
David Liu and Toniann Pitassi

Mathematical Expression and
Reasoning for Computer Sci-
ence
Lecture Notes for CSC165 (Version 0.5)

Department of Computer Science

University of Toronto

mathematical expression and reasoning for computer science 3

Many thanks to Tom Fairgrieve, Danny Heap, and François
Pitt for helpful comments and edits to earlier versions of these
notes.

Contents

Prologue: what is this course about, and why should I care? 9

Why mathematical expression and reasoning in computer science? 9

Course overview 11

1 Mathematical Expression 13

Sets 13

Functions 15

Summation and product notation 17

Inequalities 18

Propositional logic 19

Predicate logic 22

Writing sentences in predicate logic 26

Defining predicates 28

Our conventions for writing formulas 31

2 Introduction to Proofs 35

Some basic examples 36

What goes into a proof? 40

6 david liu and toniann pitassi

A new domain: number theory 46

Alternating quantifiers revisited 47

False statements and disproofs 48

Proof by cases 51

Generalizing statements 53

Proof by contrapositive 56

Characterizations 57

Greatest common divisor 60

Modular arithmetic 62

Proof by contradiction 65

3 Induction 67

The principle of induction 67

Examples from number theory 68

Combinatorics 73

Incorrect proofs by induction 77

Looking ahead: strong induction (optional) 77

4 Representations of Natural Numbers 79

Decimal representation of natural numbers 79

Binary representation of natural numbers 79

Properties of binary representation 80

5 Analyzing Algorithm Running Time 85

A motivating example 85

mathematical expression and reasoning for computer science 7

Asymptotic growth 87

One special case of Big-Oh: O(1) 91

Omega and Theta 91

Properties of Big-Oh, Omega, and Theta 92

Back to algorithms 95

Worst-case and best-case running times 104

Don’t assume bounds are tight! 109

Average-case analysis 111

6 Graphs and Trees 117

Initial definitions 117

Paths and connectedness 120

A limit for connectedness 123

Cycles and trees 127

Rooted trees 133

7 Looking Ahead 137

Turing’s legacy: the limitations of computation 137

Gödel’s legacy: the limitations of proofs 140

P versus NP 141

Other cool applications: Cryptography 141

Prologue: what is this course about, and why should I care?

In CSC165, we will be talking about how to express statements precisely using
the language of mathematical logic. This gives a way to communicate ideas
without any ambiguity, which is an essential skill for any discipline. For ex-
ample, the English statement “Some people like David” can be interpreted as
saying that at least one person likes David, or that few, many, or even all people
like David. What about “You can get cake or ice cream”? Does this mean that
you may enjoy both cake and ice cream, or that you must choose between the
two? Another example is the English expression “If you are a Pittsburgh Pens
fan, then you are not a Philadelphia Flyers fan.” Its meaning is clear enough if
you meet a Pens fan, but what does this mean, if anything, for someone who
isn’t a Pittsburgh Pens fan? Does the same reasoning apply to the statement “If
you can solve any problem in this course, then you will get an A”? Mathematical
expressions in formal logic, on the other hand, have only one meaning. They
remove all ambiguity so that only one interpretation is possible.

The second major theme of the course is developing methods to give rigorous
mathematical proofs or disproofs of mathematical statements. We don’t just
want to be able to express ideas, we want to be able to argue—to both our-
selves and others—that these ideas are correct. Mathematical proofs are a way
to convince someone of something in an absolute sense, without worrying about
biases, rhetoric, feelings, or alternate interpretations. The beauty of mathematics
is that unlike other vast areas of human knowledge, it is possible to prove that
a mathematical statement is true with one-hundred percent certainty. Without a
rigorous mathematical proof, we can be easily fooled by our intuition and pre-
conceptions. We will see throughout the course that some statements that seem
perfectly reasonable turn out to be wrong, and others turn out to be true in sur-
prising ways. Sometimes our intuition is valid and a proof seems like a mere
formality; but often our intuition is incorrect, and going through the process of
a rigorous mathematic proof is the only way that we discover the truth!

Why mathematical expression and reasoning in computer science?

So many reasons! Perhaps the most basic one is program correctness. Say your
friend has written a complicated program that she says does something truly
remarkable. How do you know it is correct?1 You can test it on some inputs, but

1 What does it mean for a program to
“be correct?” How can you prove that a
program is correct?

how do you know that your tests are thorough enough? Programmers often rely
on a combination of tests and their own intuition to convince themselves that

10 david liu and toniann pitassi

their programs are correct, but neither of these are guarantees. A correctness
proof will convince you that without a shadow of a doubt, the algorithm is
correct on all possible inputs. Not only that, but the practice of proving the
correctness of algorithms will refine your own intuitions, making you a better
programmer overall.

But wait. Maybe her program does what she claims, but what if on some inputs
it takes an extremely long time to run?2 A worst-case complexity analysis is a

2 What does it mean for a program to
“take a long time to run?” How can you
prove that a program takes a long (or
short) time to run?

formal way to convince you that no matter what the input is, her program will
run in some guaranteed number of time steps, independent of which computer
or programming language is used to write and run this program.

These are two fundamental computer science areas where formal mathematical
expression is required to precisely define concepts, and mathematical reasoning
is required to prove statements about those concepts. Throughout this course
we will follow this two-step process of defining and then proving things very
explicitly, and we will practice on many examples. There are many other appli-
cations of mathematical expression and reasoning in computer science, some of
which we list below. In all cases, mathematical expression allows us to precisely
define our claims about the system in question, and mathematical proofs give
us a mechanism to convince others with certainty that our system is working as
we specified.

• Program verification. This is essentially program correctness mentioned above,
and is in fact an entire subarea of computer science. Formal verification is
the use of mathematical expression and reasoning in order to argue that a
given software or hardware system is correct. Again, you need mathematical
expression in order to specify without ambiguity both what the system is and
what it means for the system to be correct. Then you need proofs in order to
prove or disprove the correctness of the system.

• Cryptography. Cryptography is the science of developing techniques to com-
municate information in a way that is secure even in the presence of adver-
saries. The most basic cryptographic task is to send an encrypted message
across the Internet to a particular person so that the intended receiver is able
to decrypt the message, while ensuring that other agents, for whom the mes-
sage is not intended, are not able to modify the message or to decrypt it.
The area of cryptography is now quite sophisticated, and there are extremely
clever protocols that allow us to perform many tasks, such as public-key cryp-
tography, digital signatures, and data authentication. Mathematical expres-
sion is required in order to even define precisely what we mean by “secure.”3

3 You can think about it, but it is not
at all obvious what such a definition
should say. In fact, there are many
definitions of security and other cryp-
tographic notions used in theory and
practice, depending on the context.

Then proofs are needed in order to show that our cryptographic techniques
are indeed secure.

• Privacy. Issues of privacy are abundant. How do we manage the massive
amount of data that is available through the web, while at the same time
keep sensitive information private? In order to study this question, one first
needs a formal definition of what is even meant by privacy.4 Intuitively, we

4 As with “security,” there are many
definitions out there for what is meant
by “privacy,” including the notion of
differential privacy that has lately been in
the news.

want such a definition to capture the idea that data can be used for the bene-
fit of society—such as to discover correlations between behaviour, symptoms
and diseases—but so that the privacy of any particular person is not com-

mathematical expression and reasoning for computer science 11

promised. Once the definition is in place, the job then becomes to develop
protocols and mechanisms that do useful things while maintaining a privacy
guarantee. Again, one needs mathematical expression in order to state the
definition of privacy, and proofs in order to show that the mechanisms satisfy
the privacy definition.

• Artificial intelligence. Many problems in artificial intelligence and machine
learning involve logic. For example, in order to navigate a robot through a
room, it helps to have a precise description of the room, as well as a plan
for how to move through the room. Practically all problems in artificial in-
telligence involve mathematical expression and reasoning, including: natural
language processing, image recognition, learning and planning.

• Complexity theory. Complexity theory is about whether important problems
that we want solve can be carried out efficiently with respect to costly re-
sources. Common resources considered are time, computer memory, and
randomness.5 This study requires formal definitions of what we mean by

5 The idea of “randomness” as a re-
source may be a surprising one, but is
in fact the heart of one of the biggest
open questions in complexity theory: If
a problem can be solved by an efficient
randomized algorithm, can it be solved
by an efficient algorithm which has no
randomness?

efficient; research in this area aims to invent proofs that certain problems can
or cannot be solved efficiently.

Course overview

In our first few weeks of this course, we will discuss mathematical expressions.
That is, you will learn a new language and how to express precise statements
in this language. It may seem daunting to pick up a new language in a few
short weeks, but in fact you probably have been using this language since you
were born. What we will do is formalize your intuitive understanding of logic
so that it is as clear as possible what constitutes a legal mathematical statement
and what doesn’t.

After learning how to express our statements in this language of mathematical
logic, we will discuss ways of reasoning about the truth (or falsehood) of these
statements. You will both read and write proofs, learning how to construct
airtight arguments and communicate them to others, and how to poke holes
in flawed proofs. To practice the dual skills of expression and reasoning in
computer science domains, we will introduce several new domains to serve as
the foundations for our mathematical statements: number theory, combinations
and permutations, program runtime, and graphs.6

6 Of course, we are not introducing
these domains just for the sake of
having a few new definitions to play
around with. Each of the domains we
will study in this course serve a vital
role in many areas of computer science,
which we will only scratch the surface
of in this course.

1 Mathematical Expression

As a starting point for formalizing our intuition of logic, we will define two
mathematical notions that we will use repeatedly throughout the course: sets
and functions. Much of the terminology here may be review for you (or at least
appear vaguely familiar), but please pay careful attention to the bolded terms,
as we will make heavy use of each of them throughout the course. Each of
these terms has a specific technical meaning (given by our definition) that may
be subtly different from your intuitive understanding. As we will stress again
and again, definitions are precise statements about the meaning of a term or sym-
bol; whenever we define something, it will be your responsibility to understand
that definition so that you can understand—and later, reason about—statements
using these terms at any point in the rest of this course and beyond.

Sets

Definition 1.1. A set is a collection of distinct objects, which we call elements of
the set. A set can have a finite number of elements, or infinitely many elements.
The size of a finite set A is the number of elements in the set, and is denoted by
|A|. The empty set (the set consisting of zero elements) is denoted by ∅.

Before moving on, let us see some concrete examples of sets. These examples
illustrate not just the versatility of what sets can represent, but also illustrate
various ways of defining sets.

Example 1.1. A finite set can be described by explicitly listing all its elements
between curly brackets, such as {a, b, c, d} or {2, 4,−10, 3000}.

Example 1.2. A set of records of all people that work for a small company. Each
record contains the person’s name, salary, and age. For example:{
(Ava Doe, $70000, 53), (Donald Dunn, $67000, 30), (Mary Smith, $65000, 25), (John Monet, $70000, 40)

}
.

Example 1.3. Here are some familiar infinite sets of numbers. Note that we use
the . . . to indicate the continuation of a pattern of numbers.

• The set of natural numbers, N = {0, 1, 2, . . . }.1
1 By convention in computer science, 0
is a natural number.• The set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

• The set of positive integers, Z+ = {1, 2, . . . }.
• The set of rational numbers, Q.

14 david liu and toniann pitassi

• The set of real numbers, R.
• The set of non-negative real numbers, R≥0.

Example 1.4. The set of all finite strings over {0, 1}. A finite string over {0, 1} is
a finite sequence b0b1b2 . . . bk−1, where k is a natural number (called the length
of the string)2 and each of b0, b1, etc. is either 0 or 1. The string of length 0 is

2 For example, the length of the string
10100101 is eight.called the empty string, and is typically denoted by the symbol ε.

Note that we have defined this set without explicitly listing all of its elements,
but instead by describing exactly what properties its elements have. For exam-
ple, using our definition, we can say that this set contains the element 01101000,
but does not contain the element 012345.3

3 Food for thought: how would you
generate a list of all finite strings over
0, 1?Example 1.5. A set can also be described as in this example:

{x | x∈N and x ≥ 5}.

This is the set of all natural numbers which are greater than or equal to 5. The
left part (before the vertical bar |) describes the elements in the set in terms of
a variable x, and right part states the condition(s) on this variable that must be
satisfied.4

4 Tip: The | can be read as “where”.

As a more complex example, we can define the set of rational numbers as:

Q =

{
p
q

∣∣∣∣ p, q∈Z and q 6= 0
}

.

We have only scratched the surface of the kinds of objects we can represent using
sets. Later on in the course, we will enrich our set of examples by studying sets
of computer programs, sequences of numbers, and graphs.

Operations on sets

We have already seen one set operation: the size operator, |A|. In this subsection,
we’ll list other common set operations that we will use in this course.

The following boolean set operations return either True or False. We only describe
when these operations return True; they return False in all other cases.

• x∈ A: returns True when x is an element of A; y /∈ A returns True when y is
not an element of A.

• A ⊆ B: returns True when every element of A is also in B. We say in this case
that A is a subset of B.

Every set is a subset of itself, and the empty set is a subset of every set: A ⊆ A
and ∅ ⊆ A are always True.

• A = B: returns True when A ⊆ B and B ⊆ A. In this case, A and B contain
the exact same elements.

The following operations return sets:

mathematical expression and reasoning for computer science 15

• A ∪ B, the union of A and B. Returns the set consisting of all elements that
occur in A, in B, or in both.

A ∪ B = {x | x ∈ A or x ∈ B}.

• A ∩ B, the intersection of A and B. Returns the set consisting of all elements
that occur in both A and B.

A ∩ B = {x | x ∈ A and x ∈ B}.

• A \ B, the difference of A and B. Returns the set consisting of all elements
that are in A but that are not in B.

A \ B = {x | x ∈ A and x /∈ B}.

• A× B, the (Cartesian) product of A and B. Returns the set consisting of all
pairs (a, b) where a is an element of A and b is an element of B.

A× B = {(x, y) | x ∈ A and y ∈ B}.

• P(A), the power set of A, returns the set consisting of all subsets of A.5 For
5 Food for thought: what is the relation-
ship between |A| and |P(A)|?example, if A = {1, 2, 3}, then

P(A) =
{

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
}

.

P(A) = {S | S ⊆ A}.

Functions

Definition 1.2. Let A and B be sets. A function f : A → B is a mapping from
elements in A to elements in B. A is called the domain of the function, and B is
called the codomain of the function.

For example, if A and B are both the set of integers, then the (predecessor) func-
tion Pred : Z→ Z, defined by Pred(x) = x− 1, is the function that maps each in-
teger x to the integer before it. Given this definition, we know that Pred(10) = 9
and Pred(−3) = −4.

A more formal definition of the term “mapping” above is a subset of the Carte-
sian product A× B, where every element of A appears exactly once. For exam-
ple, we can define the Pred function as the following set:

{. . . , (−2,−3), (−1,−2), (0,−1), (1, 0), (2, 1), . . . }.

One important distinction between the domain and codomain of a function is
in what they require of that function. For a function f : A → B, its domain A
is the set of possible inputs for the function, and f must have a valid value for
every single one of those inputs. So for example, the function g(x) = 1

x cannot
have domain R, since g(0) is not defined.6 However, the codomain B only has to

6 We could choose R \ {0} as g’s do-
main.contain the possible outputs of f —not every element of B needs to be a possible

output. Continuing our example, the function g(x) = 1
x can have codomain R,

since 1
x is always a real number, even though g(x) never outputs 0.

Sometimes it is useful to discuss the exact of possible outputs of a function. For
this, we have one more definition.

16 david liu and toniann pitassi

Definition 1.3. Let f : A → B be a function. We define the range of f to be the
set consisting of its possible outputs. Formally, this is the set { f (x) | x ∈ A}.

Note that the range of f is always a subset of its codomain B, but does not
necessarily equal B.

You might wonder: why bother having separate definitions for codomain and
range, why not just always define functions with their exact range? There are
two reasons why this isn’t always feasible:

• Functions don’t always have a range that is easy to describe or compute. For
example, the function f (x) = (1 + sin(x))cos(x) over the domain R always
outputs a non-negative real number, so we can pick its codomain to be R≥0,
but finding its precise range requires more work.

• Later on, we’ll be analysing properties of arbitrary functions with a given
domain and codomain, for example, an arbitrary function f : R → R. In
these cases, we’ll want to include functions whose range is potentially much
smaller than R in our analysis.

For these reasons, we’ll generally define function codomains using standard
numeric sets like N and R, and leave the range of a function unstated unless it
is required by the particular problem at hand.

Function arity

Functions can have more than one input. For sets A1, A2, . . . , Ak and B, a k-ary
function f : A1× A2× · · · × Ak → B is a function that takes k arguments, where
for each i between 1 and k, the i-th argument of f must be an element of Ai,
and where f returns an element of B. We have common English terms for small
values of k: unary, binary, and ternary functions take one, two, and three inputs,
respectively. For example, the addition operator + : R×R → R is a binary
function that takes two real numbers and returns their sum. For readability, we
usually write this function as x + y instead of +(x, y).

Predicates

A predicate is a function whose codomain is {True, False}.7 For example, we can
7 In other courses, you may see True
and False represented as the numbers 1
and 0, respectively.

define the predicate Odd : N → {True, False} by mapping all even numbers to
False, and all odd numbers to True. Given a predicate P and element x of its
domain, we say that x satisfies P when P(x) is True.

Predicates and sets have a natural equivalence that we will sometimes make use
of in this course. Given a predicate P : A → {True, False}, we can define the
set {x | x∈ A and P(x) = True}, i.e., the set of elements of A which satisfy P.
On the flip side, given a subset S ⊆ A, we can define the predicate P : A →
{True, False} by P(x) = True if x∈ S, and P(x) = False if x /∈ S. For example,
consider the predicate Even : N → {True, False} that is True exactly when its

mathematical expression and reasoning for computer science 17

argument is even. This predicate corresponds to the set of natural numbers
{0, 2, 4, . . . }.

Summation and product notation

When performing calculations, we’ll often end up writing sums of terms, where
each term follows a pattern. For example:

1 + 12

3 + 1
+

2 + 22

3 + 2
+

3 + 32

3 + 3
+ · · ·+ 100 + 1002

3 + 100

We will often use summation notation to express such sums concisely. We could
rewrite the previous example simply as:

100

∑
i=1

i + i2

3 + i
.

In this example, i is called the index of summation, and 1 and 100 are the lower
and upper bounds of the summation, respectively. A bit more generally, for any
pair of integers j and k, and any function f : Z → R, we can use summation
notation in the following way:

k

∑
i=j

f (i) = f (j) + f (j + 1) + f (j + 2) + · · ·+ f (k).

We can similarly use product notation to abbreviate multiplication:8
8 Fun fact: the Greek letter Σ (sigma)
corresponds to the first letter of “sum,”
and the Greek letter Π (pi) corresponds
to the first letter of “product.”

k

∏
i=j

f (i) = f (j)× f (j + 1)× f (j + 2)× · · · × f (k).

It is sometimes useful (e.g., in certain formulas) to allow a summation or prod-
uct’s lower bound to be greater than its upper bound. In this case, we say the
summation or product is empty, and define their values as follows:9

9 These particular values are chosen so
that adding an empty summation and
multiplying by an empty product do
not change the value of an expression.• When j > k, ∑k

i=j f (i) = 0.

• When j > k, ∏k
i=j f (i) = 1.

Exercise Break!

1.1 Use summation/product notation to express each of the following quantities:

(a) The sum of the numbers from 148 to 165, inclusive.
(b) The product of the first n positive integers (1, 2, . . . , n).
(c) The sum of the first n even natural numbers (0, 2, . . . , 2(n− 1)).
(d) The product of the first n odd natural numbers (1, 3, . . . , 2n− 1).

18 david liu and toniann pitassi

Finally, we’ll end off this section with a few formulas for common summation
formulas, and a few laws governing how expressions using summation and
product notation can be simplified.

Theorem 1.1. For all n ∈N, the following formulas hold:

1. For all c ∈ R, ∑n
i=1 c = c · n (sum with constant terms).

2. ∑n
i=1 i = n(n+1)

2 (sum of consecutive numbers).

3. ∑n
i=1 i2 = n(n+1)(2n+1)

6 (sum of consecutive squares).
4. For all r ∈ R, if r 6= 1 then ∑n−1

i=0 ri = rn−1
r−1 (sum of powers).

5. For all r ∈ R, if r 6= 1 then ∑n−1
i=0 i · ri = n·rn

r−1 −
r(rn−1)
(r−1)2 (arithmetico-geometric

series).

Theorem 1.2.

n

∑
i=m

(ai + bi) =

(
n

∑
i=m

ai

)
+

(
n

∑
i=m

bi

)
(separating sums)

n

∏
i=m

(ai · bi) =

(
n

∏
i=m

ai

)
·
(

n

∏
i=m

bi

)
(separating products)

n

∑
i=m

c · ai = c ·
(

n

∑
i=m

ai

)
(factoring out constants, sums)

n

∏
i=m

c · ai = cn−m+1 ·
(

n

∏
i=m

ai

)
(factoring out constants, products)

n

∑
i=m

ai =
n−m

∑
i′=0

ai′+m (change of index i′ = i−m)

n

∏
i=m

ai =
n−m

∏
i′=0

ai′+m (change of index i′ = i−m)

Inequalities

Finally, in this course we will deal heavily with the manipulation of inequalities.
While many of these operations are very similar to manipulating equalities, there
are enough differences to warrant a comprehensive list.

