional encryption scheme as well as wNA-SIM-
security. First, consider the distinguisher Dist that given the output (x,CT, G1, . . . , G`,SK1, . . . ,SK`)
of the adversary A2 proceeds as follows:

Chapter 4. Impossibility Results for Functional Encryption 24

Output 1 iff for all i ∈ [`], FE.Dec(SKi,CT) = Gi(x).

Observe that by correctness of the encryption scheme, Dist outputs 1 with probability 1−negl(κ)
given the output of the adversary A2 in the wNA-SIM experiment. Therefore, by wNA-SIM-
security, Dist also outputs 1 with probability 1 − negl(κ) given the output of the (admissible)
simulator, where the randomness is taken over the coin tosses ρ of the simulator, along with
the random choices of x,G1, . . . , G`.

This shows that the pair of circuits (Cρ,Dρ) for a uniformly random ρ is a correct
compressor-decompressor pair, establishing the lemma.

We point out here that our lower bound extends to the setting where the simulator is not
required to be admissible, by using a family of (standard) pseudo-random functions.

Finally, the argument here generalizes to showing that functional encryption secure against
an a-priori bounded number q = q(κ) of collusions is impossible if one insists on small ciphertexts
(namely, ciphertexts with much fewer than q bits). This matches the recent result of [GVW12]
who construct such functional encryption schemes with ciphertexts of size polynomial in q.

Corollary 4.3.3. There exists a family of circuits G such that for every q = q(κ), there are
no q-collusion resistant wNA-SIM-secure functional encryption schemes with ciphertexts of size
o(q).

4.4 Extensions: Impossibility of Weaker Simulation-based Def-
initions

The idea behind our impossibility result is robust enough to apply to various relaxations of the
simulation-based security definition. In this section, we describe a number of such extensions
of our result.

Impossibility for the selective and random-input definitions. In the selective model,
the adversary is required to commit to the secret key queries G1, . . . , Gq as well as the challenge
input x before the setup phase. In particular, this means that the adversary will not be able to
pick up the circuits or the challenge input depending on the system parameters. Variants of the
selective security model are frequently considered in the literature as a relaxations of regular
security notions (see, e.g., [BB11, GPSW06, AFV11]). Another relaxation one can consider is
one where the adversary is not allowed to choose the circuits or the challenge, but instead, they
are chosen uniformly at random.

Our lower bound easily extends to these weaker notions, simply because the adversary we
consider in the proof of Lemma 4.3.2 chooses the circuits and the challenge uniformly at random,
and independent of the system parameters.

Impossibility for the non-adaptive BSW Definition (the “Rewinding Definition”).
The main difference between the definition proposed by [BSW11] and our definition 3.1.1 is that
whereas our definition restricts the simulator to be “straight-line”, the BSW definition allows
the simulator to “rewind” the adversary and interact with it in order to generate the view.

The proof of Lemma 4.3.2 transparently extends to the BSW definition. The adversary A
is the same as in the proof. The compressor C runs the simulator, executing the code of the
designated adversary A to compute the response whenever the simulator queries (“rewinds”)
A. Also, since the simulator is admissible, the queries it makes are exactly the ones that the

Chapter 4. Impossibility Results for Functional Encryption 25

compressor knows the answer to. As before, we can make the impossibility result work for even
non-admissible simulators by appealing to regular (rather than weak) PRFs.

Impossibility for Secret-key Functional Encryption. In the setting of secret-key
functional encryption (first considered by Shi, Shen and Waters [SSW09] in its predicate
encryption variant), the encryption algorithm relies on the master secret key to produce the
ciphertext for an input x.

All our impossibility results carry over to the setting of secret key functional encryption
since in the proof of Lemma 4.3.2, neither the compressor nor the decompressor needs to run
the encryption algorithm and generate ciphertexts.

Chapter 5

Functional Encryption for All
Polynomial-size Circuits

5.1 Overview of the Construction

We proceed with an overview of our construction of a q-bounded general functional encryption
scheme.

Starting point. The starting point of our constructions is the fact, observed by Sahai
and Seyalioglu [SS10], that general functional encryption schemes resilient against a single
secret-key query can be readily constructed using the beautiful machinery of Yao’s “garbled
circuits” [Yao86] (and in fact, more generally, from randomized encodings [IK00, AIK06]).1

The construction given in [SS10] only achieves “selective, non-adaptive” security, where the
adversary must specify the input message x before it sees the public key, and the single key
query C before it sees the challenge ciphertext. We show how to overcome these limitations
and achieve “full adaptive security” (for a single key query) by using techniques from non-
committing encryption [CFGN96], while still relying only on the existence of semantically secure
encryption schemes. All of our constructions henceforth also achieve full adaptive security.

Building on this, our construction proceeds in two steps.

Functional Encryption for NC1 Circuits. In the first step, we show how to construct a
q-query functional encryption scheme for NC1 circuits starting from any 1-query scheme.

We denote a “degree” of a circuit C as the degree of the polynomial computing C in the
variables of x. A degree of a circuit family denotes the maximum degree of a circuit in the
family. Let D denote the degree of NC1 family. The complexity of our construction will be
polynomial in both D and q, where q is the number of secret keys the adversary is allowed to see
before he gets the challenge ciphertext. This step does not require any additional assumption
(beyond semantically secure public key encryption).

The high level approach is as follows: we will run N independent copies of the 1-query
scheme. To encrypt, we will encrypt the views of some N -party MPC protocol computing
some functionality related to C (aka “MPC in the head” [IKOS07]). As the underlying MPC
protocol, we will rely on the BGW semi-honest MPC protocol without degree reduction (c.f.

1We note that [SS10] is completely insecure for collusions of size two: in particular, given two secret keys
SK0` and SK1` , an adversary can derive the SKC for any other C, and moreover, completely recover x.

26

Chapter 5. Functional Encryption for All Polynomial-size Circuits 27

[DI05, Section 2.2]). We will exploit the fact that this protocol is completely non-interactive
when used to compute bounded-degree functions.

We proceed to sketch the construction. Suppose the encryptor holds input x = (x1, . . . , x`),
the decryptor holds circuit C, and the goal is for the decryptor to learn C(x1, . . . , x`). In
addition, we fix t and N to be parameters of the construction.

• The public keys of the system consists ofN independent public keys for the 1-query scheme
for the same family C(·). The key generation algorithm associates the decryptor with a
random subset Γ ⊆ [N] of size Dt+ 1 and generates secret keys for the public keys MPKi
for i ∈ Γ. (Note key generation is already a point of departure from previous q-bounded
IBE schemes in [DKXY02, CHH+07] where the subset Γ is completely determined by C.)

• To encrypt x, the encryptor first chooses ` random polynomials µ1, . . . , µ` of degree t with
constant terms x1, . . . , x` respectively. The encryptor computes CTi to be the encryption
of (µ1(i), . . . , µ`(i)) under the i’th public key, and sends (CT1, . . . ,CTN).

• To decrypt, observe that since C(·) has degree at most D,

P (·) := C(µ1(·), . . . , µ`(·))

is a univariate polynomial of degree at most Dt and whose constant term is C(x1, . . . , x`).
Now, upon decrypting CTi for each i ∈ Γ, the decryptor recovers P (i) = C(µ1(i), . . . , µ`(i)).
It can then recover P (0) = C(x1, . . . , x`) via polynomial interpolation.

The key question now is: what happens when q of the decryptors collude? Let Γ1, . . . ,Γq ⊆ [N]
be the (uniformly random) sets chosen for each of the q secret key queries of the adversary.
Whenever two of these sets intersect, the adversary obtains two distinct secret keys for the same
public key in the underlying one-query FE scheme. More precisely, for every j ∈ Γ1 ∩ Γ2, the
adversary obtains two secret keys under the public key MPKj . Since security of MPKj is only
guaranteed under a single adversarial query, we have to contend with the possibility that in
this event, the adversary can potentially completely break the security of the public key MPKj ,
and learn a share of the encrypted message x.

