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In this short manuscript we state the problem of sender and recipient
anonymity and its connection to the dining cryptographers problem. Consider
the following sender/recipient anonymity problem:

• n players wish to communicate for t rounds.

• In each round, assume only one player will speak only (this will gener-
alized later).

• Each player Pi is given a characteristic vector vi, where each entry vi[j]
indicates whether the player should speak in round j and the message
bit (for j ∈ [t]). That is, vi[j] = (b,m) where b ∈ {0, 1}, and if b = 1
then m ∈ {0, 1} and otherwise m =⊥.

The players want to ensure the following:

1. Correctness: Every player should be able to recover the message sent.

2. Non-interactiveness: Each player broadcasts (post of bullet-in board)
his message just once. There is no interaction between the players.

3. Anonymity: At the end of each round “no one” should be able to
determine who sent the message.

Now, to satisfy anonymity and correctness only, we can use the clas-
sical multi-party computation (MPC) protocols, such as [BGW88]. In this
case, we consider an OR function f that takes n inputs. The players that do
not transmit give a 0 bit as their input and the transmitting player gives the
message bit m as the input to the function. By the MPC security, “no one”
should be able to determine the individual inputs to the function and hence
the transmitting person.1

David Chaum proposed introduced the dining cryptographers problem,
which is a fun interpretation of the anonymity problem stated above [Cha88].
We summarize the dining cryptographers problem below for the case of 3
players, which can be easily generalized.

• Three cryptographers are having are dinner at their favourite restaurant.

• At the end of the night, the waiter tells them that the dinner is paid for
by one of the cryptographers of the NSA.

1The corruption threshold in this case is n/2 to obtain unconditional security. The
solution we present is security for “arbitrary” corruptions.
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• Respecting the privacy of each other, the cryptographers wish to deter-
mine if one of them or the NSA paid for the dinner.

Consider the following solution, which essentially gives an unconditionally
security protocol for OR function.

1. Each pair of cryptographers (Pi, Pj) choose a random shared key bit kij
(so, kij = kji).

2. Each cryptographer Pi, having neighbours Pj , Pl publishes the following:

(a) XOR of the keys kij and kil if he did not pay for the dinner.

(b) Inverse of XOR of the keys kij and kil if he did pay for the dinner.

3. To recover the output, each cryptographer XORs all the published mes-
sages.

Correctness. If none of the cryptographers paid for the dinner, then the
output of this protocol is 0, since each key gets cancelled. Now, say P1 for the
dinner. In this case, he published k12 ⊕ k13 = k12 ⊕ k13. Hence,

k12 ⊕ k13 ⊕ k21 ⊕ k23 ⊕ k31 ⊕ k32 = 1

Non-interactiveness is trivial.

Anonymity. Now, say cryptographer P1 is actually the payer. Then, we
claim that P2 will not be able to determine whether P1 or P3 is the payer
(resp. P3 will not be able to tell whether P1 or P2 is the payer). Say k23 = k21
(i.e. the two coin that player P2 sees are the same). If k13 = k23 then the cryp-
tographer who outputted 1 is the payer (since all individual XOR of the payers
must be 0, and the one who inverted it must have paid). Now if k13 6= k23,
then the cryptographer who outputted 0 must be payer. However, since k13 is
randomly chosen both outcomes have equal probability and hence P2 cannot
determine who is the payer. Stated differently, the only thing that P2 can
learn is the parity of outputs of P1 and P3 which is k13 ⊕ k13 = 1 and he cant
learn who actually flipped key k13 since he does not know what it is. The case
where k13 6= k23 can be analyzed similarly.

The generalization to multiple player is trivial: each player shares a key
with each other player. He then performs arithmetic over GF (2) and flips
the answer, if he is the payer. It is also to see how the dining cryptographers
problem captures the sender/recipient anonymity problem stated above. Each
player that wants to sends a message bit m, flips the answer of XOR before
publishing it if m = 1 and does nothing otherwise. No external observer should
be able to tell who sent the message.
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We note that in the above protocol, each player must have pre-computed
a shared secret key with every other player. However, using Diffie-Hellman
key exchange this process can be performed online, obtaining computational
security only.

A note on Collusions. Consider a graph G = (V,E) where the play-
ers represent vertices and the edges represent the keys shared between them.
Assume the graph is connected (there is a key shared between every pair of
payers). Consider a collusion of m players. Clearly, if m = n − 1 then there
is no anonymity that can be guaranteed for the remaining player. Now, if
m < n − 1 then consider a sub-graph obtained by removing all edges (keys)
known to the colluders. The remaining connected component of vertices and
edges defines the anonymity set. That is, the colluders can not learn which of
the remaining players sent the message. However, assume that not each pair
of players share a key. So, the graph G is disconnected. Then, a collusion of
users can potentially partition the set of remaining player and learn “some-
thing” about where the message came from. For example:

P1 P2 P3

P4 P5 P6

k12

k14

k23

k25
k24

k36

k56

If players P2 and P5 collude, then the set of unknown keys form two sub-
graphs: one consisting of vertices (P1, P4) and the other consisting of vertices
(P3, P6). There are no keys shared between these sub-graphs. We claim that
the colluders will be able to see which of the two sub-graphs the message came
from. If neither P1 nor P4 sent the message, given k12 ⊕ k14 and k14 ⊕ k24,
knowing the keys k14, k24 the colluders can recover k24. In this case, they will
recover the same key k24 from the two broadcast they seen. Otherwise, if one
of the players in this set inverted his output, the colluders will recover two
different bits. Hence, they will be able to tell whether the message was sent
from P1, P4 sub-graph.

We note that a malicious adversary (colluders) can change the outcome of
this protocol just by outputting a randomly chosen bit. There are a number
of subsequent works that try to address this issue [GJ04].

Finally, say the players do not have apriori knowledge about which rounds
they will speak to and each player may wish to speak at more than one round.
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In this case, we can modify the protocol such that each player will have n
shared secret keys with each other player (k1ij , . . . , k

n
ij). For each l ∈ n the

player i XORs the keys he sees at position l (b = ⊕n
j=1k

l
ij). He also ran-

domly chooses l ∈ n to which XOR his message. Of course, this protocol may
introduce error.
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