Theorem 1.3. For all real numbers a, b, and c, the following are true:

(a) If a ≤ b and b ≤ c, then a ≤ c.
(b) If a ≤ b, then a + c ≤ b + c.
(c) If a ≤ b and c > 0, then ac ≤ bc.
(d) If a ≤ b and c < 0, then ac ≥ bc.
(e) If 0 < a ≤ b, then 1

a ≥
1
b .

(f) If a ≤ b < 0, then 1
a ≥

1
b .

Moreover, if we replace any of the “if” inequalities with a strict inequality (i.e.,
change ≤ to <), then the corresponding “then” inequality is also strict.10

10 For example, the following is true: “If
a < b, then a + c < b + c.”

mathematical expression and reasoning for computer science 19

The previous theorem tells us that basic operations like adding a number or
multiplying by a positive number preserves inequalities. However, other oper-
ations like multiplying by a negative number or taking reciprocals reverses the
direction of the inequality, which is something we didn’t have to worry about
when dealing with equalities. But it turns out that, at least for non-negative
numbers, most of our familiar functions preserve inequalities.

Definition 1.4. Let f : R≥0 → R≥0. We say that f is strictly increasing when
for all x, y ∈ R≥0, if x < y then f (x) < f (y).

Most common functions are strictly increasing:

• Raising to a positive power, e.g., f (x) = x2 or f (x) = x3.14.
• Logarithms with a base greater than one, e.g., f (x) = log3(x + 1).
• Exponential functions with a base greater than one, e.g., f (x) = 2x.

Moreover, adding two strictly increasing functions, or multiplying a strictly in-
creasing function by a positive constant or another always-positive strictly in-
creasing function, results in another strictly increasing function. So for example,
we know that f (x) = 300x2 + x log3 x + 2x+100 is also strictly increasing.

It should be clear from this definition that the following property holds, which
enables us to manipulate inequalities using a host of common functions.

Theorem 1.4. For all non-negative real numbers a and b, and all strictly increas-
ing functions f : R≥0 → R≥0, if a ≤ b, then f (a) ≤ f (b).

Moreover, if a < b, then f (a) < f (b).

Propositional logic

We are now ready to begin our study of the formal language of logic. We will
start with propositional logic, an elementary system of logic that is a crucial build-
ing block underlying other, more expressive systems of logic that we will need
in this course.

Definition 1.5. A proposition is a statement that is either True or False. Exam-
ples of propositions are:

• 2 + 4 = 6
• 3− 5 > 0
• Every even integer greater than 2 is the sum of two prime numbers.
• Python’s implementation of list.sort is correct on every input list.

We use propositional variables to represent propositions; by convention, propo-
sitional variable names are lowercase letters starting at p.11

11 The concept of a propositional vari-
able is different from other forms of
variables you have seen before, and
even ones that we will see later in this
chapter. Here’s a rule of thumb: if you
read an expression involving a proposi-
tional variable p, you should be able to
replace p with the statement “CSC165 is
cool” and still have the expression make
sense.

A propositional/logical operator is a predicate whose arguments must all be
either True or False. Finally, a propositional formula is an expression that is
built up from propositional variables by applying these operators.

20 david liu and toniann pitassi

In the following sections, we describe the various operators we will use in this
course. It is important to keep in mind when reading that these operators inform
both the structure of formulas (what they look like) as well as the truth value of
these formulas (what they mean: whether the formula is True or False based on
the truth values of the individual propositional variables).

The basic operators NOT, AND, OR

The unary operator NOT (also called “negation”) is denoted by the symbol ¬.
It negates the truth value of its input. So if p is True, then ¬p is False, and vice
versa. This is shown in the truth table at the side.

The binary operator AND (also called “conjunction”) is denoted by the symbol
∧. It returns True when both its arguments are True.

p ¬p

False True
True False

p q p ∧ q

False False False
False True False
True False False
True True True

p q p ∨ q

False False False
False True True
True False True
True True True

The binary operator OR (also called “disjunction”) is denoted by the symbol ∨,
and returns True if one or both of its arguments are True.

The truth tables for AND and NOT agree with the popular English usage of
the terms; however, the operator OR may seem somewhat different from your
intuition, because the word “or” has two different meanings to most English
speakers. Consider the English statement “You can have cake or ice cream.”
From a nutritionist, this might be an exclusive or: you can have cake or you can
have ice cream, but not both. But from a kindly relative at a family reunion, this
might be an inclusive or: you can have both cake and ice cream if you want! The
study of mathematical logic is meant to eliminate the ambiguity by picking one
meaning of OR and sticking with it. In our case, we will always use OR to mean
the inclusive or, as illustrated in the last row of its truth table.12

12 The symbol ⊕ is often used to rep-
resent the exclusive or operator, but we
will not use it in this course.AND and OR are similar in that they are both binary operators on propositional

variables. However, the distinction between AND and OR is very important.
Consider for example a rental agreement that reads “first and last months’ rent
and a $1000 deposit” versus a rental agreement that reads “first and last months’
rent or a $1000 deposit.” The second contract is fulfilled with much less money
down than the first contract.

The implication operator

One of the most subtle and powerful relationships between two propositions is
implication, which is represented by the symbol⇒. The implication p⇒ q asserts
that whenever p is True, q must also be True. An example of logical implication
in English is the statement: “If you push that button, then the fire alarm will
go off.”13 Implications are so important that the parts have been given names.

13 In some contexts, we think of logical
implication as the temporal relationship
that q is inevitable if p occurs. But this
is not always the case! Be careful not to
confuse implication with causation.

The statement p is called the hypothesis of the implication and the statement q is
called the conclusion of the implication.

How should the truth table be defined for p ⇒ q? First, when both p and q are
True, then p ⇒ q should be True, since when p occurs, q also occurs. Similarly,
it is clear that when p is True and q is False, then p ⇒ q is False (since then q is

mathematical expression and reasoning for computer science 21

not inevitably True when p is True). But what about the other two cases, when
p is False and q is either True or False? This is another case where our intuition
from both English language it a little unclear. Perhaps somewhat surprisingly,
in both of these remaining cases, we will still define p⇒ q to be True.

p q p⇒ q

False False True
False True True
True False False
True True True

The two cases when p is False but p ⇒ q is True are called the vacuous truth
cases. How do we justify this assignment of truth values? The key intuition is
that because the statement doesn’t say anything about whether or not q should
occur when p is False, it cannot be disproven when p is False. In our example
above, if the alarm button is not pushed, then the statement is not saying any-
thing about whether or not the fire alarm will go off. It is entirely consistent
with this statement that if the button is not pushed, the fire alarm can still go
off, or may not go off.

The formula p ⇒ q has two equivalent14 formulas which are often useful. To
14 Here, “equivalent” means that the
two formulas have the same truth
values; for any setting of their proposi-
tional variables to True and False, the
formulas will either both be True or
both be False.

make this concrete, we’ll use our example “If you are a Pittsburgh Pens fan, then
you are not a Flyers fan” from the introduction.

The following two formulas are equivalent to p⇒ q:

• ¬p ∨ q. On our example: “You are not a Pittsburgh Pens fan, or you are not a
Flyers fan.” This makes use of the vacuous truth cases of implication, in that
if p is False then p⇒ q is True, and if p is True then q must be True as well.

• ¬q ⇒ ¬p. On our example: “If you are a Flyers fan, then you are not a
Pittsburgh Pens fan.” Intuitively, this says that if q doesn’t occur, then p
cannot have occurred either.

This equivalent formula is in fact so common that we give it a special name:
the contrapositive of the implication p⇒ q.

There is one more related formula that we will discuss before moving on. If we
take p⇒ q and switch the hypothesis and conclusion, we obtain the implication
q⇒ p, which is called the converse of the original implication.

Unlike the two formulas in the list above, the converse of an implication is not
logically equivalent to the original implication. Consider the statement “If you
can solve any problem in this course, then you will get an A.” Its converse is “If
you will get an A, then you can solve any problem in this course.” These two
statements certainly don’t mean the same thing!

Biconditional

The final logical operator that we will consider is the biconditional, denoted by
p ⇔ q. This operator returns True when the implication p ⇒ q and its converse
q⇒ p are both True.

In other words, p ⇔ q is an abbreviation for (p ⇒ q) ∧ (q ⇒ p). A nice way
of thinking about the biconditional is that it asserts that its two arguments have
the same truth value.

p q p⇔ q

False False True
False True False
True False False
True True True

22 david liu and toniann pitassi

While we could use the natural translation of ⇒ and ∧ into English to also
translate ⇔, the result is a little clunky: p ⇔ q becomes “if p then q, and if q
then p.” Instead, we often shorten this using a quite nice turn of phrase: “p if
and only if q,” which is abbreviated to “p iff q.”

Summary

We have now seen all five propositional operators that we will use in this course.
Now is an excellent time to review these and make sure you understand the
notation, meaning, and English words used to indicate each one.

operator notation English

NOT ¬p p is not true
AND p ∧ q p and q
OR p ∨ q p or q (or both!)

implication p⇒ q if p, then q
biconditional p⇔ q p if and only if q

Exercise Break!

1.2 A tautology is a formula that is True for every possible assignment of values
to its propositional variables. Decide if each of the following propositional
formulas are tautologies.

a) ((p⇒ q) ∧ (p⇒ r))⇔ (p⇒ (q ∧ r))
b) (p⇒ q)⇔ (¬p ∨ q)
c) (¬(p ∨ q))⇔ (¬p ∧ ¬q)

Predicate logic

While propositional logic is a good starting point, most interesting statements
in mathematics contain variables over domains larger than simply {True, False}.
For example, the statement “x is a power of 2” is not a proposition because its
truth value depends on the value of x. It is only after we substitute a value for
x that we may determine whether the resulting statement is True or False. For
example, if x = 8, then the statement becomes “8 is a power of 2”, which is True.
But if x = 7, then the statement becomes “7 is a power of 2”, which is False.

A statement whose truth value depends on one or more variables from any set
is a predicate: a function whose codomain is {True, False}. We typically use
uppercase letters starting from P to represent predicates, differentiating them
from propositional variables. For example, if P(x) is defined to be the statement
“x is a power of 2”, then P(8) is True and P(7) is False. Thus a predicate is like
a proposition except that it contains one or more variables; when we substitute
particular values for the variables, we obtain a proposition.

mathematical expression and reasoning for computer science 23

As with all functions, predicates can depend on more than one variable. For
example, if we define the predicate Q(x, y) to mean “x2 = y,” then Q(5, 25) is
True since 52 = 25, but Q(5, 24) is False.15

15 Just as how common arithmetic
operators like + are really binary
functions, the common comparison
operators like = and < are binary
predicates, taking two numbers and
returning True or False.

We usually define a predicate by giving the statement that involves the variables,
e.g., “P(x) is the statement ‘x is a power of 2.’ ” However, there is another
component which is crucial to the definition of a predicate: the domain that
each of the predicate’s variable(s) belong to. You must always give the domain
of a predicate as part of its definition. So we would complete the definition of
P(x) as follows:

P(x) : “x is a power of 2,” where x∈N.

Quantification of variables

Unlike propositional formulas, a predicate by itself does not have a truth value:
as we discussed earlier, “x is a power of 2” is neither True nor False, since
we don’t know the value of x. We have seen one way to obtain a truth value
in substituting a concrete element of the predicate’s domain for its input, e.g.,
setting x = 8 in the statement “x is a power of 2,” which is now True.

However, we often don’t care about whether a specific value satisfies a predicate,
but rather some aggregation of the predicate’s truth values over all elements
of its domain. For example, the statement “every real number x satisfies the
inequality x2 − 2x + 1 ≥ 0” doesn’t make a claim about a specific real number
like 5 or π, but rather all possible values of x!

There are two types of “truth value aggregation” we want to express; each type
is represented by a quantifier that modifies a predicate by specifying how a
certain variable should be interpreted.

Definition 1.6. The existential quantifier is written as ∃, and represents the con-
cept of “there exists an element in the domain that satisfies the given predicate.”

Example 1.6. For example, the statement ∃x ∈ N, x ≥ 0 can be translated as
“there exists a natural number x that is greater than or equal to zero.” This
statement is True since (for example) when x = 1, we know that x ≥ 0.

Note that there are many more natural numbers that are greater than or equal
to 0. The existential quantifier says only that there has to be at least one element
of the domain satisfying the predicate, but it doesn’t say exactly how many
elements do so.

One should think of ∃x∈ S as an abbreviation for a big OR that runs through
all possible values for x from the domain S. For the previous example, we can
expand it by substituting all possible natural numbers for x:16

16 In this case, the OR expression is
technically infinite, since there are
infinitely many natural numbers.(0 ≥ 0) ∨ (1 ≥ 0) ∨ (2 ≥ 0) ∨ (3 ≥ 0) ∨ · · ·

Definition 1.7. The universal quantifier is written as ∀, and represents the con-
cept that “every element in the domain satisfies the given predicate.”

24 david liu and toniann pitassi

Example 1.7. For example, the statement ∀x ∈ N, x ≥ 0 can be translated as
“every natural number x is greater than or equal to zero.” This statement is
True since the smallest natural number is zero itself. However, the statement
∀x ∈N, x ≥ 10 is False, since not every natural number is greater than or equal
to 10.

One should think of ∀x∈ S as an abbreviation for a big AND that runs through
all possible values of x from S. Thus, ∀x ∈N, x ≥ 0 is the same as

(0 ≥ 0) ∧ (1 ≥ 0) ∧ (2 ≥ 0) ∧ (3 ≥ 0) ∧ · · ·

Example 1.8. Let us look at a simple example of these quantifiers. Suppose we
define Loves(a, b) to be a binary predicate that is True whenever person a loves
person b.

Ella

Patrick

Malena

Breanna

Laura

Stanley

Thelonious

Sophia

For example, the diagram on the right defines the relation “Loves” for two col-
lections of people: A = {Ella, Patrick, Malena, Breanna}, and B = {Laura, Stanley,
Thelonious, Sophia}. A line between two people indicates that the person on the
left loves the person on the right.

Consider the following statements.

• ∃a ∈ A, Loves(a, Thelonious), which means “there exists someone in A who
loves Thelonious.” This is True since Malena loves Thelonious.17

17 We could also have said here that
Breanna loves Thelonious.• ∃a ∈ A, Loves(a, Sophia), which means “there exists someone in A who loves

Sophia.” This is False since no one loves Sophia.
• ∀a ∈ A, Loves(a, Stanley), which means “every person in A loves Stanley.”

This is True, since all four people in A love Stanley.
• ∀a ∈ A, Loves(a, Thelonious), which means “every person in A loves Thelo-

nious.” This is False, since Ella does not love Thelonius.

Understanding multiple quantifiers

It is usually straightforward to understand logical formulas with just a single
quantifier, since they can generally be translated into English as either “there
exists an element x of set S that satisfies P(x)” or “every element x of set S
satisfies P(x).” However, we will often have situations where there are multiple
variables that are quantified, and we need to pay special attention to what such
statements are actually saying. For example, our Loves predicate is binary—
what if we wanted to quantify both of its inputs? For example, consider the
formula

∀a ∈ A, ∀b ∈ B, Loves(a, b).

We translate this as “for every person a in A, for every person b in B, a loves
b.” After some thought, we notice that the order in which we quantified a and b
doesn’t matter; the statement “for every person b in B, for every person a in A,
a loves b” means exactly the same thing! In both cases, we are considering all
possible pairs of people (one from A and one from B).

So in general when we have two consecutive universal quantifiers the order does
not matter. The following two formulas are equivalent:18

18 Tip: when the domains of the two
variables are the same, we typically
combine the quantifications, e.g., ∀x ∈
S, ∀y ∈ S, P(x, y) into ∀x, y ∈ S, P(x, y).

mathematical expression and reasoning for computer science 25

• ∀x ∈ S1, ∀y ∈ S2, P(x, y)
• ∀y ∈ S2, ∀x ∈ S1, P(x, y)

The same is true of two consecutive existential quantifiers. Consider the state-
ments “there exist an a in A and b in B such that a loves b” and “there exist a
b in B and a in A such that a loves b.” Again, they mean the same thing: in
this case, we only care about one particular pair of people (one from A and one
from B), so the order in which we pick the particular a and b doesn’t matter. In
general, the following two formulas are equivalent:

• ∃x ∈ S1, ∃y ∈ S2, P(x, y)
• ∃y ∈ S2, ∃x ∈ S1, P(x, y)

But even though consecutive quantifiers of the same type behave very nicely,
this is not the case for a pair of alternating quantifiers. First, consider

∀a ∈ A, ∃b ∈ B, Loves(a, b).

This can be translated as “For every person a in A, there exists a person b in B,
such that a loves b.”19 This is true: every person in A loves at least one person.

19 Or put a bit more naturally, “For
every person a in A, a loves someone in
B,” which can be shortened even fur-
ther to “Everyone in A loves someone
in B.”

a (from A) b (a person in B who a loves)

Breanna Thelonious
Malena Laura
Patrick Stanley
Ella Stanley

Note that the choice of person who a loves depends on a: this is consistent with
the latter part of the English translation, “a loves someone in B.”

Let us contrast this with the similar-looking formula, where the order of the
quantifiers has changed:

∃b ∈ B, ∀a ∈ A, Loves(a, b).

This formula’s meaning is quite different: “there exists a person b in B, where
for every person a in A, a loves b.” Put more naturally, “there is a person b in B
that is loved by everyone in A” or “someone in B is loved by everyone in A”.

b (from B) Loved by everyone in A?

Sophia No
Thelonious No
Stanley Yes
Laura No

This is True because all people in A love Stanley. However, this would not be
True if we removed the love connection between Malena and Stanley. In this

26 david liu and toniann pitassi

case, Stanley would no longer be loved by everyone, and so no one in B is loved
by everyone in A. But also notice that even if Malena no longer loves Stanley,
the previous statement (“everyone in A loves someone”) is still True!

So we would have a case where switching the order of quantifiers changes the
meaning of a formula! In both cases, the existential quantifier ∃b ∈ B involves
making a choice of person from B. But in the first case, this quantifier occurs
after a is quantified, so the choice of b is allowed to depend on the choice of a.
In the second case, this quantifier occurs before a, and so the choice of b must
be independent of the choice of a.

When reading a nested quantified expression, you should read it from left to
right, and pay attention to the order of the quantifiers. In order to see if the
statement is True, whenever you come across a universal quantifier, you must
verify the statement for every single value that this variable can take on. When-
ever you see an existential quantifier, you only need to exhibit one value for
that variable such that the statement is True, and this value can depend on the
variables to the left of it, but not on the variables to the right of it.

Writing sentences in predicate logic

Now that we have introduced the existential and universal quantifiers, we have
a complete set of tools needed to represent all statements we’ll see in this course.
A general formula in predicate logic is built up using the existential and univer-
sal quantifiers, the propositional operators ¬, ∧, ∨, ⇒, and ⇔, and arbitrary
predicates. To ensure that the formula has a fixed truth value, we will require
every variable in the formula to be quantified.20 We call a formula with no

20 Other texts will often refer to quan-
tified variables as bound variables, and
unquantified variables as free variables.

unquantified variables a sentence. So for example, the formula

∀x ∈N, x2 > y

is not a sentence: even though x is quantified, y is not, and so we cannot deter-
mine the truth value of this formula. If we quantify y as well, we get a sentence:

∀x, y ∈N, x2 > y.

However, don’t confuse a formula being a sentence with a formula being True!
As we’ll see repeatedly throughout the course, it is quite possible to express
both True and False sentences, and part of our job will be to determine whether
a given sentence is True or False, and to prove it.

Manipulating negation

We have already seen some equivalences among logical formulas, such as the
equivalence of p ⇒ q and ¬p ∨ q. While there are many such equivalences,
the only other major type that is important for this course are the ones used
to simplify negated formulas. Taking the negation of a statement is extremely
common, because often when we are trying to decide if a statement is True, it is

mathematical expression and reasoning for computer science 27

useful to know exactly what its negation means and decide whether the negation
is more plausible than the original.

Given any formula, we can state its negation simply by preceding it by a ¬
symbol:

¬
(
∀x ∈N, ∃y ∈N, x ≥ 5∨ x2 − y ≥ 30

)
.

However, such a statement is rather hard to understand if you try to transliterate
each part separately: “Not for every natural number x, there exists a natural
number y, such that x is greater than or equal to 5 or x2 − y is greater than or
equal to 30.”

Instead, given a formula using negations, we apply some simplification rules to
“push” the negation symbol to the right, closer the to individual predicates.
Each simplification rule shows how to “move the negation inside” by one step,
giving a pair of equivalent formulas, one with the negation applied to one of the
logical operator or quantifiers, and one where the negation is applied to inner
subexpressions.