In particular, to guarantee security, we require that sets Γ1, . . . ,Γq have small pairwise
intersections which holds for a uniformly random choice of the sets under an appropriate choice
of the parameters t and N . With small pairwise intersections, the adversary is guaranteed to
learn at most t shares of the input message x, which together reveal no information about x.

For technical reasons, this is not sufficient to establish security of the basic scheme. The first
issue, which already arises for a single key query, is that we need to randomize the polynomial
P by adding a random share of 0; this is needed to ensure that the evaluations of P correspond
to a random share of C(x1, . . . , x`), and indeed, the same issue also arises in the BGW protocol.
More generally, we need to rerandomize the polynomial P for each of the q queries C1, . . . , Cq,
in order to ensure that it is consistent with random shares of Ci(x1, . . . , x`), for i = 1, 2, . . . , q.
This can be done by having the encryptor hard-code additional randomness into the ciphertext.
For more details, see Section 5.3.

Predicate encryption with public index. We point out that this construction also gives
us for free a predicate encryption scheme with public index for arbitrary polynomial-size circuits
(with no a-priori bound on the degree). In this setting, it suffices to realize the following family

Chapter 5. Functional Encryption for All Polynomial-size Circuits 28

of circuits parametrized by predicates g:

Cg(ind, µ) =

 (ind, µ) if g(ind) = 1

(ind, 0) otherwise

We can write Cg as:
Cg(ind, µ) = (ind, µ · g(ind))

Since ind is always part of the output, we can just publish ind “in the clear”. Now, observe that
for all ind, Cg, we have Cg(ind, µ) is a degree one function in the input µ.

To obtain a predicate encryption scheme with public index, we observe that the construction
above satisfies a more general class of circuits. In particular, if the input to the encryption
algorithm is composed of a public input (that we do not wish to hide) and a secret input (that
we do wish to hide), then the construction above only requires that the circuit C has small
degree in the bits of the secret input. Informally, this is true because we do not care about
hiding the public input, and thus, we will not secret share it in the construction above. Thus,
the degree of the polynomial P (·) grows only with the degree of C in its secret inputs. The
bottom line is that since predicate encryption schemes with public index deal with circuits that
have very low degree in the secret input (degree 1, in particular), our construction handles
arbitrary predicates.

A Bootstrapping Theorem and Functional Encryption for P. In the second step, we
show a “bootstrapping theorem” for functional encryption schemes. In a nutshell, this shows
how to generically convert a q-query secure functional encryption scheme for NC1 circuits
into one that is q-query secure for arbitrary polynomial-size circuits, assuming in addition the
existence of a pseudo-random generator (PRG) that can be computed with circuits of degree
poly(κ). Such PRGs can be constructed based on most concrete intractability assumptions such
as those related to factoring, discrete logarithms and lattices.

The main tool that enables our bootstrapping theorem is the notion of randomized
encodings [Yao86, IK00, AIK06]. Instead of using the FE scheme to compute the (potentially
complicated) circuit C, we use it to compute its randomized encoding C̃ which is typically
a much easier circuit to compute. In particular, secret keys are generated for C̃ and the
encryption algorithm for the bounded-degree scheme is used to encrypt the pair (x;R), where
R is a uniformly random string. The rough intuition for security is that the randomized encoding
C̃(x;R) reveals “no more information than” C(x) itself and thus, this transformation does not
adversely affect the security of the scheme.

Unfortunately, intuitions can be misleading and so is this one. Note that in the q-query
setting, the adversary obtains not just a single randomized encoding, but q of them, namely
C̃1(x;R), . . . , C̃q(x;R). Furthermore, since all these encodings use the same randomness R, the
regular notion of security of randomized encodings does not apply as-is. We solve this issue by
hard-coding a large number of random strings (proportional to q) in the ciphertext and using
a cover-free set construction, ensuring that the adversary learns q randomized encodings with
independently chosen randomness. See Section 5.4 for more details.

Putting this construction together with a randomized encoding scheme for polynomial-
size circuits (which follows from Yao’s garbled circuits [Yao86, AIK06]) whose complexity is
essentially the complexity of computing a PRG, we get our final FE scheme.

As a bonus, we show a completely different way to bootstrap q-query FE schemes for NC1

Chapter 5. Functional Encryption for All Polynomial-size Circuits 29

circuits into a q-query FE scheme for any polynomial-size circuits, using a fully homomorphic
encryption scheme [Gen09a, BV11]. See Section 5.5 for more details.

5.2 Background Constructions

5.2.1 Adaptive, Singleton

Consider the following simple circuit family that consists of a single identity circuit C = {C}, in-
put space X = {0, 1} and C(x) = x. We construct a (1, one)-AD-SIM-secure functional encryp-
tion for this circuit family, starting from any CPA-secure encryption (PKE.Setup,PKE.Enc,PKE.Dec).
(The construction is inspired by techniques used in non-committing encryption [CFGN96,
DN00, KO04].)

• Setup BasicFE.Setup(1κ): Run PKE.Setup twice to generate independent master public-
key/secret-key pairs

(PKi,SKi)← PKE.Setup(1κ) for i = 0, 1

Output the master public/secret key pair

MPK := (PK0,PK1) and MSK := (SK0,SK1)

• Key Generation BasicFE.Keygen(MSK, C): On input the master secret key MSK and a

circuit C, pick a random bit r
$← {0, 1} and output the secret key

SK := (r, SKr)

• Encryption BasicFE.Enc(MPK, x): On input the master public key MPK and an input
message x ∈ {0, 1}: output as ciphertext

CT := (PKE.Enc(PK0, x),PKE.Enc(PK1, x))

• Decryption BasicFE.Dec(SK,CT): On input a secret key SK = (r, SKr) and a ciphertext
CT = (CT0,CT1), output

PKE.DecSKr(CTr)

Correctness. Correctness is straight-forward.

Security. We prove that the scheme is (1, one)-AD-SIM-secure. We define a simulator
BasicFE.Sim that proceeds as follows:

• If the adversary makes a secret key query before seeing the ciphertext, the simulator
learns x and can therefore simulate the ciphertext perfectly via normal encryption.

• If the adversary requests for the ciphertext first, then the simulator picks a random bit

β
$← {0, 1} and outputs as ciphertext:

CT := (PKE.Enc(PK0, β),PKE.Enc(PK1, β))

Chapter 5. Functional Encryption for All Polynomial-size Circuits 30

When the adversary then requests for a secret key, the simulator learns MSK = (SK0, SK1)
and x, and outputs as the secret key:

SK := (β ⊕ x,SKβ⊕x)

We establish security via a series of Games.

Game 0. Normal encryption.

Game 1. If the adversary requests for the ciphertext before making a secret key query, then
we modify the ciphertext as follows:

CT := (PKE.Enc(PK0, x⊕ r),PKE.Enc(PK1, x⊕ r))

Game 2. Output of the simulator.

It is easy to see that the outputs of Games 0 and 1 are computationally indistinguishable by
CPA security, and that the outputs of Games 1 and 2 are identically distributed.

Extension to larger X . It is easy to see that this construction extends to X = {0, 1}λ
via λ-wise repetition (that is, λ independent master public keys, etc). We can then prove the
security by defining a series of hybrids Hi for 0 ≤ i ≤ λ, where in hybrid Hi, i bits of the input
message and secret keys are simulated and λ− i bits and secret keys are real. If there exists a
distinguisher between hybrids Hi and Hi+1 for some i, we can then break the security of the
public-key encryption similarly to the case of a single bit input message space.

5.2.2 Adaptive, “Brute Force”

Boneh, et. al [BSW11, Section 4.1] presented a AD-IND-secure scheme for any functionality
where the circuit family has polynomial size, starting from any semantically secure public-key
encryption scheme. For simplicity, we just write down the construction for a family of two
circuits C = {C0, C1}, which easily extends to any poly-size family. We show that if we replace
the underlying encryption scheme with the previous (1, one)-AD-SIM-secure FE encryption for
singleton circuit space C′ = {C∗}, then we obtain a (1, one)-AD-SIM-secure FE encryption for
C.

• Setup BFFE.Setup(1κ): Run BasicFE.Setup twice to generate independent master public-
key/secret-key pairs

(MPKi,MSKi)← BasicFE.Setup(1κ) for i = 0, 1

Output (MPK0,MPK1) as the master public key and (MSK0,MSK1) as the master secret
key.

• Key Generation BFFE.Keygen(MSK, Cb): On input the master secret key MSK and a
circuit Cb ∈ C, output as secret key SKb ← BasicFE.Keygen(MSKb, C

∗).

Chapter 5. Functional Encryption for All Polynomial-size Circuits 31

• Encryption BFFE.Enc(MPK, x): On input the master public key MPK and an input
message x ∈ X , output as ciphertext

CT := (BasicFE.Enc(MPK0, C0(x)),BasicFE.Enc(MPK1, C1(x)))

• Decryption BFFE.Dec(SKb,CT): On input a secret key SKb and a ciphertext CT =
(CT0,CT1), output

BasicFE.DecSKb(CTb)

Correctness. Correctness is straight-forward.

Security. We prove that the scheme is (1, one)-AD-SIM-secure. The simulator BFFE.Sim
proceeds as follows:

• If the adversary makes a query Cb before seeing the ciphertext, the simulator learns Cb(x)
and then simulates the ciphertext as follows:

CTb ← BasicFE.Enc(MPKb, Cb(x)) and CT1−b ← BasicFE.Sim(MPK1−b, ∅, 1|x|)

Output CT := (CT0,CT1)

• If the adversary requests for the ciphertext first, then the simulator simulates the
ciphertext as follows:

CTi ← BasicFE.Sim(MPKi, ∅, 1|x|), for i = 0, 1

Output CT := (CT0,CT1). When the adversary then requests for a secret key Cb, the
simulator learns MSK = (MSK0,MSK1) and Cb, Cb(x) and outputs as secret key

SKb ← BasicFE.Sim(MSKb, (Cb(x), Cb), 1
|x|)

We establish security via a series of Games.

Game 0. Normal encryption.

Game 1. Roughly speaking, we will simulate on MPK0,CT0 and follow normal encryption on
MPK1,CT1. More precisely, the simulator proceeds as follows:

• If the adversary makes a secret key query Cb before seeing the ciphertext, proceed as
follows:

– if b = 0, use the normal encryption for both CT0 and CT1.

– if b = 1, follow BFFE.Sim (that is, generate CT0 using BasicFE.Sim).

• If the adversary requests for the ciphertext first, then the simulator simulates the
ciphertext as follows:

CT0 ← BasicFE.Sim(MPK0, ∅) and CT1 ← BasicFE.Enc(MPK1, C1(x))

Output CT := (CT0,CT1). When the adversary then requests for a secret key Cb, the
simulator proceeds as follows:

Chapter 5. Functional Encryption for All Polynomial-size Circuits 32

– if b = 0, follow BFFE.Sim (that is, generate SK0 using BasicFE.Sim);

– if b = 1, follow normal encryption (that is, generate SK1 using BasicFE.Keygen).

Game 2. Output of the simulator.

It is easy to see that the outputs of Games 0 and 1 are computationally indistinguishable by
(1, one)-AD-SIM of the underlying scheme. The same applies to the outputs of Games 1 and 2.

5.2.3 One-Query General Functional Encryption from Randomized Encod-
ing

Sahai and Seyalioglu [SS10] proved (1, one)-NA-SIM; we observe the same “bootstrapping”
construction works for (1, one)-AD-SIM. Let C be an arbitrary family of poly-size circuits. We
construct ONEQFE scheme for C as follows.

Let BFFE denote the brute-force construction defined above. In a high-level the idea is
this: suppose we wish to construct an FE scheme for a polynomial-size circuit C and input x.
Let U(C, x) denote the universal circuit that output C(x). Let Ũ(C, x;R) denote a randomized
encoding of U(C, x) where for every x,R, Ũ(· , x;R) has small locality. Then, assuming C has
length λ, we can write

Ũ(C, x;R) = (Ũ1(C[1], x;R), . . . , Ũλ(C[λ], x;R))

where Ũi(· , x;R) depends only on C[i], the ith bit of circuit C. For each i, we can now use
BFFE scheme for a family of two circuits:

Ũi := {Ũi(0, · ; ·), Ũi(1, · ; ·)}

• Setup FE.Setup(1κ): Run the brute-force setup algorithm λ times to generate indepen-
dent master public-key/secret-key pairs

(MPKi,MSKi)← BFFE.Setup(1κ) for Ũi and i = 1, . . . , λ

Output (MPKi)
λ
i=1 as the master public key and (MSKi)

λ
i=1 as the master secret key.

• Key Generation FE.Keygen(MSK, C): On input the master secret key MSK and a circuit
C ∈ C, compute

SKC,i ← BFFE.Keygen(MSKi, Ũi(C[i], · ; ·)) for i = 1, . . . , λ

Output as secret key
SKC := ((SKC,i)i∈[λ])

• Encryption FE.Enc(MPK, x): On input the master public key MPK and an input message
x ∈ X , choose R and compute

CTi ← BFFE.Enc(MPKi, (x;R)) for i = 1, . . . , λ

Output (CTi)
λ
i=1 as the ciphertext.

• Decryption FE.Dec(SKC ,CT): On input a secret key SKC = (SKC,i)i∈[λ]) and a

ciphertext CT = (CTi)
λ
i=1, do the following:

Chapter 5. Functional Encryption for All Polynomial-size Circuits 33

1. Compute ỹi ← BFFE.Dec(MSKi,CTi) = Ũi(C[i], x;R) for i = 1, . . . , λ;

2. Run the decoder to get y ← RE.Decode(ỹ1, . . . , ỹλ).

Output y.

Correctness. Correctness follows directly from the correctness of the brute-force FE
construction and randomized encodings.

Security. We first prove that ONEQFE is (1, one)-NA-SIM-secure (See below on how to
modify the proof to show (1, one)-AD-SIM-security). Recall that the simulator gets as input
the following values:

1. The public key: (MPKi)
λ
i=1;

2. The query C and the corresponding secret key SKC = (SKC,i)
λ
i=1;

3. The output of C: C(x);

On the very high level, the security of the scheme follows from the fact that by the security
of brute-force construction the adversary can only learn ỹi for all i and by the security of the
randomized encoding the adversary can only learn y = C(x).

We establish security via a series of Games. Game 0 corresponds to the real experiment and
Game λ + 1 corresponds to the ideal experiment where simulator S produced the ciphertext.
The goal of the simulator S is to produce a ciphertext that is indistinguishable from the
real ciphertext. Let BFFE.Sim and RE.Sim be the brute-force FE and randomized encoding
simulators, respectively.

Game 0. Real encryption experiment.

Game i for i ∈ {1, . . . , λ}. In Game i, i ciphertexts are encrypted properly using MPKi and
λ− i ciphertexts are simulated. Formally, for all 1 ≤ j ≤ i, let

CTi ← BFFE.Enc(MPKi, (x;R))

For all i < j ≤ λ, let

CTi ← BFFE.Sim(MPKi, (Ũi(C[i], x;R), Ũi(C[i], · ; ·), SKC,i))

Output the ciphertext
CT := (CT1, . . . ,CTλ)

Game λ + 1. Same as Game λ, except the randomized encoding is now produced by the
RE.Sim. Formally, the simulator S does the following.

1. Let
(Ũi(C[i], x;R))λi=1 ← RE.Sim(1κ, U, U(C, x)))

2. For all i ∈ [λ], let

CTi ← BFFE.Sim(MPKi, (Ũi(C[i], x;R), Ũi(C[i], · ; ·),SKC,i))

Chapter 5. Functional Encryption for All Polynomial-size Circuits 34

3. Output the ciphertext
CT := (CT1, . . . ,CTλ)

Claim 5.2.0.1. The outputs of Game 0 and Game λ are computationally indistinguishable.

Proof. The only different between Games 0 and λ is that in the later the ciphertext produced
by the simulator. If there is a distinguisher between the Games, then by we can distinguish
between Games i and i+ 1 for some i, hence compromise the security of the underlying BFFE
construction.

Claim 5.2.0.2. The outputs of Game λ and Game λ+1 are computationally indistinguishable.