• ¬(¬p) becomes p.
• ¬(p ∨ q) becomes (¬p) ∧ (¬q).21

21 The negation rules for AND and OR
are known as deMorgan’s laws.• ¬(p ∧ q) becomes (¬p) ∨ (¬q).

• ¬(p⇒ q) becomes p ∧ (¬q).22

22 Since p⇒ q is equivalent to ¬p ∨ q.
• ¬(p⇔ q) becomes (p ∧ (¬q)) ∨ ((¬p) ∧ q)).
• ¬(∃x ∈ S, P(x)) becomes ∀x ∈ S, ¬P(x).
• ¬(∀x ∈ S, P(x)) becomes ∃x ∈ S, ¬P(x).

It is usually easy to remember the simplification rules for ∧, ∨, ∀, and ∃, since
you simply “flip” them when moving the negation inside. The intuition for the
negation of p ⇒ q is that there is only one case where this is False: when p has
occurred but q does not. The intuition for the negation of p⇔ q is to remember
that ⇔ can be replaced with “have the same truth value,” so the negation is
“have different truth values.”

Commas: avoid them!

Here is a common question from students who are first learning symbolic logic:
“does the comma mean ‘and’ or ‘then’?” As we discussed at the start of the
course, we study to predicate logic to provide us with an unambiguous way
of representing ideas. The English language is filled with ambiguities that can
make it hard to express even relatively simple ideas, much less the complex
definitions and concepts used in many fields of computer science. We have seen
one example of this ambiguity in the English word “or,” which can be inclusive
or exlusive, and often requires additional words of clarification to make precise.
In everyday communication, these ambiguous aspects of the English language
contribute to its richness of expression. But in a technical context, ambiguity is
undesirable: it is much more useful to limit the possible meanings to make them
unambiguous and precise.

28 david liu and toniann pitassi

There is another, more insidious example of ambiguity with which you are prob-
ably more familiar: the comma, a tiny, easily-glazed-over symbol that people
often infuse with different meanings. Consider the following statements:

1. If it rains tomorrow, I’ll be sad.
2. David is cool, Toniann is cool.

Our intuitions tell us very different things about what the commas mean in
each case. In the first, the comma means then, separating the hypothesis and
conclusion of an implication. But in the second, the comma is used to mean and,
the implicit joining of two separate sentences.23 The fact that we are all fluent in

23 Grammar-savvy folks will recognize
this as a comma splice, which is often
frowned upon but informs our reading
nonetheless.

English means that our prior intuition hides the ambiguity in this symbol, but it
is quite obvious when we put this into the more unfamiliar context of predicate
logic, as in the formula:

P(x), Q(x)

This, of course, is where the confusion lies, and is the origin of the question
posed at the beginning of this section. Because of this ambiguity, never use
the comma to connect propositions. We already have a rich enough set of
symbols—including ∧ and⇒—that we do not need another one that is ambigu-
ous and adds nothing new!

That said, keep in mind that commas do have two valid uses in predicate for-
mulas:

• immediately after a variable quantification, or separating two variables with
the same quantification

• separating arguments to a predicate

You can see both of these usages illustrated below, but please do remember that
these are the only valid places for the comma within symbolic notation!

∀x, y ∈N, ∀z ∈ R, P(x, y)⇒ Q(x, y, z)

Defining predicates

Throughout this course, we will study various mathematical objects that play
key roles in computer science. As these objects become more complex, so too will
our statements about them, to the point where if we try to write out everything
using just basic set and arithmetic operations, our formulas won’t fit on a single
line! To avoid this problem, we create definitions, which we can use to express a
long idea using a single term.24

24 This is completely analogous to using
local variables or helper functions in
programming to express part of an
overall value or computation.

In this section, we’ll look at one extended example of defining our own pred-
icates and using them in our statements. Let’s take some terminology that is
already familiar to us, and make it precise using the language of predicate logic.

Definition 1.8. Let n, d ∈ Z.25 We say that d divides n, or n is divisible by d,
25 You may be used to defining divisi-
bility for just the natural numbers, but
it will be helpful to allow for negative
numbers in our work.

mathematical expression and reasoning for computer science 29

when there exists a k ∈ Z such that n = dk. In this case, we use the notation
d | n to represent “d divides n.”

Note that just like the equals sign = is a binary predicate, so too is |. For
example, the statement 3 | 6 is True, while the statement 4 | 10 is False.26

26 Students often confuse the divisibility
predicate with the horizontal fraction
bar. The former is a predicate that re-
turns a boolean; the latter is a function
that returns a number. So 4 | 10 is False,
while 10

4 is 2.5.

Example 1.9. Let’s express the statement “For every integer x, if x divides 10,
then it also divides 100” in two ways: with the divisibility predicate d | n, and
without it.

• With the predicate: this is a universal quantification over all possible integers,
and contains a logical implication. So we can write

∀x ∈ Z, x | 10⇒ x | 100.

• Without the predicate: the same structure is there, except we unpack the defi-
nition of divisibility, replacing every instance of d | n with ∃k ∈ Z, n = dk.

∀x ∈ Z,
(
∃k ∈ Z, 10 = kx

)
⇒
(
∃k ∈ Z, 100 = kx

)
.

Note that each subformula in the parentheses has its own k variable, whose
scope is limited by the parentheses.27 However, even though this technically

27 That is, the k in the hypothesis of the
implication is different from the k in the
conclusion: they can take on different
values, though they can also take on the
same value.

correct, it’s often confusing for beginners. So instead, we’ll tweak the variable
names to emphasize their distinctness:

∀x ∈ Z,
(
∃k1 ∈ Z, 10 = k1x

)
⇒
(
∃k2 ∈ Z, 100 = k2x

)
.

As you can see, using this new predicate makes our formula quite a bit more
concise! But the usefulness of our definitions doesn’t stop here: we can, of
course, use our terms and predicates in further definitions.

Definition 1.9. Let p ∈N.28 We say p is prime when it is greater than 1 and the
28 Unlike divisibility, we restrict primes
to being positive.only natural numbers that divide it are 1 and itself.

Example 1.10. Let’s define a predicate Prime(p) to express the statement that “p
is a prime number,” with and without using the divisibility predicate.

The first part of the definition, “greater than 1,” is straightforward. The second
part is a bit trickier, but a good insight is that we can enforce constraints on
values through implication: if a number d divides p, then d = 1 or d = p. We can
put these two ideas together to create a formula:

Prime(p) : p > 1∧
(
∀d ∈N, d | p⇒ d = 1∨ d = p

)
, where p ∈N.

To express this idea without using divisibility predicate, we substitute in the
definition of divisibility. The underline shows the changed part.

Prime(p) : p > 1∧
(
∀d ∈N, (∃k ∈ Z, p = kd)⇒ d = 1∨ d = p

)
, where p ∈N.

Example 1.11. Finally, let us express one of the more famous properties about
prime numbers: “there are infinitely many primes.”29

29 Later on, we’ll actually prove this
statement!

We have just seen how to express the fact that a single number p is a prime
number, but how do we capture “infinitely many”? The key idea is that because

30 david liu and toniann pitassi

primes are natural numbers, if there are infinitely many of them, then they have
to keep growing bigger and bigger.30 So we can express the original statement

30 Another way to think about this
is to consider the statement “every
prime number is less than 9000. If this
statement were True, then there could
only be at most 8999 primes.”

as “every natural number has a prime number larger than it,” or in the symbolic
notation:

∀n ∈N, ∃p ∈N, p > n ∧ Prime(p).

Of course, if we wanted to express this statement without either the Prime or
divisibility predicates, we would end up with an extremely cumbersome state-
ment:

∀n ∈N, ∃p∈N, p > n∧ p > 1∧
(
∀d ∈N, (∃k ∈ Z, p = kd)⇒ d = 1∨ d = p

)
.

This statement is terribly ugly, which is why we define our own predicates! Keep
this in mind throughout the course: when you are given a statement to express,
make sure you are aware of all of the relevant definitions, and make use of them
to simplify your expression.

One last example: Fermat’s Last Theorem

As payoff for the work that we have done so far, let us use predicate logic to
express one of the most famous statements in mathematics: Fermat’s Last The-
orem. It was first conjectured by the mathematician Pierre de Fermat in 1637

in the margin of a copy of the text Arithmetica, where he claimed that he had
a proof that was too large to fit in the margin!31 Despite this purported proof,

31 “I have discovered a truly marvelous
proof of this, which this margin is too
narrow to contain.”

for centuries this statement had no published proof. It wasn’t until 1994 that
Andrew Wiles finally proved this theorem.

Example 1.12. Fermat’s Last Theorem states that there are no three positive
integers a, b, and c that satisfy an + bn = cn for any integer n > 2. To express
this in predicate logic, we identify the relevant variables: a, b, c, and n. Are they
universally or existentially quantified? The n certainly is universally quantified,
since we say that the statement is “for any n > 2.” The statement also makes a
claim that no a, b, c satisfy the given equation, which we can rephrase as “there do
not exist a, b, c satisfying. . . ” Finally, we can express the condition n > 2 using
an implication: if n > 2, then there is no solution to. . . Putting this together
yields:

∀n ∈N, n > 2⇒ ¬
(
∃a, b, c ∈ Z+, an + bn = cn).

We can now simplify this statement by pushing the negation inwards, so that
this statement becomes

∀n ∈N, n > 2⇒
(
∀a, b, c ∈ Z+, an + bn 6= cn).

Exercise Break!

1.3 Let S be a set of people, C be the set of all countries, and let T be a predicate
defined over S×C such that T(x, y) is True if and only if x∈ S has traveled to

mathematical expression and reasoning for computer science 31

country y∈C. Express each of the following statements by a simple English
sentence.

(a)
(
∃x∈ S, T(x, France)

)
∧
(
∀y∈ S, T(y, Japan)

)
(b) ∀x∈ S, ∃y∈C, T(x, y)
(c) ∀x, z∈ S, ∃y∈C, T(x, y)⇔ T(z, y)

1.4 Write each of the statements below in predicate logic, and then write the
contrapositive and converse of each statement.

(a) If all birds fly, and if Tweety is a bird, then Tweety flies.
(b) If it does not rain or it is not foggy, then the sailing race will be held and

registration will go on.
(c) If rye bread is for sale at Ace Bakery, then rye bread was baked that day.

Our conventions for writing formulas

Mathematical expressions in predicate logic can become complicated very quickly.
In order to avoid confusion and to make things as clear as possible we will follow
some important conventions.

Operator precedence

The longer and more complex our formulas, the harder they are to read and
understand. For example, here is a rather more complicated formula:

∀x, y ∈N, ∃z ∈N, x + y = z ∧ x · y = z⇒ x = y.

Whenever we mix different propositional operators together, or when we mix
quantifiers with formulas containing predicates, we need to worry about which
ones come first—i.e., which ones have higher precedence. Technically, we can
just use parentheses around every operation, but this quickly becomes very tir-
ing. Instead, we will use the following precedence levels, in decreasing order of
precedence.32

32 Combinations of operations at the
same level must be disambiguated using
parentheses.

1. ¬
2. ∨, ∧
3. ⇒,⇔
4. ∀, ∃

So for example the expression

(p ∨ ¬q) ∧ r ⇒
(
(s ∨ t) ∧ u

)
∨ (¬v ∧ w)

represents ((
p ∨ (¬q)

)
∧ r
)
⇒
((

(s ∨ t) ∧ u
)
∨
(
(¬v) ∧ w

))
,

32 david liu and toniann pitassi

and the expression

∀x, y ∈N, ∃z ∈N, x + y = z ∧ x · y = z⇒ x = y

represents

∀x, y ∈N,
(
∃z ∈N,

((
x + y = z ∧ x · y = z

)
⇒ x = y

))
.

Associativity

There is one more notational simplification we will use to reduce the number
of parentheses we need to write: the ∧ and ∨ operators are each associative,
meaning that

(p ∧ q) ∧ r is equivalent to p ∧ (q ∧ r)

and
(p ∨ q) ∨ r is equivalent to p ∨ (q ∨ r).

This means that when we have a chain of ANDs, we do not need to write any
parentheses to indicate the order in which they are evaluated, and can instead
write

p1 ∧ p2 ∧ p3 ∧ . . . ∧ pk,

and similarly with a chain or ORs. It turns out that the biconditional operator is
also associative, so the same convention applies.

However, keep in mind that the implication operator is not associative, and so
you must always use parentheses to indicate the order they should be evaluated.

Variable scope and naming

As we saw in the previous section, formulas involving multiple variables can
be hard to understand: one has to keep careful track of each variable, what
it represents, and where it can legitimately appear in the formula. To make
this easier, we will always use distinct names for each variable to ensure there is no
possibility of confusion about what a variable is referring to. Here is an example,
where f is a unary function from N to N:(

∀x ∈N, f (x) ≥ 5
)
∨
(
∃x ∈N, f (x) < 5

)
.

In this statement, we have two different occurrences of quantified variables, but
they have the same name. We will always prefer to write it in this equivalent
form, where each occurrence has a distinct name:(

∀x ∈N, f (x) ≥ 5
)
∨
(
∃y ∈N, f (y) < 5

)
.

We do this even when expanding the same definition multiple times, typically
using subscripts to differentiate the occurrences:

x | 10⇒ x | 100

mathematical expression and reasoning for computer science 33

becomes (
∃k1 ∈ Z, 10 = k1x

)
⇒
(
∃k2 ∈ Z, 100 = k2x

)
.

Each quantification of a variable will be followed by a formula, which will be
the scope of this variable. For example ∀x ∈N, f (x) ≥ 5—the formula f (x) ≥ 5
is the part of the statement that involves x.

Quantifiers are read left-to-right, which is why in ∀a ∈ A, ∃b ∈ B the variable a
is in scope when choosing b, but this is not true in ∃b ∈ B, ∀a∈ A.

Finally, because we take quantifiers to have lowest precedence, the scope of a
variable usually lasts until the end of the formula. The only time this is not the
case is if the quantification is surrounded by parentheses, as in(

∀x ∈N, f (x) ≥ 5
)
∨
(
∃y ∈N, f (y) < 5

)
.

Here, the scope of x is only the first underlined expressions, and the scope of y
is only the second underlined expression.

2 Introduction to Proofs

In the previous chapter, we studied how to express statements precisely using
the language of predicate logic. But just as English enables us to make both
true and false claims, the language of predicate logic allows for the expression
of both true and false sentences. In this chapter, we will turn our attention to
analyzing and communicating the truth or falsehood of these statements. You
will develop the skills required to answer the following questions:

• How can you figure out if a given statement is True or False?
• If you know a statement is True, how can you convince others that it is True?

How can you do the same if you know the statement is False instead?
• If someone gives you an explanation of why a statement is True, how do you

know whether to believe them or not?

These questions draw a distinction between the internal and external compo-
nents of mathematical reasoning. When given a new statement, you’ll first need
to figure out for yourself whether it is true (internal), and then be able to ex-
press your thought process to others (external). But even though we make a
separation, these two processes are certainly connected: it is only after convinc-
ing yourself that a statement is true that you should then try to convince others.
And often in the process of formalizing your intuition for others, you notice an
error or gap in your reasoning that causes you to revisit your intuition—or make
you question whether the statement is actually true!

A mathematical proof is how we communicate ideas about the truth or false-
hood of a statement to others. There are many different philosophical ideas
about what constitutes a proof, but what they all have in common is that a proof
is a mode of communication, from the person creating the proof to the person di-
gesting it. In this course, we will focus on reading and creating our own written
mathematical proofs, which is the standard proof medium in computer science.

As with all forms of communication, the style and content of a proof varies
depending on the audience. In this course, the audience for all of our proofs
will be an average CSC165 student (and not your TA or instructor). As we
will discuss, your audience determines how formal a proof should be (here,
quite formal), and what background knowledge you can assume is understood
without explanation (here, not much).

36 david liu and toniann pitassi

Some basic examples

We’re going to start out our exploration of proofs by studying a few simple
statements. You may find our first few examples a bit on the easy side, which is
fine. We are using them not so much for their ability to generate mathematical
insight, but rather to model both the thinking and the writing that would go into
approaching a problem.

Each example in this chapter is divided into three or four parts:

1. The statement that we want to prove or disprove. Sometimes, we’ll specify
whether to prove or disprove it, and other times deciding whether the state-
ment is true or false is part of the exercise.

2. A translation of the statement into predicate logic. This step often provides in-
sight into the logical structure of the statement that we are considering, which
in turn informs the structure and techniques that we will use in our proofs.

3. A discussion to try to gain some intuition about why the statement is true.
You’ll tend to see that these are written very informally, as if we are talking to
a friend on a whiteboard. The discussion usually will reveal the mathematical
insight that forms the content of a proof. This is often the hardest part of
developing a proof, so please don’t skip these sections!

4. A formal proof. This is meant to be a standalone piece of writing, the “final
product” of our earlier work. Depending on the depth of the discussion, the
formal proof might end up being almost mechanical – a matter of formalizing
our intuition.

With this in mind, let’s dive right in!

Example 2.1. Prove that 15 · 32 − 7 = 7 + (19 + 3)2/4.

Translation. Note that this statement has no logical operators, variables, or quan-
tifiers. So the “translation” into predicate logic is simply itself:

15 · 32 − 7 = 7 + (19 + 3)2/4.

Discussion. I can check whether this is true or not by putting both sides into my
calculator.

Proof. This statement is true because both sides equal 128.1
1 We are not going to evaluate you on
your computational abilities. We expect
that as a typical CSC165 student, you
can check arithmetic expressions your-
self. You can have the same expectation
when writing your proofs.

�

That was perhaps an underwhelming proof, and rightfully so: statements that
do not contain any variables are generally very straightforward to prove or dis-
prove, because they usually amount to performing just some kind of calculation.
However, almost all of the statements we care about involve quantified variables,
and so we will next discuss how to deal with these quantifications so that the
core of our proofs become “just a calculation.”

mathematical expression and reasoning for computer science 37

Example 2.2. Prove that there exists a power of two bigger than 1000.

Translation. In order to translate this statement into predicate logic, I need to
unpack two definitions in this statement. I know that “there exists” translates
into an existential quantifier, and all “powers of 2” have the form 2n, where n is
a natural number. So this statement becomes:

∃n ∈N, 2n > 1000.

Discussion. This must be true since I know that the powers of 2 grow to infinity
(either from intuition, or a calculus class). I just need to do some calculations
until I find a large enough value for n.

Proof. Let n = 10.

Then 2n is a power of two, and 2n = 1024, which is greater than 1000.2
2 Note again that we didn’t add a
sentence in our proof to “verify” that
210 = 1024, as this is easily checkable
with a calculator.

�

We can draw from this example a more general technique for structuring our
existence proofs. A statement of the form ∃x ∈ S, P(x) is True when at least
one element of S satisfies P. The easiest way to convince someone that this is
True is to actually find the concrete element that satisfies P, and then show that
it does.3 This is so natural a strategy that it should not be surprising that there

3 Of course, this is not the only proof
technique used for existence proofs.
You’ll study more sophisticated ways of
doing such proofs in future courses.

is a “standard proof format” when dealing with such statements.

A typical proof of an existential.

Given statement to prove: ∃x ∈ S, P(x).

Proof. Let x = _______.

[Proof that P(_______) is True.]

�

Note that the two blanks represent the same element of S, which you get to
choose as a prover. Thus existence proofs usually come down to finding a correct
element of the domain which satisfy the required properties.

Example 2.3. Prove that every real number n greater than 20 satisfies the in-
equality 1.5n− 4 ≥ 3.

Translation. Here the statement starts with an “every,” which is a big hint about
the formal structure of the statement: it is universally quantified.

What about the domain of n? The statement mentions real numbers, but there
is the issue of the qualifying “greater than 20” as well. While we could define a
set S to be the set of real numbers bigger than 20, instead we will express this
condition as a hypothesis in an implication. The conclusion, 1.5n− 4 ≥ 3, only
needs to be true when n is greater than 20.

38 david liu and toniann pitassi

This gives us the full translation

∀n ∈ R, n > 20⇒ 1.5n− 4 ≥ 3.

Discussion. I might first try to gain some intuition by substituting numbers for
n. 25 is bigger than 20, and 1.5(25)− 4 = 33.5 > 3. But that idea is limited in
scope to just one real number—appropriate for proving an existential, but not a
universal. This statement is talking about an infinite number of real numbers,
so I need to use an argument that will work on any real number bigger than 20.

This should be some straightforward algebraic manipulation. We start with the
assumption that n > 20, and multiply by 1.5 then subtract 4; both of these
operations will preserve the inequality.4

4 Now is a good time to review the
section on Inequalities.

Proof. Let n ∈ R be an arbitrary real number. Assume that n > 20. We want to
prove that 1.5n− 4 ≥ 3.

We can perform the following manipulations to our given inequality to result in
the final inequality:

n > 20

1.5n > 30

1.5n− 4 > 26

1.5n− 4 ≥ 3 (since 26 > 3)

�

The above proof has a few interesting details. The first is that this was a proof
of a universally-quantified statement. Unlike the previous example, where we
proved a fact about just one number, here we proved a fact about an infinite set
of numbers.