Proof. This claim follows directly from the security of the randomized encoding simulator.

Therefore, we can conclude that the real experiment is indistinguishable from the ideal
experiment.

We now sketch how to modify the above proof to show that ONEQFE is (1, one)-AD-SIM-
secure. Construct the simulator S = (S1, S2) as follows. The simulator S1 is the same as
in the non-adaptive case, except it passes the simulated decomposable randomized encoding
Ũ(C, x;R) as a part of the state to S2. Now, assume the oracle query C comes after the
challenge ciphertext (the other case is trivial). We invoke the single brute-force simulator
BFFE.Sim many times for all MSKi. For every oracle queries Ũi(C[i], · ; ·) made by BFFE.Sim
reply with ỹi ← Ũi(C[i], x;R). Finally, output (SKC,i)i∈[λ] as the secret key to the adversary.

5.3 A Construction for NC1 circuits

In this section, we construct a functional encryption scheme for all NC1 circuits secure against
q secret-key queries, starting from one that is secure against a single secret-key query. Our
construction will rely on any semantically secure public-key encryption scheme.

The Class of Circuits. We construct q-bounded FE scheme for a circuit family C := NC1.
In particular, we consider polynomial representation of circuits C in the family. The input
message space X = F` is an `-tuple of field elements, and for every circuit C ∈ C, C(·) is an
`-variate polynomial over F of total degree at most D. The complexity of our construction will
be polynomial in both D and q, where q is the number of secret keys the adversary is allowed
to see before he gets the challenge ciphertext.

5.3.1 Our Construction

Let C := NC1 be a circuit family with circuits of degree D = D(κ) in its input, and let
q = q(κ) be a bound on the number of secret key queries. Our scheme is associated with
additional parameters S = S(κ), N = N(κ), t = t(κ) and v = v(κ) (for an instantiation of the
parameters, see Section 5.3.2).

We start by defining a new family G as follows:

GC,∆(x, Z1, . . . , ZS) := C(x) +
∑
i∈∆

Zi (5.1)

Chapter 5. Functional Encryption for All Polynomial-size Circuits 35

where ∆ ⊆ [S] and Z1, . . . , ZS ∈ F.

Let (OneQFE.Setup,OneQFE.Keygen,OneQFE.Enc,OneQFE.Dec) be a functional encryption
scheme for G secure against a single secret key query. Our q-query secure encryption scheme
BDFE = (BdFE.Setup,BdFE.Keygen,BdFE.Enc,BdFE.Dec) for C works as follows:

• Setup BdFE.Setup(1κ): Run the one-query setup algorithm N times to generate
independent master public-key/secret-key pairs

(MPKi,MSKi)← OneQFE.Setup(1κ) for i = 1, . . . , N

Output (MPKi)
N
i=1 as the master public key and (MSKi)

N
i=1 as the master secret key.

• Key Generation BdFE.Keygen(MSK, C): On input the master secret key MSK and a
circuit C ∈ C,

1. Choose a uniformly random set Γ ⊆ [N] of size tD + 1;

2. Choose a uniformly random set ∆ ⊆ [S] of size v;

3. Generate the secret keys

SKC,∆,i ← OneQFE.Keygen(MSKi, GC,∆) for every i ∈ Γ

Output as secret key SKC := (Γ,∆, (SKC,∆,i)i∈Γ).

• Encryption BdFE.Enc(MPK, x): On input the master public key MPK = (MPKi)
N
i=1 and

an input message x = (x1, . . . , x`) ∈ X :

1. For i = 1, 2, . . . , `, pick a random degree t polynomial µi(·) whose constant term is
xi.

2. For i = 1, 2, . . . , S, pick a random degree Dt polynomial ζi(·) whose constant term
is 0.

3. Run the one-query encryption algorithm OneQFE.EncN times to produce ciphertexts

CTi ← OneQFE.Enc
(
MPKi, (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i))

)
for i = 1, . . . , N

Output (CTi)
N
i=1 as the ciphertext.

• Decryption BdFE.Dec(SKC ,CT): On input a secret key SKC = (Γ,∆, (SKC,∆,i)i∈Γ) and
a ciphertext CT = (CTi)

N
i=1, do the following:

1. Compute a degree Dt polynomial η(·) such that η(i) = OneQFE.Dec(SKC,∆,i,CTi)
for all i ∈ Γ.

2. Output η(0).

Correctness

We show that the scheme above is correct. By correctness of the underlying single-query FE,
we have that for all i ∈ Γ,

η(i) = GC,∆(µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i))

= C(µ1(i), . . . , µ`(i)) +
∑
a∈∆

ζa(i)

Chapter 5. Functional Encryption for All Polynomial-size Circuits 36

Since |Γ| ≥ Dt+ 1, this means that η is equal to the degree Dt polynomial

η(·) = C(µ1(·), . . . , µ`(·)) +
∑
a∈∆

ζa(·)

Hence, η(0) = C(x1, . . . , x`) = C(x).

5.3.2 Setting the Parameters

We show how to set the parameters S = S(κ), N = N(κ) and t = t(κ). These parameters
govern the choice of the sets Γ and ∆ during the key generation algorithm, and are required to
satisfy the following two conditions:

Small Pairwise Intersections. Let Γ1, . . . ,Γq ⊆ [N] be the (uniformly random) sets chosen
for each of the q secret key queries of the adversary. Whenever two of these sets intersect,
the adversary obtains two distinct secret keys for the underlying one-query secure FE scheme.
More precisely, for every j ∈ Γ1∩Γ2, the adversary obtains two secret keys under the public key
MPKj . Since security of MPKj is only guaranteed under a single adversarial query, we have to
contend with the possibility that in this event, the adversary can potentially completely break
the security of the public key MPKj . In particular, for every such j, the adversary potentially
learns a share of the encrypted input message x.

Thus, to guarantee security, we require that the union of the pairwise intersections of

Γ1, . . . ,Γq is small. In particular, we require that

∣∣∣∣⋃i 6=j(Γi ∩ Γj)

∣∣∣∣ ≤ t. This ensures that the

adversary learns at most t shares of the input message x, which together reveal no information
about x.

A simple probabilistic argument shows that this is true (with probability 1−2−Ω(t/q2)) as long
as q2·(Dt/N)2·N ≤ t/10. In other words, we will set t(κ) = Θ(q2κ) andN(κ) = Θ(D2q2t) which
satisfies the above constraint with probability 1 − 2−Ω(κ). For details, we refer an interested
reader to Section 5.6.1.

Cover-Freeness. Let ∆1, . . . ,∆q ⊆ [S] be the (uniformly random) sets of size v chosen for
each of the q secret key queries of the adversary. The security proof relies on the condition
that the polynomials

∑
a∈∆j

ζa(·) are uniformly random and independent which is true if the

collection of sets ∆1, . . . ,∆q is cover-free. That is, for every i ∈ [q]: ∆i \
(⋃

j 6=i ∆j

)
6= φ.

A simple probabilistic argument shows that this is true (with probability 1 − 2−Ω(q2v2/S))
as long as q2v2/S ≤ v/100. In other words, we will set v(κ) = Θ(κ) and S(κ) = Θ(vq2) which
satisfies the above constraint with probability 1 − 2−Ω(κ). For details, we refer an interested
reader to Section 5.6.2.

We remark that in our construction, multiple secret key queries for the same C ∈ C result in
different secret keys SKC , essentially because of the different random choices of the sets ∆ and
Γ. Using a pseudorandom function (applied to C), it is possible to ensure that multiple secret
key queries for the same C result in the same answer.

Chapter 5. Functional Encryption for All Polynomial-size Circuits 37

5.3.3 Proof of Security

Theorem 5.3.1. Let ONEQFE be a (1, one)-AD-SIM-secure (resp. (1, one)-NA-SIM-secure)
functional encryption scheme for any family of poly-size circuits. Then, for any circuit family C
computable in NC1 the BDFE scheme described above is (q, one)-AD-SIM-secure (resp. (q, one)-
NA-SIM-secure).

We prove that the construction BDFE given in Section 5.3 is (q, one)-AD-SIM-secure if we
start out with a (1, one)-AD-SIM-secure scheme. This subsumes the non-adaptive variant of the
proof. By Theorem 3.3.1, this implies that BDFE is (q,many)-NA-SIM-secure. However, it is
only one message adaptive secure ((q, one)-AD-SIM) (see Figure 3.1 for relations.)

We establish security by first defining the simulator and then arguing that its output is
indistinguishable via a series of Games. For readability, we adopt the following convention:
we use i to index over values in [N], and we use j to index over the queries.

Overview. Suppose the adversary receives the challenge ciphertext after seeing q∗ ≤ q
queries. The simulator has to simulate the ciphertext and answer the remaining secret key
queries. We may assume it already knows all of Γ1, . . . ,Γq,∆1, . . . ,∆q. This is because:

• for j ≤ q∗, the simulator gets Γj ,∆j from SKj ;

• for j > q∗, the simulator gets to program Γj ,∆j and could pick all these quantities in
advance.

We first describe our strategy for simulating the ciphertext CT = (CT1, . . . ,CTN) and the secret
keys. Let I denote ⋃

j 6=j′
(Γj ∩ Γj′)

We will consider two cases:

• i ∈ I: Here, we may issue more than one secret key corresponding to (MPKi,MSKi);
therefore, we can no longer rely on the security of the underlying one-query FE scheme.
Instead, we rely on the statistical security of the underlying MPC protocol and the fact
that |I| ≤ t. Specifically, we can simulate CTi and the secret keys honestly.

• i /∈ I: Here, we issue at most one secret key corresponding to (MPKi,MSKi); this is
because at most one of the sets Γ1, . . . ,Γq contains i. Suppose i ∈ Γj . We may now
appeal to the security of the underlying one-query FE scheme. Specifically, we simulate
CTi computationally using the simulator for the underlying one-query FE scheme. If
j ≤ q∗, then we do not need to program secret keys at all. If j > q∗, upon receiving query
Cj , we program the corresponding keys SKCj ,∆j ,i using the one-query simulator.

We formally define the simulator BdFE.Sim as follows:

Simulating the ciphertext after query q∗. Here, the simulator knows Γ1, . . . ,Γq,∆1, . . . ,∆q;
the queries C1, . . . , Cq∗ , the outputs C1(x), . . . , Cq∗(x), and the secret keys SK1, . . . ,SKq∗ .

1. Uniformly and independently sample ` random degree t polynomials µ1, . . . , µ` whose
constant terms are all 0.

Chapter 5. Functional Encryption for All Polynomial-size Circuits 38

2. We sample the polynomials ζ1, . . . , ζS as follows: let ∆0 := ∅. For j = 1, 2, . . . , q:

(a) by the cover-free property, fix some a∗ ∈ ∆j \ (∆0 ∪ · · · ∪∆j−1);

(b) for all a ∈ (∆j \ (∆0 ∪ · · · ∪∆j−1)) \ {a∗}, set ζa to be a uniformly random degree
Dt polynomial whose constant term is 0;

(c) if j ≤ q∗, pick a random degree Dt polynomial ηj(·) whose constant term is Cj(x);
if j > q∗, pick random values for ηj(i) for all i ∈ I;

(d) the evaluation of ζa∗ on the points in I is defined by the relation:

ηj(·) = Cj(µ1(·), . . . , µ`(·)) +
∑
a∈∆j

ζa(·)

Finally, for all a /∈ (∆1∪ · · · ∪∆q), set ζa to be a uniformly random degree Dt polynomial
whose constant term is 0.

3. For each i ∈ I, run the one-query encryption algorithm OneQFE.Enc to produce
ciphertexts

CTi ← OneQFE.Enc
(
MPKi, (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i))

)
4. For each i /∈ I, run the one-query simulator OneQFE.Sim to produce ciphertexts CTi as

follows: at most one of Γ1, . . . ,Γq contains i.

• If such a set exists, let j denote the unique set Γj that contains i (i.e. i ∈ Γj). If
j ≤ q∗, compute

CTi ← OneQFE.Sim
(
MPKi, (ηj(i), GCj ,∆j , SKCj ,∆j ,i)

)
where SKCj ,∆j ,i is provided as part of SKj .

• If no such set exist or j > q∗, then compute

CTi ← OneQFE.Sim
(
MPKi, ∅

)
Output (CTi)

N
i=1 as the ciphertext.

Simulating secret key SKj, for j > q∗. Here, the simulator gets MSK = (MSK1, . . . ,MSKN)
and Cj(x), Cj and needs to simulate (SKCj ,∆j ,i)i∈Γj .

1. For each i ∈ Γj ∩ I, pick SKCj ,∆j ,i ← OneQFE.Keygen(MSKi, GCj ,∆j).

2. For each i ∈ Γj \ I (i.e, Γj is the only set that contains i),

(a) pick a random degree Dt polynomial ηj(·) whose constant term is Cj(x) and subject
to the constraints on the values in I chosen earlier;

(b) run OneQFE.Sim(MSKi, (ηj(i), GCj ,∆j)) to obtain SKCj ,∆j ,i so that CTi decrypts to
ηj(i).

Output (SKCj ,∆j ,i)i∈Γj .

We establish security via a series of Games. The simulator is described above.

Chapter 5. Functional Encryption for All Polynomial-size Circuits 39

Game 1. We modify ζ1, . . . , ζS , η1, . . . , ηq to be the same as that in the simulator.

Game 2. We simulate (CTi)i/∈I and SKj , j > q∗ as in the simulator.

Game 3. The output of the simulator. That is, we modify how polynomials µ1, . . . , µ` are
sampled.

Claim 5.3.1.1. The outputs of Game 0 and Game 1 are identically distributed.

Proof. In the normal encryption, ζa∗ is chosen at random and ηj(·) is defined by the relation.
From Step 2 in the ciphertext simulation and Step 2 in the secret keys simulation (for j > q∗)
BdFE.Sim, essentially, chooses ηj(·) at random which defines ζa∗ . It is easy to see that reversing
the order of how the polynomials are chosen produces the same distribution.

Claim 5.3.1.2. The outputs of Game 1 and Game 2 are computationally indistinguishable.

Proof. Informally, this follows from the security of the underlying one-query FE scheme and
the fact that for all i /∈ I, we run OneQFE.Keygen(MSKi, ·) at most once.

By a hybrid argument, it suffices to show that for all i /∈ I, the distribution of CTi in Game 1
and 2 are computationally indistinguishable (given MPKi and SK1, . . . ,SKq). Indeed, fix such
a i /∈ I and a corresponding unique j such that i ∈ Γj (the case no such j exists is similar).

First, observe that amongst SK1, . . . ,SKq, only SKj contains a key SKCj ,∆j ,i that is generated
using either SKCj ,∆j ,i ← OneQFE.Keygen(MSKi, GCj ,∆j) (for the non-adaptive queries) or
SKCj ,∆j ,i ← OneQFE.Sim(MSKi, (ηj(i), GCj ,∆j)) (for the adaptive queries).

Case 1: Assume j ≤ q∗. Observe that

ηj(i) = Cj(µ1(i), . . . , µ`(i)) +
∑
a∈∆j

ζa(i)

= GCj ,∆j (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i)) (5.2)

which means that in both Games 1 and 2, CTi decrypts to the same value. Now, note that in
Game 1, CTi is generated using

CTi ← OneQFE.Enc
(
MPKi, (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i))

)
By the security of the underlying FE scheme, this is computationally indistinguishable from

OneQFE.Sim
(
MPKi, (GCj ,∆j (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i)), GCj ,∆j , SKCj ,∆j ,i)

)
By the Equation 5.2, this is the same as

OneQFE.Sim
(
MPKi, (ηj(i), GCj ,∆j , SKCj ,∆j ,i)

)
which is the distribution of CTi in Game 2.

Case 2: Assume j > q∗. Then:

• CTi ← OneQFE.Sim
(
MPKi, ∅

)
and

Chapter 5. Functional Encryption for All Polynomial-size Circuits 40

• SKCj ,∆j ,i ← OneQFE.Sim(MSKi, (ηj(i), GCj ,∆j))

Similarly, by the Equation 5.2 and by the security of the underlying one-query FE scheme this
simulated pair of ciphertext and secret key is indistinguishable from the real.