To do this, our proof introduced a variable n that could represent any real num-
ber. Unlike the previous existence proof, when we introduced this variable n we
did not specify a concrete value like 10, but rather said that n was “an arbitrary
real number,” and then proceeded with the proof. As we get more comfortable,
we will drop the English phrase part and just write “let n ∈ S” to introduce n as
an arbitrary element of S.5

5 You might notice that we use the
same word “let” to introduce both
existentially- and universally-quantified
variables. However, you should always
be able to tell how the variable is
quantified based on whether it is given
a concrete value or an “arbitrary” value
in the proof.

A typical proof of a universal.

Given statement to prove: ∀x ∈ S, P(x).

Proof. Let x ∈ S. (That is, let x be an arbitrary element of S.)

[Proof that P(x) is True].

�

mathematical expression and reasoning for computer science 39

However, this structure does not tell the full story. We also put a further re-
striction on n: “Assume that n > 20.” Whenever we want to prove that an
implication p⇒ q is true, we do so by assuming that p is true, and then proving
that q must be true.

A typical proof of an implication (direct).

Given statement to prove: p⇒ q.

Proof. Assume p.

[Proof that q is True.]

�

Of course, these proof templates can be combined as the statements you prove
grow more complex. In particular, statements of the form ∀n ∈ S, P(n)⇒ Q(n)
are probably the most common type of statements you’ll prove, and follow the
standard setup of “Let n ∈ S be an arbitrary element of S, and assume P(n) is
True.”6

6 Compare this with the first line of the
previous proof.

Variables as representing arbitrary numbers

A good way of understanding what it means for n to be an arbitrary real number
under the stated assumption is that we should be able to substitute any real
number that satisfies the assumption (n > 20) into the body of the proof, and
have the body still make sense. For example, if we substitute n = 25 into the
body of the previous proof, we can see that every line is valid:

We can perform the following manipulations to our given inequality to result in
the final inequality:

25 > 20

1.5(25) > 30

1.5(25)− 4 > 26

1.5(25)− 4 ≥ 3 (since 26 > 3)

However, the body does not necessarily make sense if we violate our assumption
that n > 20! Below we show what our proof body looks like when we substitute
n = 4. What is the problem with this body?

We can perform the following manipulations to our given inequality to result in
the final inequality:

4 > 20

1.5(4) > 30

1.5(4)− 4 > 26

1.5(4)− 4 ≥ 3 (since 26 > 3)

40 david liu and toniann pitassi

Unlike variables in programming, which refer to concrete values, but can change
their values over time, variables in a mathematical proof never change their
value. Even when we say n represents an arbitrary real number, this doesn’t
mean we can substitute different real numbers for n at different points in the
proof! For example, the following proof snippet makes absolutely no sense:

We can perform the following manipulations to our given inequality to result in
the final inequality:

25 > 20

1.5(16) > 30

1.5(3000)− 4 > 26

1.5(3.14159)− 4 ≥ 3 (since 26 > 3)

At each line of the calculation, we substituted a different real number for n; as
you might expect, the statements no longer logically flow. So we often say that
a variable n represents an arbitrary and fixed element of the domain, to remind
ourselves that the value of this variable will not change during the proof.

A note about inequalities, bounds, and approximation

You may have felt a little uneasy by the final step of our computation in the
above proof, going from 1.5n − 4 > 26 to 1.5n − 4 ≥ 3. In most calculations
you would have done in high school (or perhaps even other university math
classes), we never would have performed such a step. If we wanted to “solve”
the inequality 1.5n− 4 ≥ 3, the “answer” we present would probably be n ≥ 14

3 ,
not n ≥ 20. What is different here?

We deliberately chose this example to bring up this point. There is a difference
between solving an inequality to determine the exact range of values for a vari-
able, and manipulating inequalities to produce more inequalities. Inequalities
are fundamentally about bounding values, and are by definition inexact. In this
course (and largely in computer science), we treat inequalities with a grain of
salt, keeping in mind that they are just bounds. And when a bound is “as good
as possible,” we pay special attention to it: these bounds are not to be taken for
granted, and must always be earned.7

7 We’ll see what we mean by “as good
as possible” later on.

What goes into a proof?

We have now seen our first few basic examples of formal mathematical proofs.
In the next section, we will create more complex proofs by studying some def-
initions and properties based in number theory. But to ensure that we have a
solid foundation before moving on, we will first take a step back and give names
to two major components of every proof and guidelines for writing them, based
on the examples we have already seen.

mathematical expression and reasoning for computer science 41

Proof header: setting up the proof

Every proof you write should start with a proof header. The main purpose of
a proof header is to introduce all the variables and assumptions you’ll use in
your proof. The order of statements matters here: variables and assumptions
should be introduced in the same order they appear in the translated statement,
to avoid any potential problems with scope (this is particularly important when
dealing with alternating quantifiers).

You must introduce every variable you use in your proof.8 Use the word let to
8 This goes for variables that appear
in the statement you’re proving—they
aren’t “automatically” introduced.

introduce variables. Make sure that every variable you introduce has a different
name.

• For a universally-quantified variable (∀x ∈ S), introduce the variable in one
of two ways:

“Let x ∈ S.” or “Let x be an arbitrary element of S.”

• For an existentially-quantified variable (∃x ∈ S), introduce the variable by set-
ting it to a concrete element of S. For example, if S = N, we might introduce
x by saying:

“Let x = 5.”

• For a local variable that does not appear in the original statement, introduce
it like you would an existentially-quantified variable:

“Let ε = x− bxc.”

Such variables can be helpful in giving names to certain key expressions in
your proof, much in the same way local variables are helpful in programming.

When trying to prove an implication in a universally-quantified statement, state
that you are assuming the hypothesis of the implication. Always use the word
assume to introduce your assumptions.

• For example, when proving the statement ∀x ∈N, P(x)⇒ Q(x), you would
write:9

9 Warning: any variables involved in an
assumption must be introduced (using
let) before the assumption is made.
Don’t just write “Assume P(x)” if you
haven’t yet introduced x!

“Let x ∈N. Assume P(x).”

• If the hypothesis of the implication is multiple predicates connected by ANDs,
you get to assume all of them. For example, when proving ∀x ∈ N, P1(x) ∧
P2(x) ∧ P3(x)⇒ Q(x), you would write:

42 david liu and toniann pitassi

Let x ∈N. Assume that P1(x), P2(x), and P3(x) are all true.

If you assume a predicate, you may find it useful to restate your assumption
with the expanded body of the predicate. While this is not required, it can be
very helpful to make clearer to your reader what you’re assuming, and possibly
even introduce new variables that will play a role in your proof. For example,
suppose we have the predicate P(x) : “x3 < 10x + 300” (where x ∈N). If we are
proving a statement of the form ∀x ∈ N, P(x)⇒ Q(x), our proof header could
be

Let x ∈N. Assume that P(x) is true, i.e., that x3 < 10x + 300.

As we start proving larger and more complicated statements, the construction
of the proof header will prove to be extremely valuable in helping us figure
out where to start. The two major components of the proof header—introducing
variables and stating assumptions—can be done mechanically10 simply from the

10 By “mechanically” here we mean
“without much thought.” The exception
is figuring out what value to use for
an existentially-quantified variable, so
what we typically do is leave a blank in
our proof header to come back to later.

structure of the statement alone. When we write a proof header, we “unwrap”
the statement by peeling off quantifiers and assumptions, until we are left with
the core of what we want to prove. Here is one example of this.

Example 2.4. Let us write the proof header we would use to prove the following
statement:

∀x ∈ R, ∀y ∈N, x > 10∧ y < x ⇒
(
∃z ∈ R, P(x, y, z)

)
Proof. Let x ∈ R and let y ∈ N. Assume that x > 10 and that y < x. Let
z = _____. We will prove that P(x, y, z) is true.

[Proof body goes here.]

�

In the above example, we took a fairly large and complex statement and used
the proof header to get at the core of the proof: picking a value for z (indicated
by the blank in the proof header) to prove the predicate P(x, y, z). We ended our
proof header by explicitly stating our new goal: proving P(x, y, z). While this
last part is not required, it is often very useful to remind the reader what the
body of the proof is actually about, after having introduced all these variables
and assumptions.

Proof body: the chain of reasoning

While the proof header sets up the proof, the proof body contains the actual
reasoning that shows that a statement must be true.11 The proof body consists

11 This is typically the part of a proof
that people think of when they imagine
what a proof is. However, the proof
header is an essential component, both
in terms of writing a coherent proof,
and being a helpful step in actually
figuring out how to prove something.

of a sequence of true statements called deductions, where each statement logically
follows from a combination of the following sources of truth:

• Definitions

mathematical expression and reasoning for computer science 43

• Assumptions (made in the proof header)
• Previous deductions (made earlier in the proof body)
• External true statements

We use the metaphor of a chain to describe the body of a proof; proof bodies start
with statements already known to be true, and then make logical deductions
until reaching the statement that you’re actually trying to prove.12

12 Students sometimes ask: how do you
know when a proof is over? Answer:
when you’ve written a deduction that is
the statement you wanted to prove.

Each sentence you write in the proof body should consist of two parts: the de-
duction you’re making (i.e., what you’re claiming to be true), and the reason
for that deduction (what combination of definitions/assumptions/previous de-
ductions/external true statements it follows from). Since this type of statement
comprises about 90% of proof bodies, there are a few different common ways of
saying this in English that you’ll see (and use), including but not limited to:

“Since [reason], [deduction].”

“Because we know [reason], we can conclude [deduction].”

“Then [deduction] (by the fact that [reason]).”

“It follows from [reason] that [deduction] is also true/holds.”

Logical deductions

The most common form of logical deduction we use when writing proofs is
modus ponens, which matches our intuition for what implication means. This
rule says that if we already know p and p ⇒ q are both true, then we can
conclude that q is true. In a proof, we might write something like: "Because
we know x > 10 and that x > 10 implies x2 − x > 90, we can conclude that
x2 − x > 90.

The other very common form of logical deduction is called universal instantiation,
which matches our intuition for what a universally-quantified statement means.
This rule says that if we already know a universal like ∀x ∈ S, P(x), and we have
a variable y whose value is an element of the domain S, then we can conclude
that P(y) must be true. In a proof, we might write something like: “Because we
know that y ∈ N and that ∀x ∈ N, x2 + 5x + 4 is not prime, we can conclude
that y2 + 5y + 4 is not prime.” In fact, we use this form of deduction every time
we appeal to some “elementary” fact about numbers!

Writing reasons and deductions

Because writing proof bodies is the part that often requires a lot of thinking, you
are given more flexibility; there aren’t as strict guidelines as for the proof header.
However, for every statement you make in the proof body, you should be able
to answer the following two questions:

1. What deduction am I saying is true here?

44 david liu and toniann pitassi

2. What reason(s) am I giving for why this is true?

You must provide explicit reasons for all statements you make in your proof.
Do not simply write (for example) “therefore [deduction]” without justification.
Remember that your job in writing a proof is to convince another human being
something is true; it is not your reader’s job to search through your proof to
figure out what reason you meant to give. A deduction that “obviously follows”
for you might not be at all clear to another person, which is why providing
justification is so important.

In later courses, and certainly as professionals, you’ll be able to relax this and
often leave justifications up to the reader to figure out, but this is not the case for
this course. Remember that because we’re all beginners here, we want to share
exactly what our thinking is, to make sure our reasoning is actually correct. To
put it another way: in the setting of this course, your goal is not to convince
your reader that some sentence is True—we already know this—but reather to
convince your reader that you are able to write a correct and complete proof!

To make your lives a little easier, there are two exceptions to this rule—that is,
two types of deductions where you don’t need to provide justification. They are:

• Any deduction whose truth can be verified using a calculator, and any com-
parison, divisibility and floor/ceiling operation on concrete numbers. For
example, you can make deductions like “100 > 3 · 4” and “165 is not divisible
by 6” without giving any justification.

• Any basic manipulation of an equality or inequality to get another valid
equality or inequality described in the earlier section on inequalities. For
example, you can go from x > 4 to 2x > 8 without saying that you’ve multi-
plied both sides of the first inequality by 2 to get obtain the second.

For any other type of reasoning—including definitions, assumptions, prior de-
ductions, and other external facts—you must reference them explicitly when
making deductions. But this doesn’t mean you need to repeat or write out the
statements! Using some short phrases to at least indicate where the reasons are
coming from is acceptable:

“By the previous deduction, . . . ”

“By the definition of divisibility, . . . ”

“By our first assumption, we can conclude . . . ”

“Using Claim 3, we know that . . . ”

The direction of a proof

Because we read proofs from top to bottom, the order in which we write state-
ments matters tremendously. We have seen this already when discussing the
proof header and the order in which we introduce variables. Even more is true:

mathematical expression and reasoning for computer science 45

the proof header should always come before the proof body, so that the vari-
ables and assumptions have been clearly defined before we use them in our
deductions.

Order also matters when writing deductions in a proof body, because one of
the possible types of reasons supporting a deduction are previous deductions
made. In a proof body, a series of calculations is read from top to bottom, where
each line is a deduction whose reasons are the previous line and some basic
manipulation. We should think of a block of calculation as a giant implication: if
the first line is true, then the last line must also be true (it logically follows from
the first). In a previous example where we wanted to prove that ∀n ∈ N, n >

20⇒ 1.5n− 4 ≥ 3, the calculation

n > 20

1.5n > 30

1.5n− 4 > 26

1.5n− 4 ≥ 3 (since 26 > 3)

really showed “n > 20⇒ 1.5n− 4 ≥ 3.”

This is fairly intuitive, but is often forgotten when we perform calculations (ma-
nipulation of equalities or inequalities) in a proof body. This is because we use
calculations for a different purpose in a proof than how you often use calcu-
lations in math class. In a math class, you’re used to manipulating equalities
and inequalities to “solve” them, which really means performing an algorithm
that gets you an answer. The reason this is different is that these algorithms
always have you start with the thing you’re trying to “solve” and arrive at an
answer. Here’s what you might have done in a math class with our inequality
1.5n− 4 ≥ 3:

1.5n− 4 ≥ 3

1.5n ≥ 7

n ≥ 14
3

Then you would have arrived at your “answer” of 14
3 and moved on to the

next problem. However, in the top-down context of a proof, this calculation
is not what we want! While each individual line does indeed follow from the
previous one, because we read proofs top-down, this calculation really shows
that 1.5n− 4 ≥ 3⇒ n ≥ 14

3 .

Note that these algorithms result in calculations that are backwards: they start
with the equation/inequality we want to prove, and derive some simpler in-
equality from it. In a proof, however, we must start with simple inequalities
(like assumptions from an implication in the original statement) and derive our
target inequality from them. The moral of this section is that proceeding blindly
with the algorithms for “solving” equations and inequalities in previous classes
may be helpful for scratch work, but you should always be careful when trans-
ferring that work to your final proof, so that your calculations actual represent a
true chain of reasoning that end with the statement you want to prove.

Much of the time, your scratch work calculations will be reversible, meaning that

46 david liu and toniann pitassi

they can be written in the reverse order but still be logically correct. This is
because many of the manipulations we do to equations/inequalities are “if and
only ifs”; for example, adding the same quantity to both sides:

1.5n− 4 ≥ 3⇔ 1.5n ≥ 7.

However, this isn’t always true: for example, squaring both sides of an equation:

a = b⇒ a2 = b2 but a2 = b2 6⇒ a = b.

Rather than worry about which operations are reversible and which aren’t, we
always write our calculations in top-down order so that there is no confusion in
our equations/inequalities about which implies which.

A new domain: number theory

One of the biggest questions that arises from the idea of “proof as communica-
tion” is determining how much detail to go into. For this course, we are assum-
ing only basic knowledge of arithmetic, algebraic manipulations of equalities
and inequalities, and standard elementary functions like powers, logarithms,
and trigonometric functions, but no calculus.13 However, there is even variation

13 So you may use, without justifica-
tions, various laws like ab · ac = ab+c

and sin2 θ + cos2 θ = 1.
in the typical CSC165 student with experience in this area, so as much as pos-
sible in this course, we will introduce new mathematical domains to serve as the
objects of study in our proofs.

This approach has three very nice benefits: first, by building domains from
the ground up, we can specify absolutely the common definitions and proper-
ties that everyone may assume and use freely in proofs; second, these domains
are the theoretical foundation of many areas of computer science, and learning
about them here will serve you well in many future courses; and third, learning
about new domains will help develop the skill of reading about a new mathematical
context and understanding it.14 The definitions and axioms of a new domain com-

14 In other words, you won’t just learn
about new domains; you’ll learn how to
learn about new domains!

municate the foundation upon which we build new proofs – in order to prove
things, we need to understand the objects that we’re talking about first.

Our first foray into domain exploration will be into number theory, which you
can think of as taking a type of entity with which we are quite familiar, and
formalizing definitions and pushing the boundaries of what we actually know
about these numbers that we use every day. We’ll start off by repeating and
expanding on one definition from the previous chapter.

Definition 2.1. Let n, d ∈ Z. We say that d divides n, or n is divisible by d, if
and only if there exists a k ∈ Z such that n = dk.

In this case, we use the notation d | n to represent “d divides n,” and call d a
divisor of n, and n a multiple of d.

Divisibility is a nice definition to work with because it contains an existential
quantifier embedded in the definition. From this, we’ll see some proofs with
more complex structure, based on the greater complexity of the statement.

mathematical expression and reasoning for computer science 47

Example 2.5. Prove that 23 | 115.

Translation. We will expand the definition of divisibility to rewrite this statement
in terms of simpler operations:

∃k ∈ Z, 115 = 23k.

Discussion. We just need to divide 115 by 23, right?

Proof. Let k = 5.

Then 115 = 23 · 5 = 23 · k.

�

Example 2.6. Prove that there exists an integer that divides 104.

Translation. There is the key phrase “there exists” right in the problem statement,
so we could write ∃a ∈ Z, a | 104. We can once again expand the definition of
divisibility to write:15

15 We use the abbreviated form for two
quantifications of the same type.∃a, k ∈ Z, 104 = ak.

Discussion. Basically, we need to pick a pair of divisors of 104. Since this is an
existential proof and we get to pick both a and k, any pair of divisors will work.

Proof. Let a = −2 and let k = −52.

Then 104 = ak.

�

The previous example is the first one that had multiple quantifiers. In our proof,
we had to give explicit values for both a and k to show that the statement held.
Just as how a sentence in predicate logic must have all its variables quantified, a
mathematical proof must introduce all variables contained in the sentence being
proven.

Alternating quantifiers revisited

In the previous chapter, we saw how changing the order of an existential and
universal quantifier changed the meaning of a statement. Now, we’ll study how
the order of quantifiers changes how we can introduce variables in a proof.

Example 2.7. Prove that all integers are divisible by 1.

Translation. The statement contains a universal quantification: ∀n ∈ Z, 1 | n. We
can unpack the definition of divisibility to

∀n ∈ Z, ∃k ∈ Z, n = 1 · k.

Discussion. The final equation in the fully-expanded form of the statement is
straightforward, and is valid when k equals n. But how should I introduce these
variables? Answer: in the same order they are quantified in the statement.

48 david liu and toniann pitassi

Proof. Let n ∈ Z. Let k = n.

Then n = 1 · n = 1 · k.

�

In this proof, we used an extremely important tool at our disposal when it comes
to proofs with multiple quantifiers: any existentially-quantified variable can be
assigned a value that depends on the variables defined before it.

In our proof, we first defined n to be an arbitrary integer. Immediately after
this, we wanted to show that for this n, ∃k ∈ N, n = 1 · k. And to prove this,
we needed a value for k—a “let” statement. Because we define k after having
defined n, we can use n in the definition of k and say “Let k = n.” It may be
helpful to think about the analogous process in programming. We first initialize
a variable n, and then define a new variable k that is assigned the value of n.

Even though this may seem obvious, one important thing to note is that the
order of variables in the statement determines the order in which the variables must be
introduced in the proof, and hence which variables can depend on which other
variables. For example, consider the following erroneous “proof.”

Example 2.8. (Wrong!) Prove that ∃k ∈ Z, ∀n ∈ Z, n = 1 · k.

Proof. Let k = n. Let n ∈ Z.

Then n = 1 · k.

�

This proof may look very similar to the previous one, but it contains one crucial
difference. The very first sentence, “Let k = n,” is invalid: at that point, n has
not yet been defined! This is the result of having switched around the order
of the quantifiers, which forces k to be defined independently of whatever n is
chosen.

Note: don’t assume that just because one proof is invalid, that all proofs of
this statement are invalid! We cannot conclude that this statement is false just
because we found one proof that didn’t work.16 We’ll next look at how to prove

16 A meta way of looking at this: a
statement is true if there exists a correct
proof of it.

that this statement is indeed false.

False statements and disproofs

Suppose we have a friend who is trying to convince us that a certain statement
X is false. If they tell you that statement X is false because they tried really hard
to come up with a proof of it and failed, you might believe them, or you might
wonder if maybe they just missed a crucial idea leading to a correct proof.17 An

17 Maybe they skipped all their CSC165

classes.absence of proof is not enough to convince us that the statement is false.