Claim 5.3.1.3. The outputs of Game 2 and Game 3 are identically distributed.

Proof. In Game 2, the polynomials µ1, . . . , µ` are chosen with constant terms x1, . . . , x`,
respectively. In Game 3, these polynomials are now chosen with 0 constant terms. This only
affects the distribution of µ1, . . . , µ` themselves and polynomials ζ1, . . . , ζS . Moreover, only
the evaluations of these polynomials on the points in I affect the outputs of the games. Now
observe that:

• The distribution of the values {µ1(i), . . . , µ`(i)}i∈I are identical in both Game 2 and
3. This is because in both games, we choose these polynomials to be random degree t
polynomials (with different constraints in the constant term), so their evaluation on the
points in I are identically distributed, since |I| ≤ t.

• The values {ζ1(i), . . . , ζS(i)}i∈I depend only on the values {µ1(i), . . . , µ`(i)}i∈I .

The claim follows readily from combining these observations.

5.4 A Bootstrapping Theorem for Functional Encryption

In this section, we show a “bootstrapping-type” theorem for functional encryption (FE). In
a nutshell, this shows how to take a q-query functional encryption scheme for “bounded
degree” circuits, and transform them into a q-query functional encryption scheme for arbitrary
polynomial-size circuits. The transformation relies on the existence of a pseudorandom
generator (PRG) that stretches the seed by a constant factor, and which can be computed by
circuits of degree poly(κ). This is a relatively mild assumption, and in particular, is implied by
most concrete intractability assumptions commonly used in cryptography, such as ones related
to factoring, discrete logarithm, or lattice problems.

In a high-level the idea is this: Suppose we wish to construct an FE scheme for a family
C of polynomial-size circuit. Let C ∈ C and x be some input. Then, let C̃(x;R) denote a
randomized encoding of C that is computable by a constant-depth circuit with respect to the
inputs x and R. By [AIK06, Theorem 4.14], we know that assuming the existence of a pseudo-
random generator in ⊕L/poly, such a randomized encoding exists for every polynomial-size
circuit C.

Consider a new family of circuits G defined as follows:

GC,∆(x,R1, . . . , RS) := C̃

(
x;
⊕
a∈∆

Ra

)
Observe the following:

• Since for any C, C̃(· ; ·) is computable by a constant-depth circuit, then GC,∆(· ; ·) is
computable by a constant-degree polynomial. Using the result from the previous scheme,
we have a (q, one)-AD-SIM-secure FE scheme for G.

Chapter 5. Functional Encryption for All Polynomial-size Circuits 41

• Given a functional encryption scheme ford G, it is easy to construct one for C. Decryption
works by first recovering the output of GC,∆ and then applying the decoder for the
randomized encoding.

• Informally, (1, one)-AD-SIM-security follows from the fact that the ciphertext together
with the secret key reveals only the output of C̃(x), which in turn reveals no more
information than C(x). More formally, given C(x), we can simulate C̃(x) and then the
ciphertext, using first the simulator for the randomized encoding and then that for the
underlying FE scheme.

• The role of the subset ∆ is similar to that in the preceding construction — to
“rerandomize” the randomness used in G, which is necessary to achieve (q, one)-AD-SIM-
security.

Functional Encryption Scheme for C. Let (BdFE.Setup,BdFE.Keygen,BdFE.Enc,BdFE.Dec)
be a (q, one)-AD-SIM-secure scheme for G, with a simulator BdFE.Sim. We construct an
encryption scheme (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) for C works as follows (that takes
parameters S, v as before).

• Setup FE.Setup(1κ): Run the bounded FE setup algorithm to generate a master public-
key/secret-key pair (MPK,MSK)← BdFE.Setup(1κ).

• Key Generation FE.Keygen(MSK, C): On input the master secret key MSK and a circuit
C ∈ C, do the following:

1. Choose a uniformly random set ∆ ⊆ [S] of size v;

2. Generate the secret key SKC,∆ ← BdFE.Keygen(MSK, GC,∆).

Output as secret key SKC := (∆,SKC,∆).

• Encryption FE.Enc(MPK, x): On input the master public key MPK and an input message
x ∈ X , do the following:

1. For i = 1, 2, . . . , S, choose uniformly random Ri
$← {0, 1}r.

2. Run the bounded degree encryption algorithm BdFE.Enc to produce a ciphertext

CT← BdFE.Enc(MPK, (x,R1, . . . , RS))

Output CT as the ciphertext.

• Decryption FE.Dec(SKC ,CT): On input a secret key SKC and a ciphertext CT,

– Run the bounded FE decryption algorithm to get ỹ ← BdFE.Dec(SKC,∆,CT).

– Run the randomized encoding decoder on ỹ to get the output y ← RE.Decode(ỹ).

Correctness

We first show correctness of the scheme FE . Given a secret key SKC and a ciphertext CT ←
FE.Enc(MPK, x), the decryption algorithm computes

ỹ = BdFE.Dec(SKC,∆,CT) = GC,∆(x,R1, . . . , RS) = C̃(x;
⊕

a∈∆
Ra))

Chapter 5. Functional Encryption for All Polynomial-size Circuits 42

Of course, running RE.Decode on this should return y = C(x), by the correctness of the
randomized encoding scheme.

Bootstrapping for Unbounded Queries. Although the transformation above assumes the
knowledge of q (the bound on the number of secret key queries of the adversary), we can
generalize it to work for unbounded queries as follows. Essentially, the idea is to generate fresh
(computational) randomness for each randomized encoding using a pseudo-random function.

In particular, let {prfS}S∈{0,1}κ be a circuit family of weak pseudo-random functions.
Consider a new circuit family C that works in the following way:

GC,R(x, S)) := C̃

(
x; prfS(R)

)
Then, essentially the same construction as above works as a way to bootstrap an FE

scheme for arbitrary circuits from FE schemes for circuits that can compute the weak PRF
followed by the randomized encoding. Assuming the existence of weak PRFs and PRGs that
can be computed by circuits of degree poly(κ), we then obtain functional encryption schemes
for arbitrary circuits. Note, that by Chapter 4 it is impossible to achieve functional encryption
for PRFs under NA-SIM-security for unbounded queries. However, constructions secure under
a weaker security definition (for example, indistinguishability) are still open.

5.4.1 Proof of Security

Theorem 5.4.1. Let BDFE be a (q, one)-AD-SIM-secure (resp. (q, one)-NA-SIM-secure)
functional encryption scheme for any family of circuits computable in NC1. Then, for any
family C of polynomial-size circuits the FE scheme described above is (q, one)-AD-SIM-secure
(resp. (q, one)-NA-SIM-secure).

We prove that the construction FE given in Section 5.4 is (q, one)-AD-SIM-secure if we
start out with a (q, one)-AD-SIM-secure scheme. This subsumes the non-adaptive variant of the
proof.

Proof overview. Suppose the adversary sees q∗ queries before seeing the ciphertext. The
simulator has to simulate the ciphertext and answer the remaining secret key queries. We may
again assume that the simulator knows all of Γ1, . . . ,Γq,∆1, . . . ,∆q.

Simulating the ciphertext. The simulator gets {Cj(x), Cj , SKCj}j∈[q∗] and outputs:

CT← BdFE.Sim
(
MPK,

{
RE.Sim(Cj(x)), GCj ,∆j ,SKCj ,∆j

}
j∈[q∗]

)
with fresh independent randomness for each of the q∗ invocations of RE.Sim.

Simulating secret key SKCj , for j > q∗. Here, the simulator gets MSK and Cj(x), Cj and
needs to simulate SKCj := (∆j ,SKCj ,∆j). It proceeds as follows:

1. Picks ỹj ← RE.Sim(Cj(x)).

2. Runs BdFE.Sim(MSK, (ỹj , GCj ,∆j)) to obtain SKCj ,∆j so that CT decrypts to ỹj .

Output SKCj = (∆j ,SKCj ,∆j).