Instead, we must see a disproof, which is simply a proof that the negation of the
statement is true.18 For this section, we’ll be using the simplification rules from

18 In other words, if we can prove that
¬X is true, then X must be false.

mathematical expression and reasoning for computer science 49

the first chapter to make negations of statements easier to work with.

Here are two examples: the first one is quite simple, and is used to introduce the
basic idea. The second is more subtle, and really requires good understanding
of how we manipulate a statement to get a simple form for its negation.

Example 2.9. Disprove the following statement: every natural number divides
360.

Translation. This statement can be written as ∀n ∈N, n | 360. However, we want
to prove that it is false, so we really need to study its negation.

¬
(
∀n ∈N, n | 360

)
∃n ∈N, n - 360

Discussion. The original statement is obviously not true: the number 7 doesn’t
divide 360, for instance. Is that a proof? We wrote the negation of the statement
in symbolic form above, and if we translate it back into English, we get “there
exists a natural number which does not divide 360.” So, yes. That’s enough for
a proof.

Proof. Let n = 7.

Then n - 360, since 360
7 is not an integer.

�

When we want disprove a universally-quantified statement (“every element of S
satisfies predicate P”), the negation of that statement becomes an existentially-
quantified one (“there exists an element of S that doesn’t satisfy predicate P”).
Since proofs of existential quantification involve just finding one value, the dis-
proof of the original statement involves finding such a value which causes the
predicate to be false (or alternatively, causes the negation of the predicate to be
true). We call this value a counterexample for the original statement. In the pre-
vious example, we would say that 7 is a counterexample of the given statement.

A typical disproof of a universal (counterexample).

Given statement to disprove: ∀x ∈ S, P(x).

Proof. We prove the negation, ∃x ∈ S, ¬P(x). Let x = _______.

[Proof that ¬P(_______) is True.]

�

Now let’s look at at a more complex disproof.

Example 2.10. Disprove the following claim: for all natural numbers a and b,
there exists a natural number c which is less than a + b, and greater than both a
and b, such that c is divisible by a or by b.

50 david liu and toniann pitassi

Translation. The original statement can be translated as follows. We’ve under-
lined the four different propositions which are joined with AND operators to
make them stand out.

∀a, b ∈N, ∃c ∈N, c < a + b ∧ c > a ∧ c > b ∧ (a | c ∨ b | c).

We’ll derive the negation step by step, though once you get comfortable with
the negation rules, you’ll be able to handle even complex formulas like this one
quite quickly.

¬
(
∀a, b ∈N, ∃c ∈N, c < a + b ∧ c > a ∧ c > b ∧ (a | c ∨ b | c)

)
∃a, b ∈N, ¬

(
∃c ∈N, c < a + b ∧ c > a ∧ c > b ∧ (a | c ∨ b | c)

)
∃a, b ∈N, ∀c ∈N, ¬

(
c < a + b ∧ c > a ∧ c > b ∧ (a | c ∨ b | c)

)
∃a, b ∈N, ∀c ∈N, c ≥ a + b ∨ c ≤ a ∨ c ≤ b ∨

(
¬(a | c ∨ b | c)

)
∃a, b ∈N, ∀c ∈N, c ≥ a + b ∨ c ≤ a ∨ c ≤ b ∨ (a - c ∧ b - c)

Discussion. That symbolic negation involved quite a bit of work. Let’s make sure
we can translate the final result back into English: there exist natural numbers a
and b such that for all natural numbers c, c ≥ a + b or c ≤ a or c ≤ b or neither a
nor b divide c. Hopefully this example illustrates the power of predicate logic: by
first translating the original statement into symbolic logic, we were able to obtain
a negation by applying some standard manipulation rules and then translating
the resulting statement back into English. For a statement as complex as this
one, it is usually easier to do this than to try to intuit what the English negation
of the original is, at least when you’re first starting out.

Okay, so how do we prove the negation? The existential quantifier tells us we get
to pick a and b. Let’s think simple: what if a and b are both 2? Then a + b = 4.
If c ≥ 4, the first clause in the OR is satisfied, and if c ≤ 2, the second and third
clauses are satisfied. So we only need to worry about when c is 3, because in this
case the only clause that could possibly be satisfied is the last one, a - c ∧ b - c.
Luckily, a and b are both 2, and 2 doesn’t divide 3, so it seems like we’re good
in this case as well.

It was particularly helpful that we chose such small values for a and b, so that
there weren’t a lot of numbers in between them and their sum to care about. As
you do your own proofs of existentially-quantified statements, remember that
you have the power to pick values for these variables!

Proof. Let a = 2 and b = 2, and let c ∈N. We now need to prove that

c ≥ a + b ∨ c ≤ a ∨ c ≤ b ∨ (a - c ∧ b - c).

Substituting in the values for a and b, this gets simplified to:

c ≥ 4∨ c ≤ 2∨ 2 - c (∗)

To prove an OR, we only need one of the three parts to be true, and different
ones can be true for different values of c.

mathematical expression and reasoning for computer science 51

However, precisely which part is true depends on the value of c. For example,
we can’t say that for an arbitrary value of c, that c ≥ 4. So we’ll split up the re-
mainder of the proof into three cases for the values for c: numbers ≥ 4, numbers
≤ 2, and the single value 3.

Case 1. We will assume that c ≥ 4, and prove the statement (∗) is true.

In this case, the first part of the OR in (∗) is true (this is exactly what we’ve
assumed).

Case 2. We will assume that c ≤ 2, and prove the statement (∗) is true.

In this case, the second part of the OR in (∗) is true (this is exactly what we’ve
assumed).

Case 3. We will assume that c = 3, and prove the statement (∗) is true.

This case is the trickiest, because unlike the others, our assumption that c = 3
is not verbatim one of the parts of (∗). However, we note that 2 - 3, and so the
third part of the OR is satisfied.

Since in all possible cases statement (∗) is true, we conclude that this statement
is always true.

�

Proof by cases

The previous proof illustrated a new proof technique known as proof by cases.
Remember that for a universal proof, we typically let a variable be an arbitrary
element of the domain, and then make an argument in the proof body to prove
our goal statement. However, even when the goal statement is true for all el-
ements of the domain, it isn’t always easy to construct a single argument that
works for all of those elements! Sometimes, different arguments are required for
different elements. In this case, we divide the domain into different parts, and
then write a separate argument for each part.

A bit more formally, we pick a set of unary predicates P1, P2, . . . , Pk (for some
positive integer k), such that for every element x in the domain, x satisfies at
least one of the predicates (we say that these predicates are exhaustive). You
should think of these predicates as describing how we divide up the domain; in
the previous example, the predicates were:

P1(c) : c ≤ 2, P2(c) : c ≥ 4, P3(c) : c = 3.

Then, we divide the proof body into cases, where in each case we assume that
one of the predicates is True, and use that assumption to construct a proof that
specifically works under that assumption.19

19 Recall that there’s an equivalence
between predicates and sets. Another
way of looking at a proof by cases is
that we divide the domain into subsets
S1, S2, . . . Sk , and then prove the desired
statement separately for each of these
subsets.

52 david liu and toniann pitassi

A typical proof by cases.

Given statement to prove: ∀x ∈ S, P(x). Pick a set of exhaustive predicates
P1, . . . , Pk of S.

Proof. Let x ∈ S. We will use a proof by cases.

Case 1. Assume P1(x) is True.

[Proof that P(x) is True, assuming P1(x).]

Case 2. Assume P2(x) is True.

[Proof that P(x) is True, assuming P2(x).]

...

Case k. Assume Pk(x) is True.

[Proof that P(x) is True, assuming Pk(x).]

�

Proof by cases is a very versatile proof technique, since it allows the combining
of simpler proofs together to form a whole proof. Often it is easier to prove a
property about some (or even most) elements of the domain than it is to prove
that same property about all the elements. But do keep in mind that if you can
find a simple proof which works for all elements of the domain, that’s generally
preferable than combining multiple proofs together in a proof by cases.

To see one natural use of proof by cases in number theory, we introduce the
following theorem, which formalizes our intuitions about another familiar term:
remainders.

Theorem 2.1. (Quotient-Remainder Theorem) For all n ∈ Z and d ∈ Z+, there
exist q, r ∈ Z such that n = qd + r and 0 ≤ r < d. Moreover, these q and r are
unique (they are determined entirely by the values of n and d).

Definition 2.2. Let n, d, q, r be the variables in the previous theorem. We say that
q and r are the quotient and remainder, respectively, when n is divided by d.

The reason this theorem is powerful is that it tells us that for any divisor d ∈ Z+,
we can separate all possible integers into d different groups, corresponding to
their possible remainders (between 0 and d − 1) when divided by d. Let’s see
this how to use this fact to perform a proof by cases.

Example 2.11. Prove that for all integers x, 2 | x2 + 3x.

Translation. Using the divisibility predicate: ∀x ∈ Z, 2 | x2 + 3x. Or expanding
the definition of divisibility: ∀x ∈ Z, ∃k ∈ Z, x2 + 3x = 2k.

Discussion. We want to “factor out a 2” from the expression x2 + 3x, but this
only works if x is even. If x is odd, though, then both x2 and 3x will be odd, and
adding two odd numbers together produces an even number.

mathematical expression and reasoning for computer science 53

But how do we “know” that every number has to be either even or odd? And
how can we formalize the algebraic operations of “factoring out a 2” or “adding
two odd numbers together”? This is where the Quotient-Remainder Theorem
comes in.

Proof. Let x ∈ Z. By the Quotient-Remainder Theorem, we know that when x
is divided by 2, the two possible remainders are 0 and 1. We will divide up the
proof into two cases based on these remainders.

Case 1: assume the remainder when x is divided by 2 is 0. That is, we assume
there exists q ∈ Z such that x = 2q + 0. Let k = 2q2 + 3q. We will show that
x2 + 3x = 2k.

We have:

x2 + 3x = (2q)2 + 3(2q)

= 4q2 + 6q

= 2(2q2 + 3q)

= 2k

Case 2: assume the remainder when x is divided by 2 is 1. That is, we assume
there exists q ∈ Z such that x = 2q + 1. Let k = 2q2 + 5q + 2. We will show that
x2 + 3x = 2k.

We have:

x2 + 3x = (2q + 1)2 + 3(2q + 1)

= 4q2 + 4q + 1 + 6q + 3

= 2(2q2 + 5q + 2)

= 2k

�

Generalizing statements

In this section, we will investigate another important skill for reading and writ-
ing proofs: the ability to generalize existing knowledge into more generic, and
powerful, forms. As usual, we start with an example.

A first example

Example 2.12. Prove that for all integers x, if x divides (x + 5), then x also
divides 5.

Translation. There is both a universal quantification and implication in this state-
ment:20

20 We weren’t kidding that this is the
most common form of statement.∀x ∈ Z, x | (x + 5)⇒ x | 5.

54 david liu and toniann pitassi

When we unpack the definition of divisibility, we need to be careful about how
the quantifiers are grouped:

∀x ∈ Z,
((
∃k1 ∈ Z, x + 5 = k1x

)
⇒
(
∃k2 ∈ Z, 5 = k2x

))
.

Discussion. I need to prove that if x divides x + 5, then it also divides 5. So I
can assume that x divides x + 5, and I need to prove that x divides 5. Since x is
divisible by x, I should be able to subtract it from x + 5 and keep the result a
multiple of x. Can I prove that using the definition of divisibility? I basically
need to “turn” the equation x + 5 = k1x into the equation 5 = k2x.

Proof. Let x be an arbitrary integer. Assume that x | (x + 5), i.e., that there exists
k1 ∈ Z such that x + 5 = k1x. We want to prove that there exists k2 ∈ Z such
that 5 = k2x. Let k2 = k1 − 1.

Then we can calculate:

k2x = (k1 − 1)x

= k1x− x

= (x + 5)− x (we assumed x + 5 = k1x)

= 5

�

Whew, that was a bit longer than the proofs we’ve already done. There were a
lot of new elements that we introduced here, so let’s break them down:

• After introducing x, we wanted to prove the implication x | (x + 5)⇒ x | 5. To
prove an implication, we needed to assume that the hypothesis was true, and
then prove that the conclusion is also true. In our proof, we wrote “Assume
x | (x + 5).” This is not a claim that x | (x + 5) is True; rather, it is a way to
consider what would happen if x | (x + 5) were True. The goal for the rest of
the proof after that was to prove that x | 5.

Note that this proof did not prove that ∀x ∈ Z, x | x + 5: this is actually false!
Instead, we proved that if x divides (x + 5), then it must also divide 5.

• When we assumed that x | (x + 5), what this really did was introduce a
new variable k1 ∈ Z from the definition of divisibility. This might seem a
little odd, but take a moment to think about what this means in English. We
assumed that x divides x + 5, which (by definition) is the same as assuming
that there exists an integer k1 such that x+ 5 = k1x. Given that such a number
exists, we can give it a name and refer to it in the rest of our proof.21

21 In other words, we introduced a
variable into the proof through an
assumption we made.

Generalizing our example

One of the most important meta-techniques in mathematical proof is that of
generalization: taking a true statement (and a proof of the statement), and

mathematical expression and reasoning for computer science 55

then replacing a concrete value in the statement with a universally quanti-
fied variable. For example, consider the statement from the previous example,
∀x ∈ Z, x | (x + 5) ⇒ x | 5. It doesn’t seem like the “5” serves any special
purpose; it is highly likely that it could be replaced by another number like 165,
and the statement would still hold.22

22 Concretely, consider the statement
∀x ∈ Z, x | (x + 165) ⇒ x | 165, which
is at least as plausible as the original
statement with 5’s.

But rather than replace the 5 with another concrete number and then re-proving
the statement, we will instead replace it with a universally-quantified variable,
and prove the corresponding statement. This way, we will know that in fact we
could replace the 5 with any integer and the statement would still hold.

Example 2.13. Prove that for all d ∈ Z, and for all x ∈ Z, if x divides (x + d),
then x also divides d.

Translation. This has basically the same translation as last time, except now we
have an extra variable:

∀d, x ∈ Z,
((
∃k1 ∈ Z, x + d = k1x

)
⇒
(
∃k2 ∈ Z, d = k2x

))
.

Discussion. I should be able to use the same set of calculations as last time.

Proof. Let d and x be arbitrary integers. Assume that x | (x + d), i.e., there exists
k1 ∈ Z such that x + d = k1x.

We want to prove that there exists k2 ∈ Z such that d = k2x. Let k2 = k1 − 1.

Then we can calculate:

k2x = (k1 − 1)x

= k1x− x

= (x + d)− x

= d

�

This proof is basically the same as the previous one: we have simply swapped
out all of the 5’s with d’s. We say that the proof did not depend on the value 5,
meaning there was no place that we used some special property of 5, where
we could have used a generic integer instead. We can also say that the original
statement and proof generalize to this second version.

Why does generalization matter? By generalizing the previous statement from
being about the number 5 to an arbitrary integer, we have essentially gone from
one statement being true to an infinite number of statements being true. The
more general the statement, the more useful it becomes. We care about exponent
laws like ab · ac = ab+c precisely because they apply to every possible number;
regardless of what our concrete calculation is, we know we can use this law in
our calculations.

Exercise Break!

56 david liu and toniann pitassi

2.1 Prove that for any three integers a, b, and c, if a divides both b and c, then a
also divides b + c.

Hint: since the hypothesis is an AND of two statements, you get to assume
both statements.

2.2 (Divisibility of linear combinations) Generalize the previous proof to prove
the following statement:

∀a, b, c, p, q ∈ Z,
(

a | b ∧ a | c⇒ a | (bp + cq)
)

.

This statement says that if you have two multiples of a, and then multiply
them by any other two numbers and add the results, the final number must
always be a multiple of a.

Proof by contrapositive

Let us now look at one example that is very similar to the previous one.

Example 2.14. Prove that for all integers x, if x does not divide x + 5, then x
does not divide 5.

Translation. This is actually a little easier to translate than the examples we have
just done. We’ll keep the divisibility predicate in the statement for now.

∀x ∈ Z, x - x + 5⇒ x - 5.

Discussion. As a standard approach for an implication, we would first assume
that x does not divide x + 5, and then prove that x does not divide 5. But
assuming that x doesn’t divide something seems less informative than knowing
that it does divide something.

Luckily, we have a new proof technique to work with: an proof by contrapos-
itive (also known as a form of indirect proof). Rather than try to prove the
implication directly, we prove its contrapositive, which is logically equivalent to
it.23 Let’s rewrite the statement using the contrapositive:

23 Remember, the contrapositive of
p⇒ q is ¬q⇒ ¬p.

∀x ∈ Z, x | 5⇒ x | x + 5.

Now if we can assume x | 5, that gives us a lot to work with!

Proof. Let x ∈ Z. We will prove the contrapositive statement: x | 5 ⇒ x | x + 5.
So assume that x | 5.

[We leave it as an exercise to prove that x | x + 5 under this assumption.]

�

When proving an implication, it is often the case that the assuming the hypoth-
esis does not get you very far. Flipping the implication around to its contrapos-
itive and assuming the negation of the conclusion might yield better results!

mathematical expression and reasoning for computer science 57

A typical proof of an implication (contrapositive/indirect proof).

Given statement to prove: P⇒ Q.

Proof. Assume ¬Q.

[Proof that ¬P is True.]

�

Characterizations

We will now look at a pair of related examples that both demonstrate how to
prove a biconditional, and illustrate one of the common goals of mathematical
study: finding alternative useful characterizations of definitions. In particular,
we’ll show that prime numbers are exactly the numbers greater than 1 that sat-
isfy the following predicate:

Atomic(n) : ∀a, b ∈N, n - a ∧ n - b⇒ n - ab, where n ∈N

Example 2.15. We’ll first prove the following statement:24

24 In English: “Every number that is
greater than one and atomic must also
be prime.”∀n ∈N,

(
n > 1∧

(
∀a, b ∈N, n - a ∧ n - b⇒ n - ab

))
⇒ Prime(n) (2.1)

After thinking for a while, it’s not clear how to use the hypothesis to prove the
conclusion. So, we’ll try rewriting this statement using the contrapositive of the
implication:

∀n ∈N, ¬Prime(n)⇒
(

n ≤ 1∨
(
∃a, b ∈N, n - a ∧ n - b ∧ n | ab

))
(2.2)

Now, we can assume that n is not prime, and we only need to prove an existential
(or that n ≤ 1)! Not bad. We will prove statement 2.2; since it is logically
equivalent to 2.1, this proof will also be a proof of 2.1.

Discussion. We’re going to assume that n is not prime, and it’s greater than 1 (this
is the more interesting case). Let’s look at the definition of Prime and negate it:

Prime(n) : n > 1∧
(
∀d ∈N, d | n⇒ d = 1∨ d = n

)
¬Prime(n) : n ≤ 1∨

(
∃d ∈N, d | n ∧ d 6= 1∧ d 6= n

)
So then if we also assume that n > 1, then we can also assume that there exists
a number d that divides n that is not 1 or n.

Let’s look at an example to gain some intuition. If n = 6, then we know n = 2 · 3.
From this, we need to pick an a and b such that n - a, n - b, and n | ab. In this
case, we can just pick a = 2 and b = 3! Does this always work? Say now that
n = 12, so we could write n = 2 · 6 or n = 3 · 4. In all cases, as long as n = n1 · n2

where 1 < n1, n2 < n, we can pick a = n1 and b = n2. Now onto the proof.

58 david liu and toniann pitassi

Proof. Let n ∈ N. Assume that n is not prime. Then by negating the definition
of prime, either n ≤ 1 or there exists d ∈ N, d | n ∧ d 6= 1 ∧ d 6= n. We divide
our proof into two cases based on which part of the OR is true.

Case 1: Assume n ≤ 1.

Then since the first part of the OR we want to prove is n ≤ 1, this is true.

Case 2: Assume ∃d ∈N, d | n ∧ d 6= 1∧ d 6= n.

Expanding the definition of the divides predicate, this means that there also
exists k ∈ Z such that n = dk. Since n > 1 and d ≥ 0, we know that k ≥ 0 as
well. We will prove the second part of the OR (∃a, b ∈ N . . .). Let a = d and
b = k. We want to prove that n - a, n - b, and n | ab.

We leave the proof body as an exercise; to complete this, we’ll use a few external
facts about divisibility.

�

What we have just proven is that if n is greater than 1 and satisfies the Atomic
predicate, then it must be prime. This rules out the possibility that n = 6 satisfies
this property, for example. But what about n = 5? This statement doesn’t
actually tell us that 5 satisfies this property! So next, we’ll prove the converse of
the implication.

Example 2.16. Let’s prove the following, which uses the converse of the impli-
cation from 2.1:25

25 In English: “Every number that is
prime must be greater than one and
atomic.”

∀n ∈N, Prime(n)⇒
(

n > 1∧
(
∀a, b ∈N, n - a ∧ n - b⇒ n - ab

))
(2.3)

It turns out that we can do a direct proof here, so we’ll stick with this form and
not write the contrapositive.