Chapter 5. Functional Encryption for All Polynomial-size Circuits 43

Details. We establish security via a series of Games, where the last Game corresponds to the
simulator described above.

Game 0. Normal encryption.

Game 1. We modify the distribution of the ciphertext to use BdFE.Sim as in the static case
for both the ciphertext and the secret-key queries after the adversary sees the ciphertext. That
is,

CT← BdFE.Sim
(
MPK,

{
GCj ,∆j (x;R1, . . . , RS), GCj ,∆j , SKCj ,∆j

}
j∈[q∗]

)
Moreover, for j > q∗, it

1. Picks ỹj ← GCj ,∆j (x;R1, . . . , RS).

2. Runs BdFE.Sim(MSK, (ỹj , GCj ,∆j)) to obtain SKCj ,∆j so that CT decrypts to ỹj .

Output SKCj = (∆j ,SKCj ,∆j).

Game 2. We replace
{⊕

a∈∆j
Ra
}
j∈[q]

with
{
R′j
}
j∈[q]

, where for each j:

GCj ,∆j (x;R1, . . . , RS) := C̃(x;
⊕

a∈∆j

Ra)

Game 3. The output of the simulator (that is, switch to using RE.Sim).

Claim 5.4.1.1. The outputs of Game 0 and Game 1 are computationally indistinguishable.

Proof. This follows readily from (q, one)-AD-SIM-security of the underlying FE scheme.

Claim 5.4.1.2. The outputs of Game 1 and Game 2 are identically distributed.

Proof. By cover-freeness of ∆1, . . . ,∆q, we have that{⊕
a∈∆j

Ra

}
j∈[q]

and
{
R′j

}
j∈[q]

are identically distributed.

Claim 5.4.1.3. The outputs of Game 2 and Game 3 are computationally indistinguishable.

Proof. This follows readily from a hybrid argument and the security of the randomized encoding
scheme, which says that for each j = 1, . . . , q:

C̃j(x;R′j) and RE.Sim(Cj(x))

are computationally indistinguishable.

Chapter 5. Functional Encryption for All Polynomial-size Circuits 44

5.5 Yet Another Bootstrapping Theorem Using FHE

We show a bootstrapping theorem that transforms a q-query FE scheme from Section 5.3 into a
q-query FE scheme for arbitrary polynomial-size circuits using, in addition, a fully homomorphic
encryption scheme [Gen09a, BV11]. Intuitively, the construction can be viewed as follows: we
reduce functional encryption for a circuit C to one for the decryption algorithm for a fully
homomorphic encryption scheme computable in NC1. Putting this together with the q-query,
NC1 ciruit scheme from Section 5.3 gives us Theorem 5.5.1.

First, we need a generalization of the construction for NC1 circuits from Section 5.3. Assume
that the message is split into a public part and a secret part. Then, the key observation is that
the construction from Section 5.3 works for any circuit C which is computable in NC1 in the
variables of the secret part. The rationale for this is the same as that used to obtain a predicate
encryption with public index from the scheme in Section 5.3. In particular, we do not need to
secret share the public part of the input.

We show the following theorem:

Theorem 5.5.1. Let BDFE be a q-query, FE scheme which works for any circuit computable
in NC1 in the secret part of the input, and let FHE be a semantically secure fully homomorphic
encryption scheme whose decryption algorithm FHE.Dec(SK, ct) can be implemented by an NC1
circuit in the secret key. Then, for any family of poly-size circuits C there exists a q-query FE
scheme FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec).

Furthermore, if BDFE is (q, one)-NA-SIM-secure (resp. (q, one)-AD-SIM-secure), then so
is FE.

Any of the recent fully homomorphic encryption schemes have decryption algorithms
computable in NC1. Putting these together, we get q-bounded FE schemes under the “learning
with errors” and the “ring learning with errors” assumptions (together with certain circular
security assumptions) [BV11].

Let C be an arbitrary polynomial-size circuit family. Our construction uses the following
components:

• An Inner Encryption Scheme: Let FHE = (FHE.Keygen,FHE.Enc,FHE.Eval,FHE.Dec)
be a fully homomorphic encryption scheme where the decryption algorithm FHE.Dec can
be implemented by an NC1 circuit in the secret key.

• An Outer Encryption Scheme: Let BDFE = (BdFE.Setup,BdFE.Keygen,BdFE.Enc,BdFE.Dec)
be a q-query functional encryption scheme for the family G that is computable by NC1
circuits in their secret input defined as follows:

GC(ct,SK) :=
[
ct,FHE.Dec(SK,FHE.Eval(C, ct))

]
Note that although G has circuits that are at least as large as those for C, all we are
interested in is its degree in the secret input, namely SK.

Our q-query secure encryption scheme (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) for C works as
follows.

• Setup FE.Setup(1κ): Run the bounded FE setup algorithm to generate a master public-
key/secret-key pair:

(MPK,MSK)← BdFE.Setup(1κ)

Chapter 5. Functional Encryption for All Polynomial-size Circuits 45

• Key Generation FE.Keygen(MSK, C): On input the master secret key MSK and a circuit
C ∈ C, run the bounded FE key generation algorithm to generate a secret key

SKC ← BdFE.Keygen(MSK, GC)

for the circuit GC .

• Encryption FE.Enc(MPK, x): On input the master public key MPK and an input message
x ∈ X :

1. Choose a uniformly random public-key/secret-key pair for the fully homomorphic
encryption scheme FHE by running

(PK,SK)← FHE.Keygen(1κ)

2. Encrypt the input message x using the FHE encryption algorithm

ct← FHE.Enc(PK, x)

3. Run the bounded FE encryption algorithm to encrypt the ciphertext ct together
with the fully homomorphic secret key SK:

CT← BdFE.Enc(MPK, (ct,SK))

Output CT as the ciphertext.

• Decryption FE.Dec(SKC ,CT): On input a secret key SKC and a ciphertext CT, run the
bounded FE decryption algorithm to get [ct, y]← BdFE.Dec(SKC ,CT), and output [ct, y].

Correctness and Security

We first show correctness of the scheme FE . Given a secret key SKC and a ciphertext CT ←
FE.Enc(MPK, x), the decryption algorithm computes

[ct, y] = BdFE.Dec(SKC ,CT)

= BdFE.Dec(SKC ,BdFE.Enc(MPK, (ct,SK)))

(where ct← FHE.Enc(PK, x))

= GC(ct,SK)

= [ct,FHE.Dec(SK,FHE.Eval(C, ct))]

= [ct, C(x)]

We establish security via a series of Games. The simulator is described in Game 2.

Game 0. Normal encryption.

Game 1. Run the q-query simulator on input ([ct ← FHE.Enc(PK, x), Ci(x)], GCi , SKi)
n
i=1,

where n ≤ q is the number of oracle query calls made to BdFE.Keygen.

Game 2. Run the q-query simulator on input ([ct ← FHE.Enc(PK, 0), Ci(x)], GCi , SKi)
n
i=1,

where n ≤ q is the number of oracle query calls made to BdFE.Keygen.

Chapter 5. Functional Encryption for All Polynomial-size Circuits 46

5.6 Probabilistic Proofs

5.6.1 Small Pairwise Intersection

Lemma 5.6.1. Let Γ1, . . . ,Γq ⊆ [N] be randomly chosen subsets of size tD + 1. Let t =
Θ(q2κ), N = Θ(D2q2t). Then,

Pr

[∣∣∣∣ ⋃
i 6=j

(Γi ∩ Γj)

∣∣∣∣ ≤ t] = 1− 2−Ω(κ)

where the probability is over the random choice of the subsets Γ1, . . . ,Γq.