Discussion. Let’s do an example to try to understand why it might be true.
Consider the prime n = 7 and consider some arbitrary numbers a and b. The
interesting case is when both a and b do not have 7 as a divisor, for example
a = 12 and b = 10. We can check that a · b = 120 also doesn’t have 7 as a divisor.
But how do we prove this? The “obvious” way of showing this is to first write
a and b as a product of their prime factors. Then a · b is just the product of all
of the factors of a and b. In our example, for a = 12, b = 10, a = 2 · 2 · 3 and
b = 2 · 5. So a · b = 2 · 2 · 3 · 2 · 5. Clearly this representation of a · b does not
have 7 as a prime factor. Now because the prime factorization of any number is
unique, it follows that a · b does not have 7 as a divisor.

But the problem with this proof is that we would have to prove that every num-
ber has a unique prime factorization. This is a bit hard, and isn’t really necessary
to prove the statement, so instead we’ll use the following two facts that are eas-
ier to prove. They only rely on the properties of the greatest common divisor that
we’ll talk about in the next section.26

26 You’ll prove both of these claims as
exercise as well.

mathematical expression and reasoning for computer science 59

∀n, m ∈N, Prime(n) ∧ n - m⇒
(
∃r, s ∈ Z, rn + sm = 1

)
(Claim 1)

∀n, m ∈N, Prime(n) ∧
(
∃r, s ∈ Z, rn + sm = 1

)
⇒ n - m (Claim 2)

How might we set up a proof using these claims? First, we note that we are as-
suming that n is prime. Say that we have two numbers a, b that are not divisible
by n. Using Claim 1 twice, there exist r1, s1 (for a) and r2, s2 (for b) such that

r1n + s1a = 1

r2n + s2b = 1

Now what? We want to conclude that ab is also not divisible by n. To do this
we will use Claim 2, which says that to conclude that ab is not divisible by n, it
suffices to find r, s such that rn + s(ab) = 1. We can find r, s by multiplying the
two equations together:

r1r2n2 + r2s1an + r1s2bn + s1s2ab = 1

This can be rewritten as

(r1r2n + r2s1a + r1s2b)n + (s1s2)(ab) = 1

Proof. Let n ∈N. Assume that n is prime. We need to prove that n > 1 and that
Atomic(n) are true.

For the first part, the definition of prime tells us immediately that n > 1.

For the second part, we want to prove that
(
∀a, b ∈ N, n - a ∧ n - b ⇒ n - ab

)
.

Let a, b ∈N, and assume that n - a and n - b. We want to prove that n - ab.

We’ll first prove that there exist r3, s3 ∈ Z, r3n + s3ab = 1. By Claim 1 and the
assumption that n is prime, there exist r1, s1, r2, s2 ∈ Z such that r1n + s1a = 1
and r2n + s2b = 1. Let r3 = r1r2n + r2s1a + r1s2b and s3 = s1s2.

Then we can multiply the first two equations to obtain:

(r1n + s1a)(r2n + s2b) = 1

r1r2n2 + r2s1an + r1s2bn + s1s2ab = 1

(r1r2n + r2s1a + r1s2b)n + (s1s2)ab = 1

r3n + s3ab = 1

So then there exist r3, s3 ∈ Z, r3n + s3ab = 1. Then using Claim 2 (and again the
assumption that n is prime), we can conclude that n - ab.

�

Putting everything together

To recap, we have now proved both of the following statements:

60 david liu and toniann pitassi

∀n ∈N, n > 1∧ Atomic(n)⇒ Prime(n) (2.1)

∀n ∈N, Prime(n)⇒ n > 1∧ Atomic(n) (2.3)

These have the form ∀n ∈N, P(n)⇒ Q(n) and ∀n ∈N, Q(n)⇒ P(n); in other
words, we know both directions of the implication are true, and so can express
this using the biconditional operator,⇔. Thus we have proven:

∀n ∈N, Prime(n)⇔ n > 1∧ Atomic(n)

In other words, a natural number n is prime if and only if it is greater than one
and atomic. The property “greater than one and atomic” is a characterization or
alternate definition of the concept of prime numbers. Equivalent characterizations
are very useful in mathematics and computer science as they often give a very
different way to look at the same concept.

Greatest common divisor

Let us now introduce one more definition that you’re probably familiar with,
though again we will take some time to treat it more formally than what you
may have seen before.

Definition 2.3. Let m, n be natural numbers which are not both 0. The greatest
common divisor (gcd) of m and n, denoted gcd(m, n), is the maximum natural
number d such that d divides both m and n.27

27 According to this definition, what is
gcd(0, n) when n > 0?

We also define gcd(0, 0) = 0 just to make the domain of the gcd operator all
possible pairs of natural numbers.

To make it easier to translate this statement into symbolic form, we can restate
the “maximum” part by saying that if e is any number which divides m and n,
then e ≤ d. Let m, n, k ∈ N, not all of which are 0, and suppose k = gcd(m, n).
Then k satisfies the following statement:

k | m ∧ k | n ∧
(
∀e ∈N, e | m ∧ e | n⇒ e ≤ k

)
.

You might wonder whether this definition makes sense in all cases: is it possible
for two numbers to have no divisors in common? But remember that one of the
statements we proved in this chapter is that 1 divides every natural number. So
at the very least, 1 is a common divisor between any two natural numbers.

Here is an example which makes use of both this definition, and the definition
of prime from the previous chapter.

Example 2.17. Prove that for all natural numbers p and q, if p and q are distinct
primes, then gcd(p, q) = 1.

Translation. Here is an initial translation which focuses on the structure of the
above statement, but doesn’t unpack any definitions:

∀p, q ∈N,
(

Prime(p) ∧ Prime(q) ∧ p 6= q
)
⇒ gcd(p, q) = 1.

mathematical expression and reasoning for computer science 61

We could unpack the definitions of Prime and gcd, but doing so would not
add any insight at this point. While we will almost certainly end up using
these definitions in the discussion and proof sections, expanding it here actually
obscures the meaning of the statement.

In general, use translation as a way of precisely specifying the structure of a
statement; as we have seen repeatedly, the high-level structure of a statement
is mimicked in the structure of its proof. And while you don’t need to expand
every definition in a statement, you should always keep in mind that definitions
referred to in the statement will require unpacking in the proof itself.

Discussion. We know that primes don’t have many divisors, and that 1 is a
common divisor for any pair of numbers. So to show that gcd(p, q) = 1, we just
need to make sure that neither p nor q divides the other (otherwise that would
be a common divisor larger than 1).

Proof. Let p, q ∈ N. Assume that p and q are both prime, and that p 6= q. We
want to prove that gcd(p, q) = 1.

By the definition of primality, we know that p 6= 1. Also by the definition of
primality, the only positive divisors of q are 1 and q itself. So then since p 6= q
(our assumption) and p 6= 1, we know that p - q.

Then 1 is the only positive common divisor of p and q, so gcd(p, q) = 1.

�

Next, we will look at one of the strongest properties of the greatest common
divisor: it is the smallest natural number that can be written as a sum of (positive
or negative) multiples of the two numbers.

Theorem 2.2. Let a and b be arbitrary natural numbers, and assume at least one
of them is non-zero. Then gcd(a, b) is the smallest positive integer such that
there exist p, q ∈ Z with gcd(a, b) = ap + bq.

We will not prove this theorem here; instead, our main goal for stating it is
to introduce a new proof technique: using an external statement as a step in a
proof. This might sound kind of funny—after all, many of our proofs so far have
relied on some algebraic manipulations which are valid but are really knowledge
we learned prior to this course. The subtle difference is that those algebraic laws
we take for granted as “obvious” because we learned them so long ago. But in
fact our proofs can consist of steps which are statements that we know are true
because of an external source, even one that we don’t know how to prove ourselves.

This is a fundamental parallel between writing proofs and writing computer
programs. In programming, we start with some basic building blocks of a
language—data types, control flow constructs, etc.—but we often rely on li-
braries as well to simplify our tasks. We can use these libraries by reading
their documentation and understanding how to use them, but don’t need to un-
derstand how they are implemented. In the same way, we can use an external
theorem in our proof by understanding what it means, but without knowing
how to prove it.

62 david liu and toniann pitassi

Example 2.18. For all a, b ∈ N, every integer that divides both a and b also
divides gcd(a, b).

Translation. We can translate this statement as follows:

∀a, b ∈N, ∀d ∈ Z, (d | a ∧ d | b)⇒ d | gcd(a, b).

Discussion. This one is a bit tougher. All we know from the definition of gcd is
that d ≤ gcd(a, b), but that doesn’t imply d | gcd(a, b) by any means. But given
the context that we just discussed in the preceding paragraphs, I’d guess that we
should also use the GCD Characterization Theorem to write gcd(a, b) as ap+ bq.
Oh, and one of the previous exercises showed that any number that divides a
and b will divide ap + bq as well!

Proof. Let a, b ∈ N and d ∈ Z. Assume that d | a and d | b. We want to prove
that d | gcd(a, b).

By the GCD Characterization Theorem, there exist integers p, q ∈ Z such that
gcd(a, b) = ap + bq.28

28 This line uses a known external fact
that is an existential to introduce two
variables p and q to use in our proof.Then by the exercise on the divisibility of linear combinations, since d | a and

d | b (by assumption), we know that d | ap + bq. Since gcd(a, b) = ap + bq, we
conclude that d | gcd(a, b).

�

Modular arithmetic

The final definition in this chapter introduces some notation that is extremely
commonplace in number theory, and by extension in many areas of computer
science. Often when we are dealing with relationships between numbers, divis-
ibility is too coarse a relationship: as a predicate, it is constrained by the binary
nature of its output. Instead, we often care about the remainder when we divide
a number by another.

Definition 2.4. Let a, b, n ∈ Z, with n 6= 0. We say that a is congruent to b
modulo n if and only if n | a− b. In this case, we write a ≡ b (mod n).29

29 One warning: the notation a ≡ b
(mod n) is not exactly the same as mod

or % operator you are familiar with from
programming; here, both a and b could
be much larger than n, or even negative.

This definition captures the idea that a and b have the same remainder when
divided by n. You should think of this congruence relation as being analogous
to numeric equality, with a relaxation. When we write a = b, we mean that the
numeric values of a and b are literally equal. When we write a ≡ b (mod n), we
we mean that if you look at the remainders of a and b when divided by n, those
remainders are literally equal.

We will next look at how addition, subtraction, and multiplication all behave in
an analogous fashion under modular arithmetic. The following proof is a little
tedious because it is calculation-heavy; the main benefits here are practicing
reading and using a new definition, and getting comfortable with this particular
notation.

mathematical expression and reasoning for computer science 63

Example 2.19. Prove that for all a, b, c, d, n ∈ Z, with n 6= 0, if a ≡ c (mod n)
and b ≡ d (mod n), then:

1. a + b ≡ c + d (mod n)
2. a− b ≡ c− d (mod n)
3. ab ≡ cd (mod n)

Translation. We will only show how to unpack the definitions in (2), as the other
two are quite similar.

∀a, b, c, d, n ∈ Z,
(
n 6= 0∧ n | (a− c) ∧ n | (b− d)

)
⇒ n |

(
(a− b)− (c− d)

)
.

Proof. Let a, b, c, d, n ∈N, and assume that n 6= 0, n | (a− c), and n | (b− d).

We will only prove (2), and leave (1) and (3) as exercises. This means we want
to prove that n | ((a− c)− (b− d)).

By the previous exercise on the divisibility of linear combinations, since n |
(a− c) and n | (b− d), it divides their difference:

n | (a− c)− (b− d)

n | (a− b)− (c− d) (rearranging terms)

�

You may be wondering why we left out division in the above theorem. Recall
again the definition of divisibility: a | b means that there exists k ∈ N such that
b = ka. Not every pair of integers is related by divisibility, and this also transfers
over to modular arithmetic as well.

However, we have all the tools necessary to prove the following quite remarkable
fact.

Example 2.20. Let a, b, p ∈ Z. If p is a prime number and a is not divisible by p,
then there exists k ∈ Z such that ak ≡ b (mod p).

Translation. This statement is quite complex! Remember that we focus on trans-
lation to examine the structure of the statement, so that we know how to set
up a proof. We aren’t going to expand every single definition for the sake of
expanding definitions.

∀a, b, p ∈ Z,
((

Prime(p) ∧ p - a
)
⇒
(
∃k ∈ Z, ak ≡ b (mod p)

))
.

Discussion. So this is saying that under the given assumptions, b is “divisible”
by a modulo p. Somehow I’m supposed to use the fact that p is prime. The
conclusion is “there exists a k ∈ Z such that. . . ” so that I know that at some
point I’ll need to define a variable k in terms of a, b, and/or p, which satisfies
the congruence.

64 david liu and toniann pitassi

Can I do k = b/a? That obviously would satisfy the congruence, but the example
statement doesn’t say that I can assume that a divides b. . . But if I could prove
that a | b, then I would be able to write the proof. So is it true? The statement
has to hold for every pair of numbers a and b where a isn’t divisible by p, so I
think I’m out of luck – after all, this includes cases where a > b.

Here’s another idea: can I prove a less general statement? I could set b to always
be 1, and try to show that there always exists a k such that ak ≡ 1 (mod p). If I
can show that, then multiplying both sides by b should do the trick.30

30 That’s statement (3) from the previous
example, by the way.

[HINT: use the GCD Characterization Theorem.] Woah, I got a hint! Hmmm,
that theorem talks about writing gcd as a sum of multiples. How does that help?
Let me write down what I know and can assume:

• p is prime
• p - a
• The gcd of two numbers can be written as the sum of multiples of the numbers.

And what I want to prove:

• ∃k ∈ Z, ak ≡ 1 (mod p). That’s equivalent to:
• ∃k ∈ Z, p | (ak− 1), using the definition of mod. That’s equivalent to:
• ∃k, d ∈ Z, ak− 1 = pd. Hey, wait a second. . .
• ∃k, d ∈ Z, ak− pd = 1. That’s writing 1 as a sum of multiples of a and p!

Now I just need to connect these two lines of reasoning.

Proof. Let a, b, p ∈N. Assume that p is prime and p does not divide a. We want
to prove that there exists k ∈ Z such that ak ≡ b (mod p). To do this, we are
going to first prove two subclaims.31

31 Think of these as helper functions
in programming. They are smaller
statements which we can use as steps in
a larger proof.

Claim 1. gcd(a, p) = 1.

Proof. By definition of prime, we know that the only two positive divisors of p
are 1 and p. Since we have assumed that p - a, this means that 1 is the only
positive common divisor of p and a. So gcd(a, p) = 1.

�

Claim 2. There exists k ∈ Z such that ak ≡ 1 (mod p).

Proof. By the previous claim, we now know that gcd(a, p) = 1. By Theorem 2.1,
there exist r, s ∈ Z such that ar + ps = 1.

Let k = r. Then we can re-arrange this statement:

ak + ps = 1

ak− 1 = p(−s)

p | (ak− 1)

ak ≡ 1 (mod p)

mathematical expression and reasoning for computer science 65

�

Finally, we can use these two claims to prove that there exists a k′ ∈ Z such that
ak′ ≡ b (mod p).

Let k′ = kb. Then we have:

ak ≡ 1 (mod p)

akb ≡ b (mod p)

ak′ ≡ b (mod p)

�

This theorem brings together elements from all of our study of proofs so far. We
have both types of quantifiers, as well as some significant assumptions (as part of
an implication). We even used the GCD Characterization Theorem for a key step
in our proof. Finally, this proof introduced one more useful kind of structure:
a subproof, or proof of a smaller claim that is used to prove the main result.
Just as helper functions help organize a program, small claims and subproofs
help organize a proof so that each part can be understood separately, before
being combined into a whole.32 As your proofs grow longer and longer, make

32 We can outline the previous proof in
three steps: (1) Prove that gcd(a, p) = 1,
(2) Prove that ∃k ∈ Z, ak ≡ 1 (mod p),
and (3) Prove that ∃k′ ∈ Z, ak′ ≡ b
(mod p).

good use of this approach to keep your proofs readable and easy to understand.
There is nothing worse than having to slog through pages and pages of a single
proof without any sense of what claim is being proved, and how the claims fit
together.

Proof by contradiction

The final proof technique we will cover in this chapter is the proof by contra-
diction. Given a statement P to prove, rather than attempt to prove it directly
we assume that its negation ¬P is true, and then use this assumption to prove a
statement Q and its negation ¬Q. We call Q and ¬Q the contradiction that arises
from the assumption that P is .

Why does this work? Essentially, we argue the if P is false, then statement Q
must be true, but its negation ¬Q must also be true. But these two things can’t
be true at the same time, and so our original assumption must be wrong!

Proofs by contradiction are a more general form of the indirect proof-by-contrapositive
we saw earlier in this chapter. They often take a bit more thought because it isn’t
necessarily clear what the contradiction (statement Q) should be. We finish off
this chapter by presenting one particularly famous proof by contradiction dating
back to the Greek mathematician Euclid.33

33 Although Euclid’s original proof was
written in an informal style, the idea
was certainly there.Theorem 2.3. There are infinitely many primes.

Proof. Assume that this statement is false, i.e., that there a finite number of
primes. Let k ∈ N be the number of primes, and let p1, p2, . . . , pk be the prime
numbers.

66 david liu and toniann pitassi

Our statement Q will be “for all n ∈ N, n is prime if and only if n is one
of {p1, . . . , pk}.” Q is True because of our assumption that there are a finite
number of primes, and the definitions of k and p1, . . . , pk.

Now we will show that Q is False. Define the number

P = 1 +
k

∏
i=1

pi = 1 + p1 × p2 × · · · × pk.

There must be some prime p that divides P because P > 1. But p /∈ {p1, . . . , pk},
because otherwise p would divide P − p1 × · · · × pk = 1, and no prime can
divide 1. So then p is a prime that is not one of {p1, . . . , pk}, and so Q is false.
Contradiction!

�

3 Induction

In the previous chapters we have studied how to express statements precisely
using mathematical expressions, and how to analyze and prove the truth or
falsehood of these statements using a variety of proof techniques. In this chapter,
we will introduce a new and very important proof technique called induction,
and use it to prove statements of the form, ∀n ∈N, P(n).

You may wonder why we need this new technique when we were already prov-
ing universal statements in the last chapter just fine without induction. It turns
out that many interesting statements in number theory and most other domains
cannot be proved or disproved easily with just the techniques from the previous
chapter. We will first motivate the principle of induction using an example from
modular arithmetic. Then we will apply induction to other statements in num-
ber theory, and then to new domains, using induction to prove properties about
sequences and to find expressions for various ways of counting combinatorial
objects.

The principle of induction

Let us start with an example.

Example 3.1. Prove that for any m, x, y, n ∈N such that n ≥ 1, if x ≡ y (mod m),
then xn ≡ yn (mod m).

It is not hard to show that this is true without using induction for n = 2 as
follows. By assumption, x ≡ y (mod m), and therefore x · x ≡ y · y (mod m),
and thus x2 ≡ y2 (mod m).1 In order to show that it is true for n = 3, we can

1 This is Part 3 of Example 2.19 from the
previous chapter.argue that since we already know that x2 ≡ y2 (mod m), and x ≡ y (mod m),

then x · x2 ≡ y · y2 (mod m) and thus x3 ≡ y3 (mod m). Then we can prove that
it is true for n = 4 in exactly the same way, and so on. But in order to make the
“and so on” mathematically rigorous, we need to use induction.

The first explicit formulation of the principle of induction was given by Pascal
(as in Pascal’s triangle) in 1665. However, its uses have been traced as far back
as Plato (370 BC), and a variation of Euclid’s proof of the existence of infinitely
many primes (from around the same time period). We cannot stress enough
the importance of the induction principle—it is the powerhorse behind nearly
all proofs. The principle of induction applies to universal statements over the
natural numbers—that is, statements of the form ∀n ∈ N, P(n). It cannot be

68 david liu and toniann pitassi

used to prove statements of any other form! Note however that P(n) can be
quite complicated and can involve other possibly nested quantifiers.

In this course, we will study only the most basic form of induction, commonly
called simple induction.2 There are two steps to using this induction principle:

2 In CSC236, you’ll learn about different
forms of induction.

• The base case is a proof that the statement holds for the first natural number
n = 0; that is, a proof that P(0) holds.

• The inductive step is a proof that for all k ∈ N, if P(k) is true, then P(k + 1)
is also true.3 That is:

3 Our convention will be to use k as
the induction step variable, but many
students prefer using n or some other
variable name.

∀k ∈N, P(k)⇒ P(k + 1).

Once the base case and inductive step are proven, by the principle of induction,
one can conclude ∀n ∈N, P(n).

Typical structure of a proof by induction.

Given statement to prove: ∀n ∈N, P(n).

Proof. We prove this by induction on n.

Base Case: Let n = 0.

[Proof that P(0) is True.]

Inductive step: Let k ∈N, and assume that P(k) is true. (The assumption that
P(k) is true is called the induction hypothesis.)

[Proof that P(k + 1) is True.]

�

The point behind induction is that sometimes it isn’t possible to give a direct
proof for all n at once—sometimes we require knowing that the statement is
true for smaller values in order to show that it is true for larger ones. Induction
formalizes this idea—if you show it is true for the smallest element (the base
case) and if you can show that as long as it is true for n then it is also true for
the number right after n, then we can conclude that it is true for every n.

Why does the principle of induction work? This is essentially the domino effect.
Assume you have shown the base case and the inductive step. In other words,
you know P(0) is true, and you know that P(k) implies P(k+ 1) for every natural
number k. Since you know P(0) from the base case and P(0) ⇒ P(1) by the
inductive step, we have P(1). Then since you now know P(1) and P(1) ⇒ P(2)
from the inductive step, we have P(2). Now since we know P(2) and P(2) ⇒
P(3), we have P(3). And so on.

Examples from number theory

Let us see how to use induction to prove some statements from number theory.

mathematical expression and reasoning for computer science 69

Example 3.2. Prove that for every natural number n, 7 | 8n − 1.

Translation. We can write this as

∀n ∈N, 7 | 8n − 1.

Define the predicate P(n) as “7 | 8n − 1,” where n is a natural number. This
makes it clear how we will use induction: the statement becomes ∀n ∈N, P(n).4

4 You’ll see us start to merge or omit
the “translation” and “discussion”
sections into the proof in this and
future chapters, as you become more
experienced with reading and writing
proofs.

Proof. Let P(n) be the statement that 7 divides 8n − 1; in other words, there
exists an integer y such that 7 · y = 8n − 1. Expressed formally, P(n) is:

∃y ∈ Z, 7 · y = 8n − 1.

We want to prove for all n ∈N that P(n) holds.

Base Case: Let n = 0. We want to prove that P(0) is true.

We know that 80 − 1 = 0, and that 7 | 0. So P(0) holds.

Inductive Step: Let k ∈ N, and assume that P(k) is true. That is, we assume
that 7 | 8k − 1; unpacking the definition of divisibility, this means there exists yk

such that 8k − 1 = 7yk.

Now we want to show that P(k + 1) holds:

7 | 8k+1 − 1, or in other words, ∃yk+1 ∈ Z, 8k+1 − 1 = 7yk+1.

How do we find this yk+1? In order to prove P(k + 1) using P(k), we have to
extract the expression 8k− 1 out of the expression 8k+1− 1. Thus we will rewrite
8k+1 − 1 as follows:

8k+1 − 1 = 8k+1 − 8 + 7 = 8(8k − 1) + 7.

Next, we use the induction hypothesis, which says that 7yk = 8k − 1:

8k+1 − 1 = 8(8k − 1) + 7

= 8(7yk) + 7

= 7(8yk + 1)

So let yk+1 = 8yk + 1. Then 8k+1− 1 = 7yk+1, and so 7 | 8k+1− 1. This completes
the proof of the inductive step and thus the proof.

�

Let’s do another example, which is quite similar to the previous one, but is
useful for practicing this new technique.

Example 3.3. Prove that for every natural number n, n(n2 + 5) is divisible by 6.

Proof. Let P(n) be the statement that n(n2 + 5) is divisible by 6.

Base Case: Let n = 0.

70 david liu and toniann pitassi

When n = 0, the expression n(n2 + 5) = 0(02 + 5) = 0. So it is divisible by 6

and thus P(0) holds.

Inductive Step: Let k ∈N, and assume P(k) is true. That is, we assume k(k2 + 5)
is divisible by 6. We want to prove that P(k+ 1) holds; i.e., that (k+ 1)((k+ 1)2 +

5) is divisible by 6.

As in the previous example, in order to prove P(k + 1) holds using the assump-
tion that P(k) holds, we somehow need to extract the expression k(k2 + 5) out
of the expression (k + 1)((k + 1)2 + 5). Some algebraic manipulations follow:

(k + 1)((k + 1)2 + 5) = (k + 1)(k2 + 2k + 6)

= (k + 1)
(
(k2 + 5) + (2k + 1)

)
= k(k2 + 5) + k(2k + 1) + (k2 + 5) + (2k + 1)

= k(k2 + 5) + 3k2 + 3k + 6

= k(k2 + 5) + 3k(k + 1) + 6

By the induction hypothesis, the first term on the right-hand side, k(k2 + 5),
is divisible 6. For the second term, since k and k + 1 are consecutive natural
numbers, one of them is even and thus k(k + 1) is a multiple of 2 and thus
3k(k + 1) is divisible 6. Using the the divisibility of linear combinations, since
each term on the right-hand side is a multiple of 6, their sum is also a multiple
of 6, which completes the inductive step.

�

Now let us go back to our motivating example and prove it using induction.

Example 3.4. Prove that for any m, x, y ∈ N and for any n ∈ N that if x ≡ y
(mod m), we have xn ≡ yn (mod m).

Translation. Expressed in predicate logic:

∀m, x, y ∈N, ∀n ∈N, x ≡ y (mod m)⇒ xn ≡ yn (mod m).

We have deliberately separated the three variables m, x, y from n, for a reason
we’ll discuss in next section.

Discussion. In the informal argument given at the start of the chapter, we first
fixed values for m, x, y and then proved the claim when n = 2. Then for these
same values of m, x, y we proved it for n = 3 and so on. In order to formalize
this, we will want to first fix m, x, y ∈ N once and for all, and then prove the
statement by induction on n.

Proof. Let m, x, y ∈ N. Let P(n) be the predicate x ≡ y (mod m) ⇒ xn ≡ yn

(mod m). We want to prove that ∀n ∈N, P(n) by induction.5
5 Note that this predicate only makes
sense after we have introduced m, x,
and y.Base Case: Let n = 0.

To prove this, we simply observe that when n = 0, the conclusion of the implica-
tion says that x0 ≡ y0 (mod m), which is trivially true because both sides equal
1.6

6 We didn’t even need the assumption
that x ≡ y (mod m)!

mathematical expression and reasoning for computer science 71

Inductive Step: Let k ∈ N, and assume that P(k) is true. That is, we assume
that

x ≡ y (mod m)⇒ xk ≡ yk (mod m).

From this assumption we want to prove that P(k + 1) is true, i.e., that

x ≡ y (mod m)⇒ xk+1 ≡ yk+1 (mod m).

Note that P(k + 1) has the form of an implication, so we know how we should
proceed: assume the hypothesis, i.e., that x ≡ y (mod m). Using our assump-
tion that P(k) is true, and that x ≡ y (mod m), we can conclude that xk ≡ yk

(mod m).

We know from a previous example that

xk ≡ yk (mod m) ∧ x ≡ y (mod m)⇒ x · xk ≡ y · yk (mod m).

Since the left-hand side of this implication is true, the right hand side must also
be true. Therefore xk+1 ≡ yk+1 (mod m), and this completes the proof.

�

One interesting subtlety in how we set up this proof is in how we chose the order
of the variables m, x, y, n being quantified. You know already that changing the
order of these variables doesn’t change the meaning of the statement, because
they are all universally-quantified. However, changing their order does change
the proof that we would write!

A different way to proceed in this proof would be to write the statement as

∀n ∈N, ∀m, x, y ∈N, x ≡ y (mod m)⇒ xn ≡ yn (mod m).

Doing it this way, we would define P(n) to be the (more complex) statement

∀m, x, y ∈N, x ≡ y (mod m)⇒ xn ≡ yn (mod m).

If we had proceeded this way, then the base case, P(0) of the induction would
be prove the implication for all values of m, x, y when n = 0. So in the base
case we would first fix particular but arbitrary values of m, x, y ∈ N before
proceeding with the proof. And again in the inductive step, we would need to
prove P(n) implies P(n + 1), which is a more complicated statement since the
other variables m, x, y are not fixed but are universally quantified. When we have
a universal statement such as this one that involves one universally quantified
variable that we want to do induction on (in this case n), plus other universally
quantified variables that we do not need to do induction on (in this case m, x, y),
it is usually easier to first fix m, x, y and then do induction on n, as we did above,
rather than the other way around.7

7 Remember that we can reorder consec-
utive variables with the same quantifi-
cation in a statement without changing
the meaning.

We will do one more example from number theory. This example is proving an
inequality rather than an equality, and demonstrates how to use induction with
a different starting number as the base case.

Example 3.5. Prove that for all natural numbers n greater than or equal to 3,
2n + 1 ≤ 2n.

72 david liu and toniann pitassi

Translation. We do the usual thing and express the “greater than or equal to 3”
as a hypothesis in an implication.

∀n ∈N, n ≥ 3⇒ 2n + 1 ≤ 2n.

This statement doesn’t have exactly the right form for the induction technique
we’ve learned, but if we define the predicate

P(n) : 2n + 1 ≤ 2n, where n ∈N

then the statement becomes ∀n ∈N, n ≥ 3⇒ P(n), which is close.

Discussion. The principle of induction relies on two things: a base case, which
gives us a starting point, and the inductive step, which allows us to build on
the base case to conclude the truth of the predicate for larger and larger natural
numbers.

The particular number for the base case turns out not to be so important: if
we prove that P(3) is true as our base, then the inductive step still allows us to
conclude that P(4), P(5), . . . are all true!

Proof. Let P(n) be the predicate 2n + 1 ≤ 2n. We’ll prove that ∀n ∈N, n ≥ 3⇒
P(n) using induction.

Base Case: Let n = 3.

Plugging in n = 3 into the left and right sides of the inequality, we get 7 ≤ 8,
which is true.

Inductive Step: Let k ∈ N and assume k ≥ 3. Assume P(k) is true: 2k + 1 ≤ 2k.
We want to prove P(k + 1) is true: 2(k + 1) + 1 ≤ 2k+1.

As usual, to obtain this inequality we start with the one we get from the induc-
tion hypothesis:

2k + 1 ≤ 2k

2k + 1 + 2 ≤ 2k + 2k (since 2 ≤ 2k)

2(k + 1) + 1 ≤ 2k+1

�

Exercise Break!

Use induction to prove each of the following statements.

3.1 For all n ∈N, 9n − 1 is divisible by 8.8
8 Note: the first two statements follow
immediately from a previous exercise,
but we encourage you to prove them
“from scratch” for the practice.

3.2 For all n ∈N, 52n − 1 is divisible by 6.

3.3 For all n ∈N, xn − yn is divisible by x− y.

3.4 For all n ∈N, if n ≥ 6 then 5n + 5 ≤ n2.

3.5 For all n ∈N, if n ≥ 1 then 22n − 1 is divisible by at least n distinct primes.

mathematical expression and reasoning for computer science 73

Combinatorics

Combinatorics is an area of mathematics concerned with counting objects, and
more generally with analyzing patterns. A pattern is most typically a sequence
of numbers and we will often want to derive a closed-form expression for ak, the
kth number in the sequence, or for ∑k

i=0 ai, the sum of the first k + 1 numbers in
the sequence.9

9 Drawing inspiration from program-
ming, sequence indexing starts at 0, not
1.Example 3.6. We will start with a famous example. Consider the following

sequence of numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Call the kth element in the sequence ak. For each k, what is ak? It isn’t too hard
to see that we obtain ak by summing together the two previous numbers. That
is, for all k ≥ 2, ak = ak−1 + ak−2. This is a very famous sequence called the
Fibonacci sequence.

Example 3.7. Another easier example is an arithmetic sequence. Suppose you start
with $10, and every month you earn $200. How much money do you have after
k months? At the start you have $10; after one month you have $210 dollars;
after two months you have $410 dollars, etc. In general this gives rise to the
sequence:

a0 = 10, a1 = 210, a2 = 410, a3 = 610, a4 = 810,

In general, ak = 10 + 200 · k.

Example 3.8. Another kind of sequence is obtained by multiplying the current
amount by a fixed value each time. Suppose that now you start with $10, but
now you invest your money in a very lucrative place so that every month your
money doubles. This gives rise to the sequence:

a0 = 10, a1 = 20, a2 = 40, a3 = 80, a4 = 160,

It is not hard to see that in general, ak = 10 × 2k. This is called a geometric
sequence.

Example 3.9. Finally, one more example. Let n ∈ N. Suppose that we want
to sum all natural numbers starting at 0, up to and including n. That is, ak =

0 + 1 + 2 + · · ·+ k. This gives rise to the infinite sequence:

a0 = 0, a1 = 1, a2 = 3, a3 = 6, a4 = 10, a5 = 15,

It turns out that we have the following closed-form expression for an: an =

n× (n + 1)/2.

Closed-form formulas, with proof!

In general, a sequence is an ordered list of numbers given by the outputs of
a function f : N → R, where a0 = f (0), a1 = f (1), etc. The sequences we
will study are infinite: there is one term ak for each natural number k. We call
the function f an explicit expression for the sequence that uses a fixed number

74 david liu and toniann pitassi

of elementary operations (e.g., arithmetic operations, powers, logarithms). We
call such an expression a closed-form expression for the sequence. For example,
the following is a closed-form expression for the Fibonacci sequence, known as
Binet’s formula:

an =
(1 +

√
5)n − (1−

√
5)n

2n
√

5
.

Nice sequences will have explicit formulas, but there are also examples of se-
quences that are complex and that do not have an explicit formula. We can often
use induction in order to prove that a particular explicit formula computes the
terms in a sequence. Let’s see some examples of this.

Example 3.10. Use induction to prove that the sum of the first n positive integers
is equal to n(n + 1)/2.

Translation. This statement can be translated as

∀n ∈N,
n

∑
j=1

j = n(n + 1)/2.

Proof. Let P(n) be the statement ∑n
j=1 j = n(n + 1)/2.

Base Case: Let n = 0.

In this case, the left side is the empty sum (which has value 0), and the right
side is 0(0 + 1)/2 = 0.

Inductive Step: Let k ∈ N and assume that P(k) is true, i.e., that ∑k
j=1 j =

k(k + 1)/2. It is helpful to write down what we want to prove, which is P(k + 1):

P(k + 1) :
k+1

∑
j=1

j =
(k + 1)(k + 2)

2
.

Now we have:

k+1

∑
j=1

j =
k

∑
j=1

j + (k + 1)

=
k(k + 1)

2
+ (k + 1) (by induction hypothesis)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

�

Strengthening the hypothesis

Example 3.11. Prove that the sum of the first n odd numbers is a perfect square.

mathematical expression and reasoning for computer science 75

Translation. This translates to the mathematical statement

∀n ∈N, ∃x ∈N,
n−1

∑
i=0

(2i + 1) = x2.

Discussion. We will try to prove this by induction on n. Let P(n) be the statement
that the sum of the first n odd numbers is a perfect square: ∃x ∈ N ∑n−1

i=0 (2i +
1) = x2.

For the inductive step, we will assume P(k) and try to prove P(k + 1):

∃xk+1 ∈N,
(k+1)−1

∑
i=0

(2i + 1) = x2
k+1.

From the inductive hypothesis we know that the sum of the first k terms in the
above sum is a perfect square. But how can we use that to deduce that when
we add the last term, 2k + 1, to this perfect square that we will get yet another
perfect square? We’re stuck: our induction hypothesis is not enough to help us
prove P(k + 1).

Let’s look at some examples and try to learn more. When n = 1, the sum of just
this one odd number is a perfect square, 12. For n = 2 we have 1 + 3 = 4 = 22.
For n = 3 we have 1+ 3+ 5 = 9 = 32. Now we start to see a pattern and we will
conjecture that the sum of the first n odd numbers is equal to n2. We will try to
prove this stronger statement instead!

Proof. Let P(n) be the predicate ∑n−1
i=0 (2i + 1) = n2. We will prove that ∀n ∈

N, P(n) by induction on n.

Base Case: Let n = 0.

In this case we have ∑−1
i=0(2i + 1) = 0 (since this is an empty sum), so P(0) is

true.

Inductive Step: let k ∈ N, and assume that P(k) holds. We want to prove
P(k + 1). From the induction hypothesis we now know that not only is the sum
of the first k odd numbers a perfect square, but it is equal to k2. So then:

k

∑
i=0

(2i + 1) =
k−1

∑
i=0

(2i + 1) + (2k + 1)

= k2 + (2k + 1) (by induction hypothesis)

= (k + 1)2

�

Going beyond numbers

This next example is somewhat different in that we will want to prove something
about objects that are not simply numbers.

76 david liu and toniann pitassi

Example 3.12. Prove that for every finite set S, |P(S)| = 2|S|.10

10 Recall that P(S) is the power set
of S, the set of all subsets of S. This
statement is saying that if S has n
elements, then it has exactly 2n subsets.

Translation. It may not be obvious how induction fits into this example, given
that we are looking to prove something about sets, not natural numbers. There
is, however, a nice approach we can take: perform induction using a variable
representing the size of the set (note that the size of a finite set is always a
natural number).11

11 We say that we’re performing induc-
tion on the size of the set.

Our predicate is the following, defined for n ∈N:

P(n) : every set S of size n satisfies |P(S)| = 2n

The original statement is then equivalent to ∀n ∈ N, P(n), and we can use
induction!

Proof. Base case: let n = 0.

In this case, there is only one set of size 0: S must be the empty set. The only
subset of the empty set is the empty set itself, so P(S) = {∅} (size 1), and
20 = 1.

Inductive Step: Now let k ∈ N and assume that P(k) holds. We want to prove
P(k + 1). Note that the predicate P(k + 1) is really a universally-quantified state-
ment (“every set S”) with a condition (“of size k + 1”), so we can unwrap it a
little more. Let S be a set, and assume S has size k + 1. Let the elements of S
be denoted by s1, . . . , sk+1. We want to prove that the number of subsets of S is
2k+1.

First, consider all subsets of S that do not contain the last element, sk+1; in other
words, the subsets of {s1, . . . , sk}. By the induction hypothesis, the number of
such subsets is exactly 2k.

Now consider all subsets of S that contain sk+1. Again, the number of subsets
of S that contain sk+1 is 2k, since we can obtain these subsets by taking all 2k

subsets of {s1, . . . , sk}, and adding sk+1 to each subset.

Thus in total there are 2k + 2k = 2k+1 subsets of S.

�

Here’s another example: the size of a set obtained as the Cartesian product of
two finite sets. Try to prove it as an exercise; note that while there are two
natural number variables here (n and m), you only need to do induction on one
of them (and you can pick).

Example 3.13. Prove that for all n, m ∈N, and for all sets A and B of size n and
m, respectively, |A× B| = n ·m.

Exercise Break!

3.6 Prove that for all natural numbers n, ∑n
i=1

1
i(i+1) =

n
n+1 .

mathematical expression and reasoning for computer science 77

3.7 Prove that for all natural numbers n, ∑n
k=1 4 · 5k−1 = 5n − 1.

3.8 (Handshake Theorem). Let n ∈ N, and assume n ≥ 1. Suppose you are at
a party and n people (including yourself). At the end of the party, define a
person’s parity as Odd if they have shaken hands with an odd number of
people, and Even if they have shaken hands with an even number of people.
Prove that the number of people of odd parity must be even.

Incorrect proofs by induction

Just as it is important to be able to formulate a correct proof by induction, it is
equally important to not be fooled by an incorrect proof! Consider this well-
known example. Say we want to prove that all jellybeans have the same colour.
Let P(n) be the statement that any set of n jellybeans all have the same colour.
The base case is when there is only one jellybean, and it has one colour, so the
statement P(1) is true.

Now let’s assume that P(k) is true and try to prove that P(k + 1) is true. Let
S = {j1, j2, . . . , jk+1} be a set of (k + 1) jellybeans. Consider the first k jellybeans
in S: S1 = {j1, . . . , jk}. By the induction hypothesis, they all must have the same
colour. Now consider the last k jellybeans in S: S2 = {j2, . . . , jk+1}. Again by the
induction hypothesis, they must also have the same colour. Now since these two
sets overlap, the two colours must be the same, thus the entire set j1, . . . , jk+1 of
jellybeans has the same colour and we can conclude P(k + 1).

We know that it is clearly wrong, so where exactly is the mistake? To find the
error it is helpful to walk through a specific counterexample—say for instance
we have two jellybeans, where the first one is red and the second one is yellow.
In this case we can see the mistake since the two sets S1 and S2 do not overlap.

Looking ahead: strong induction (optional)

The way that we expressed the induction principle above was to prove the base
case P(0), and then give a general argument for P(n + 1) assuming P(n). We
said intuitively that this works by the domino effect: (1) Suppose we know that
the first domino P(0) is down, and (2) we know that as long as P(n) is down,
then so is P(n + 1), then this implies (3) that all of the dominoes are down.
However, we could have replaced (2) by (2’) which states that as long as all of
the first n dominoes are down, P(0), . . . , P(n), then so is P(n + 1). As long as
we know (1) and (2’), this still implies (3). Note that proving (2’) rather than
(2) may be easier since we can assume not only that P(n) is true, but that all of
P(0), P(1), . . . , P(n) are true, in order to deduce that P(n + 1) is true.

This is called the principle of strong induction. It turns out that strong induction
and simple induction (the form we’ve been using in this chapter) are equivalent,
but sometimes it can be easier to prove a statement using strong induction rather
than simple induction. More formally, suppose that we want to prove ∀n ∈

78 david liu and toniann pitassi

N, n ≥ k ⇒ P(n), where k is some natural number. The principle of strong
induction can be used to prove this statement as follows.