Proof. For all i, j ∈ [q] such that i 6= j, let Xij be a random variable denoting the size of the
intersection of Si and Sj . Let

X =
∑

i,j∈[q],i 6=j

Xij

It is not hard to see that Xij ’s are independent random variables. By the linearity of
expectation,

E[X] =
∑

i,j∈[q],i 6=j

E[Xij]

Now, for a fixed set Si and a randomly chosen Sj the size of the intersection of Si and Sj follows
a hypergeometric distribution, where tD + 1 serves both as the number of success states and
number of trials, and N is the population size. Therefore,

E[Xij] =
(tD + 1)(tD + 1)

N
=

(tD + 1)2

N

Hence,

µ = E[X] =
q(q − 1)(tD + 1)2

N
≤ 10q2t2D2

N

By Chernoff bound, for any σ ≥ 0:

Pr[X > (1 + σ)µ] < exp

(
−σ2

2 + σ
µ

)
Setting t = Θ(q2κ), N = Θ(D2q2t) gives us µ = Θ(t) = Θ(q2κ). Applying Chernoff bound,

Pr[X > t] = 2−Ω(κ)

5.6.2 Cover-Freeness

Lemma 5.6.2. Let ∆1, . . . ,∆q ⊆ [S] be randomly chosen subsets of size v. Let v(κ) = Θ(κ)
and S(κ) = Θ(vq2). Then, for all i ∈ [q]

Pr[∆i \
(⋃
j 6=i

∆j

)
6= φ] = 1− 2−Ω(κ)

where the probability is over the random choice of subsets ∆1, . . . ,∆q.

Chapter 5. Functional Encryption for All Polynomial-size Circuits 47

Proof. Let i ∈ [q] be arbitrary. Let G :=
⋃
j 6=i ∆j . Clearly, |G| = (q − 1)v. Let X be the

random variable denoting |∆i \G|. Now,

|∆i \G| = |∆i| − |∆i ∩G| = v − |∆i ∩G|

Hence,
E[X] = v − E[|∆i ∩G|]

Now, E[|∆i∩G|] follows a hypergeometric distribution with v success states, v(q−1) trials and
S population size. Hence,

E[|∆i ∩G|] =
v2(q − 1)

S

Therefore, E[X] = v − (v2(q − 1))/S. Setting, v(κ) = Θ(κ) and S(κ) = Θ(vq2) we obtain that
µ = E[X] = Θ(κ). By Chernoff bound, for any 0 ≤ σ ≤ 1:

Pr[X ≤ (1− σ)µ] < exp

(
−σ2

2
µ

)
Applying it we obtain that Pr[X ≤ (1− σ)µ] = 2−Ω(κ). Hence,

Pr[∆i \
(⋃
j 6=i

∆j

)
6= φ] = Pr[X > 0] ≥ Pr[X > (1− σ)µ] = 1− 2−Ω(κ)

Chapter 6

Conclusion and Open Problems

This work initiated the study of feasibility results for general functional encryption. We
showed that it is impossible to construct non-adaptive (and adaptive) simulation-secure general
functional encryption for unbounded collusions even for one input message. We also presented
a construction secure under the adaptive simulation-based definition for bounded collusions.
Despite our impossibility results, functional encryption field is full of interesting open problems.
In particular, we can ask for:

• a general construction for unbounded collusions under weaker notions of security, such
as indistinguishability-based. However, note that [BSW11] presented a circuit family and
a construction which satisfies indistinguishability security, yet intuitively leaks too much
information about the input (in fact, the decryptor learns the whole input.) One can also
ask for different and meaningful notions of security for functional encryption which are
not ruled out by the existing impossibility results.

• a many message unbounded collusions simulation-secure functional encryption for public-
index predicates. Our result presented in Section 4 only rules out secret-index circuit
families.

48

Bibliography

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In EUROCRYPT, pages 553–572, 2010.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Asiacrypt,
2011.

[AGVW12] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. Cryptology ePrint
Archive, Report 2012/468, 2012. http://eprint.iacr.org/.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private
randomizing polynomials and their applications. Computational Complexity,
15(2):115–162, 2006.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 223–238. Springer Berlin / Heidelberg, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random
oracles. In Matt Franklin, editor, Advances in Cryptology CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 197–206. Springer Berlin /
Heidelberg, 2004.

[BB11] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without
random oracles. J. Cryptology, 24(4):659–693, 2011.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. In CRYPTO, pages 213–229, 2001.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of the
twentieth annual ACM symposium on Theory of computing, STOC ’88, pages 1–10,
New York, NY, USA, 1988. ACM.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In IEEE Symposium on Security and Privacy, pages 321–334,
2007.

49

http://eprint.iacr.org/

Bibliography 50

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In TCC, pages 253–273, 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In FOCS, pages 97–106, 2011.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In CRYPTO, pages 290–307, 2006.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, pages 535–554, 2007.

[CCKM00] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Müller. One-round secure
computation and secure autonomous mobile agents. In Proceedings of the 27th
International Colloquium on Automata, Languages and Programming, ICALP ’00,
pages 512–523, London, UK, UK, 2000. Springer-Verlag.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In STOC, pages 639–648, 1996. Longer version at
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-682.pdf.

[CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz,
Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure
encryption. In ASIACRYPT, pages 502–518, 2007.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. In EUROCRYPT, pages 255–271, 2003.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In IMA Int. Conf., pages 360–363, 2001.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In CRYPTO, pages 378–394, 2005.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated
public key cryptosystems. In In EUROCRYPT, pages 65–82. Springer-Verlag, 2002.

[DN00] Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. In CRYPTO, pages 432–450,
2000.

[FKN94] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation
(extended abstract). In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, STOC ’94, pages 554–563, New York, NY, USA, 1994. ACM.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In
EUROCRYPT, pages 445–464, 2006.

Bibliography 51

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GJPS08] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext
policy attribute based encryption. In ICALP (2), pages 579–591, 2008.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In FOCS, pages 553–562, 2005.

[GLW12] Shafi Goldwasser, Allison B. Lewko, and David A. Wilson. Bounded-collusion IBE
from key homomorphism. In TCC, pages 564–581, 2012.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference
on Computer and Communications Security, pages 89–98, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In STOC, pages 197–206, 2008.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, pages 162–179,
2012.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In FOCS, pages 294–304,
2000.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, STOC ’07, pages 21–30, New York, NY,
USA, 2007. ACM.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party
computation. In CRYPTO, pages 335–354, 2004.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Proceedings of the theory
and applications of cryptographic techniques 27th annual international conference
on Advances in cryptology, EUROCRYPT’08, pages 146–162, Berlin, Heidelberg,
2008. Springer-Verlag.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

crypto.stanford.edu/craig

Bibliography 52

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/.

[PR03] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in
a constant number of rounds. In Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, FOCS ’03, pages 404–, Washington, DC,
USA, 2003. IEEE Computer Society.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22:612–613, November 1979.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO,
pages 47–53, 1984.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings
of CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In ACM Conference on Computer and Communications Security,
pages 463–472, 2010.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.
In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 457–473. Springer, 2009.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In
EUROCRYPT, pages 114–127, 2005.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization. In Public Key Cryptography, pages 53–70,
2011.

[Wat12] Brent Waters. Functional encryption for regular languages. In CRYPTO, pages
218–235, 2012.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In Foundations
of Computer Science, 1982. SFCS ’08. 23rd Annual Symposium on, pages 80 –91,
nov. 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

http://eprint.iacr.org/

	Introduction
	Our Results
	Overview of the Thesis

	Preliminaries
	Functional Encryption
	Public Key Encryption.
	Shamir's Secret Sharing
	Decomposable Randomized Encoding
	Weak Pseudo-Random Functions

	Security of Functional Encryption
	Simulation-based Definitions
	An Indistinguishability-Based Definition
	Relations Between Definitions of Functional Encryption

	Impossibility Results for Functional Encryption
	Overview of the Results
	Incompressible Circuits
	The Impossibility Result
	Extensions: Impossibility of Weaker Simulation-based Definitions

	Functional Encryption for All Polynomial-size Circuits
	Overview of the Construction
	Background Constructions
	Adaptive, Singleton
	Adaptive, ``Brute Force''
	One-Query General Functional Encryption from Randomized Encoding

	A Construction for NC1 circuits
	Our Construction
	Setting the Parameters
	Proof of Security

	A Bootstrapping Theorem for Functional Encryption
	Proof of Security

	Yet Another Bootstrapping Theorem Using FHE
	Probabilistic Proofs
	Small Pairwise Intersection
	Cover-Freeness

	Conclusion and Open Problems
	Bibliography