• First, prove the base case P(k).
• Secondly, prove that for any fixed but arbitrary n ≥ k, P(j) for all j, k ≤ j ≤ n

implies P(n + 1).

Then we can conclude ∀n ∈N, n ≥ k⇒ P(n). You will learn more about strong
induction in CSC236/240.

Example 3.14. Prove that every integer n that is greater than or equal to 2 can
be expressed as a product of one or more prime numbers.

Proof. Let P(n) be the statement that n can be expressed as a product of one or
more prime numbers. The base case is when n = 2. Since 2 is prime, 2 can be
expressed as a product of one prime number (itself), and thus P(2) is true.

For the inductive step, let n be an integer, n ≥ 2. And assume that for every
integer j, 2 ≤ j ≤ n, that j can be expressed as a product of one or more prime
numbers. Now we want to prove P(n + 1), that n + 1 can also be expressed as a
product of prime numbers. There are two cases. Either the integer n + 1 is itself
a prime number or it is not. If it is a prime number, then it is a product of one
prime number (itself), and this case is complete.12

12 Note that we don’t even need the
induction hypothesis in this case!

The second case is when n + 1 is not a prime number, and thus n + 1 = a · b,
where both a and b are positive integers that are both different from n + 1 and
1. Since 2 ≤ a ≤ n, and 2 ≤ b ≤ n, by the induction hypothesis, both a and b can
be written as the product of prime numbers, and thus a · b can also be written
as the product of prime numbers and the proof is complete!

�

Note that in this last example, it would have been futile to try to use simple
induction since then we would only know that n is a product of prime numbers,
which is useless in order to show that n + 1 is the product of prime numbers.13

13 After all, when n ≥ 2, we know that n
is not a factor of n + 1.

4 Representations of Natural Numbers

An important issue in computing is our choice of representation for the objects
that we wish to study. In particular, how to represent various types of numbers
(natural numbers, rational numbers, real numbers) as well as other objects such
as graphs. You are all familiar with the decimal (base 10) system for numbers.
For example, to represent the positive integer three-hundred and twenty-four
in its decimal form we would write “324”. This is shorthand for 3× 102 + 2×
101 + 4× 100. We know it is a decimal form because powers of 10 are used in the
expression. You are probably so used to this representation that you don’t even
think about it anymore. But let’s review the basic properties of decimal notation
so that we set the standard for other representations that will be important.

Decimal representation of natural numbers

When you read a number such as “324” in decimal, you see a sequence of deci-
mal digits, dk−1dk−2 . . . d1d0, where each digit di is in {0, 1, 2, . . . , 9}. The number
that corresponds to this sequence of digits is ∑k−1

i=0 di × 10i. In words, the right-
most digit is multiplied by 100, the next digit to the left is multiplied by 101, and
so on. Each digit to the left has a multiplier that is 10 times the multiplier of the
previous digit. In our example “324”, we have d2 = 3, d1 = 2, and d0 = 4, and
so the value is 3× 102 + 2× 101 + 4× 100.

Here are some useful properties of decimal representation:

1. To multiply a number by 10, you can just insert a 0 at the right end of its
decimal form. That is, if a number n is represented by dk−1dk−2 . . . d1d0, then
the representation of 10 × n is dk−1dk−2 . . . d1d00. For example, 10 × 324 is
represented as 3240.

2. With the k decimal digit positions, exactly 10k unique numbers (from 0 to
10k − 1) can be represented. For example, using three decimal digits (k = 3),
we can represent the numbers 0 through 999.

Binary representation of natural numbers

The binary (base 2) representation of a number uses the binary digits {0, 1}
instead of the ten decimal digits {0, 1, 2, . . . , 9}We write numbers in binary in the

80 david liu and toniann pitassi

same sort of way that we write numbers in our traditional base 10 system. Again
we represent a number by a sequence of binary digits, dk−1dk−2 . . . d1d0, but now
each digit di is 0 or 1. The value of the number corresponding to this sequence
is: ∑k−1

i=0 di × 2i. Note that the only change in the expression is the change from
powers of 10 to powers of 2. The number represented in its decimal form as 139
would represented in binary as: 1× 27 + 1× 23 + 1× 21 + 1× 20 = 10001011. In
the sum, the terms multiplied by the digit 0 were omitted. The rightmost digit is
multiplied by 20 = 1, the next to the left is multiplied by 21 = 2, and so on. Each
digit to the left has a multiplier that is 2 times the previous digit. The above
properties about decimal representation continue to hold, but now the 10’s are
replaced by the new base, 2. Finally, we note that when discussing the binary
representation of a number, the digits di are often called bits. To the right are
some examples of numbers together in their decimal and binary representation.

Decimal Binary

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

16 10000

17 10001

18 10010

19 10011

20 10100

Converting from binary to decimal

It is really easy to convert a number from its binary representation to its decimal
representation. We express the number as a sum, expand out the powers in
decimal, and add up using familiar decimal arithmetic. For example:

100101 = 1× 25 + 0× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20 = 32+ 0+ 0+ 4+ 0+ 1 = 37.

The binary expression 100101 and the decimal expression 37 are two ways for
representing the same number.

Converting from decimal to binary

Here is a process for converting from the decimal representation of a number to
its binary representation. Consider the decimal number 37. We start by finding
the largest power of 2 that is less than or equal to 37. In this case it is 25,
since 25 = 32 and 25 ≤ 37, while 26 = 64 and 26 � 37. We can then write
37 = 1× 25 + 5. Now apply the same process with the unconverted remainder,
the decimal number 5. The largest power of 2 that is less than or equal to 5 is
22, so we get 5 = 22 + 1. Continuing, the largest power of 2 that is less than or
equal to 1 is 20. We get 1 = 20 + 0. With a remainder of 0, there is nothing left
to convert. Now we collect everything together to get:

37 = (1× 25) + (0× 24) + (0× 23) + (1× 22) + (0× 21) + (1× 20) = 100101.

Properties of binary representation

Our first theorem shows that every natural number has a binary representation.
We label the digits bi since the base is 2, which makes the digits bits.

Theorem 4.1. For every natural number n, there exists p ∈N and bits bp, . . . , b0 ∈
{0, 1} such that n = ∑

p
i=0 bi2i.

mathematical expression and reasoning for computer science 81

Proof. Rather than proving the statement as written, we will prove an equivalent
statement that is more amenable to using our technique of induction from the
previous chapter:1

1 An English way of interpreting this
statement is that "for all m ∈ N, every
number less than or equal to m has a
binary representation.∀m ∈N,

(
∀n ∈N, n ≤ m⇒

(
∃p ∈N, ∃b0, b1, . . . , bp ∈ {0, 1}, n =

p

∑
i=0

bi2i)
)

We define the predicate P(m) to be the part after the ∀m ∈ N, which can be
translated as “every natural number less than or equal to m has a binary repre-
sentation.” We’ll prove by induction on m that ∀m ∈N, P(m).

Base case: Let m = 0.

Let n ∈ N and assume that n ≤ m. There is only one possible number, namely
n = 0, to consider. Let p = 0 and b0 = 0. Then 0 = ∑

p
i=0 bi2i = 0× 20 = 0.

Inductive step. Let m ∈N, and assume that P(m) is true, i.e., that every natural
number less than or equal to m has a binary representation. We want to prove
that P(m + 1) is true.

Let n ∈N and assume that n ≤ m + 1. If n ≤ m, then by the induction hypothe-
sis n has a binary representation. So we’ll further assume that n = m + 1 for the
rest of this proof.2

2 Essentially, we’re doing a proof by
cases here, but one of the cases (n ≤ m)
is so simple that we’re not writing full
headers, because we’ll use cases later on
as well.

We’ll divide up the rest of the proof into two cases, depending on whether n is
even or odd.

Case 1: Assume n is even, i.e., there exists k ∈N such that n = 2k.

By one of our earlier properties of divisibility, we know that since k | n, k < n.
Therefore by the induction hypothesis there exists p ∈N and bp, . . . , b0 ∈ {0, 1}
such that k = ∑

p
i=0 bi2i. Then n = 2 ∑

p
i=0 bi2i = ∑

p
i=0 bi2i+1.

Let p′ = p + 1, and let b′0 = 0, and for all i ∈ {1, 2, . . . , p + 1}, let b′i = bi−1. Then

n = ∑
p′

i=0 b′i2
i.

Case 2: Assume n is odd, i.e., there exists k ∈N such that n = 2k + 1.

Similar to the previous case, by the induction hypothesis, there exists p ∈ N

and bp, . . . , b0 ∈ {0, 1} such that k = ∑
p
i=0 bi2i. Then n = 2

(
∑

p
i=0 bi2i

)
+ 1 =(

∑
p
i=0 bi2i+1

)
+ 1.

Let p′ = p + 1 and let b′0 = 1, and for all i ∈ {1, 2, . . . , p + 1}, let b′i = bi−1. Then

n = ∑
p′

i=0 b′i2
i.

�

One troubling issue with the representations that result from the statement of the
previous theorem is that they are not unique.3 For example, the decimal number

3 Remember that the existential quan-
tifier says that at least one value of the
domain satisfies a given property; not
that exactly one does.

14 can be represented in binary as 1110, but it can also be represented as 01110,
001110, 0001110 and so on. Computer scientists hate to have multiple ways to
represent a particular entity, since each different representation can lead to a case
to check. We want a rule that forces us to say which of those representations for

82 david liu and toniann pitassi

14 is the agreed upon unique representation. How can we choose? One way is
to say that we want the one that does not have the uninformative leading 0’s.

Theorem 4.2. For every number n ∈ Z+, there exist unique values p ∈ N and
bp, . . . , b0 ∈ {0, 1} such that both of the following hold:

1. n = ∑
p
i=0 bi2i (i.e., this is a binary representation of n)

2. bp = 1 (this representation has no leading zeroes)

Dividing by two

Lemma 4.3. Let n ∈ N, and assume n ≥ 2. Let the binary representation
of n be bpbp−1 . . . b0, where bp = 1 (so no leading zeroes). Then the binary
representation of bn/2c is bpbp−1 . . . b1 (i.e., the binary representation of n with
the rightmost digit removed).

Proof. Let n ∈ N, and assume n ≥ 2. Let p ∈ N and b0, b1, . . . , bp ∈ {0, 1} be
such that n = ∑

p
i=0 bi2i and bp = 1. We divide the proof into two cases, based

on whether n is even or odd.

Case 1: Assume n is even. In this case, b0 = 0, and thus⌊n
2

⌋
=

n
2

=
∑

p
i=0 bi2i

2

=
∑

p
i=1 bi2i

2
(since b0 = 0)

=
p

∑
i=1

bi2i−1

=
p−1

∑
i=0

bi+12i

Case 2: Assume n is odd. In this case, b0 = 1, and bn/2c = (n− 1)/2, and so:⌊n
2

⌋
=

n− 1
2

=

(
∑

p
i=0 bi2i

)
− 1

2

=

(
∑

p
i=1 bi2i

)
+ 1 · 20 − 1

2
(since b0 = 1)

=
∑

p
i=1 bi2i

2

=
p

∑
i=1

bi2i−1

=
p−1

∑
i=0

bi+12i

�

mathematical expression and reasoning for computer science 83

Exercise Break!

4.1 In the proof of the Lemma on dividing by two, why did we need the restric-
tion that n ≥ 2? Where does the proof go wrong if n = 0 or n = 1?

4.2 Prove that for every n ∈ N, the binary representation of n with exactly one
leading 0 can be turned into a binary representation of n + 1 by flipping
exactly one bit from 0 to 1, and some number of bits from 1 to 0. For example,
the binary representation of n = 7 with one leading 0 is 0111, and n = 8 has
a binary representation 1000. Only one bit, d3, flips from 0 to 1.

4.3 Our discussion in this chapter has been restricted to base 2 and base 10 repre-
sentations. Which other integer bases are possible? Can you generalize (with
proof) the previous theorems to other bases?

5 Analyzing Algorithm Running Time

When we first begin writing programs, we are mainly concerned with their
correctness: do they work the way they’re supposed to? As our programs get
larger and more complex, we add in a second consideration: are they designed
and documented clearly enough so that another person can read the code and
make sense of what’s going on? These two properties—correctness and design—
are fundamental to writing good software. However, when designing software
that is meant to be used on a large scale or that reacts instantaneously to a
rapidly-changing environment, there is a third consideration which must be
taken into account when evaluating programs: the amount of time the program
takes to run.

In this chapter, you will learn how to formally analyze the running time of an
algorithm, and explain what factors do and do not matter when performing this
analysis. You will learn the notation used by computer scientists to represent
running time, and distinguish between best-, worst-, and average-case algorithm
running times.

A motivating example

Consider the following function, which prints out all the items in a list:

1 def print_items(lst: list) -> None:

2 for item in lst:

3 print(item)

What can we say about the running time of this function? An empirical approach
would be to measure the time it takes for this function to run on a bunch of
different inputs, and then take the average of these times to come up with some
sort of estimate of the “average” running time.

But of course, given that this algorithm performs an action for every item in the
input list, we expect it to take longer on longer lists, so taking an average of a
bunch of running times loses important information about the inputs.1

1 This is like doing a random poll of
how many birthday cakes people have
eaten without taking into account how
old the respondents are.

How about choosing one particular input, calling the function multiple times on
that input, and averaging those running times? This seems better, but even here

86 david liu and toniann pitassi

there are some problems. For one, the computer’s hardware can affect running
time; for another, computers all are running multiple programs at the same
time, so what else is currently running on your computer also affects running
time. So even running this experiment on one computer wouldn’t necessarily
be indicative of how long the function would take on a different computer, nor
even how long it would take on the same computer running a different number
of other programs.

While these sorts of timing experiments are actually done in practice for evalu-
ating particular hardware or extremely low-level (close to hardware) programs,
these details are often not helpful for the average software developer. After all,
most software developers do not have control over the machine on which their
software will be run.

So rather than use an empirical measurement of runtime, what we do instead
is use an abstract representation of runtime: the number of “basic operations”
an algorithm executes. However, there is a good reason “basic operation” is in
quotation marks—this vague term raises a whole slew of questions:

• What counts as a “basic operation”?
• How do we tell which “basic operations” are used by an algorithm?
• Do all “basic operations” take the same amount of time?

The answers to these questions can depend on the hardware being used, as well
as what programming language the algorithm is written in. Of course, these are
precisely the details we wish to avoid thinking about.

For example, suppose we analyzed the running time of the print_items func-
tion, counting only the print calls as basic operations. Then for a list of length
n, there are n print calls, so we would say that the running time of print_items
on a list of length n is n basic operations.

But then a friend comes along, and says “No wait, the variable item must be
assigned a new value of the list at every loop iteration, and that counts as a
basic operation.” Okay, so then we would say that there are n print calls and n
assignments to item, for a total running time of 2n basic operations for an input
list of length n.

But then another friend chimes in, saying “But print calls take longer than vari-
able assignments, since they need to change pixels on your monitor, so you
should count each print call as 10 basic operations.” Okay, so then there are n
print calls worth 10n basic operations, plus the assignments to item, for a total
of 11n basic operations for an input list of length n.

And then another friend joins in: “But you need to factor in an overhead of
calling the function as a first step before the body executes, which counts as 1.5
basic operations (slower than assignment, faster than print).” So then we now
have a running time of 11n + 1.5 basic operations for an input list of length n.

And then another friend starts to speak, but you cut them off and say “That’s
it! This is getting way too complicated. I’m going back to timing experiments,

mathematical expression and reasoning for computer science 87

which may be inaccurate but at least I won’t have to listen to these increasing
levels of fussiness.”

The expressions n, 2n, 11n, and 11n + 1.5 may be different mathematically, but
they share a common qualitative type of growth: they are all lines, i.e., grow
linearly with respect to n. What we will study in the next section is how to
make this observation precise, and thus avoid the tedium of trying to exactly
quantify our “basic operations,” and instead measure the overall rate of growth
in the number of operations.

Asymptotic growth

Here is a quick reminder about function notation. When we write f : A→ B, we
say that f is a function which maps elements of A to elements of B. In this chap-
ter, we will mainly be concerned about functions mapping the natural numbers
to the nonnegative real numbers,2 i.e., functions f : N → R≥0. Though there

2 These are the domain and range
which arise in algorithm analysis—an
algorithm can’t take “negative” time to
run, after all.

are many different properties of functions that mathematicians study, we are
only going to look at one such property: describing the long-term (asymptotic)
growth of a function. We will proceed by building up a few different defini-
tions of comparing function growth, which will eventually lead into one which
is robust enough to be used in practice.

Definition 5.1. Let f , g : N → R≥0. We say that g is absolutely dominated by
f if and only if for all n ∈N, g(n) ≤ f (n).

Example 5.1. Let f (n) = n2 and g(n) = n. Prove that g is absolutely dominated
by f .

Translation. This is a straightforward unpacking of a definition, which you
should be very comfortable with by now: ∀n ∈N, g(n) ≤ f (n).3

3 Note that we aren’t quantifying over f
and g; the “let” in the example defines
concrete functions that we want to
prove something about.

Proof. Let n ∈N. We want to show that n ≤ n2.

Case 1: Assume n = 0. In this case, n2 = n = 0, so the inequality holds.

Case 2: Assume n ≥ 1. In this case, we take the inequality n ≥ 1 and multiply
both sides by n to get n2 ≥ n, or equivalently n ≤ n2.

�

Unfortunately, absolute dominance is too strict for our purposes: if g(n) ≤ f (n)
for every natural number except 5, then we can’t say that g is absolutely domi-
nated by f . For example, the function g(n) = 2n is not absolutely dominated by
f (n) = n2, even though g(n) ≤ f (n) everywhere except n = 1. Here is another
definition which is a bit more flexible than absolute dominance.

Definition 5.2. Let f , g : N → R≥0. We say that g is dominated by f up to a
constant factor if and only if there exists a positive real number c such that for
all n ∈N, g(n) ≤ c · f (n).

Example 5.2. Let f (n) = n2 and g(n) = 2n. Prove that g is dominated by f up
to a constant factor.

88 david liu and toniann pitassi

Translation. Once again, the translation is a simple unpacking of the previous
definition:4

4 Remember: the order of quantifiers
matters! The choice of c is not allowed
to depend on n.

∃c ∈ R+, ∀n ∈N, g(n) ≤ c · f (n).

Discussion. The term “constant factor” is revealing. We already saw that n is
absolutely dominated by n2, so if the n is multiplied by 2, then we should be
able to multiply n2 by 2 as well to get the calculation to work out.

Proof. Let c = 2, and let n ∈ N. We want to prove that g(n) ≤ c · f (n), or in
other words, 2n ≤ 2n2.

Case 1: Assume n = 0. In this case, 2n = 0 and 2n2 = 0, so the inequality holds.

Case 2: Assume n ≥ 1. Taking the assumed inequality n ≥ 1 and multiplying
both sides by 2n yields 2n2 ≥ 2n, or equivalently 2n ≤ 2n2.

�

Intuitively, “dominated by up to a constant factor” allows us to ignore multi-
plicative constants in our functions. This will be very useful in our running time
analysis because it frees us from worrying about the exact constants used to rep-
resent numbers of basic operations: n, 2n, and 11n are all equivalent in the sense
that each one dominates the other two up to a constant factor.

However, this second definition is still a little too restrictive, as the inequality
must hold for every value of n. Consider the functions f (n) = n2 and g(n) =

n + 90. No matter how much we scale up f by multiplying it by a constant, f (0)
will always be less than g(0), so we cannot say that g is dominated by f up to a
constant factor. And again this is silly: it is certainly possible to find a constant
c such that g(n) ≤ c f (n) for every value except n = 0. So we want some way
of omitting the value n = 0 from consideration; this is precisely what our third
definition gives us.

Definition 5.3. Let f , g : N→ R≥0. We say that g is eventually dominated by f
if and only if there exists n0 ∈ R+ such that ∀n ∈N, if n ≥ n0 then g(n) ≤ f (n).

Example 5.3. Let f (n) = n2 and g(n) = n + 90. Prove that g is eventually
dominated by f .

Translation.
∃n0 ∈ R+, ∀n ∈N, n ≥ n0 ⇒ g(n) ≤ f (n).

Discussion. Okay, so rather than finding a constant to scale up f , we need to
argue that for “large enough” values of n, n + 90 ≤ n2. How do we know that
value of n is “large enough?”

Since this is a quadratic inequality, it is actually possible to solve it directly
using factoring or the quadratic formula. But that’s not really the point of this
example, so instead we’ll take advantage of the fact that we get to choose the
value of n0 to pick one which is large enough.

mathematical expression and reasoning for computer science 89

Proof. Let n0 = 90, let n ∈ N, and assume n ≥ n0. We want to prove that
n + 90 ≤ n2.

We will start with the left-hand side and obtain a chain of inequalities that lead
to the right-hand side.

n + 90 ≤ n + n (since n ≥ 90)

= 2n

≤ n · n (since n ≥ 2)

= n2

�

Intuitively, this definition allows us to ignore “small” values of n and focus on
the long term, or asymptotic, behaviour of the function. This is particularly
important for ignoring the influence of slow-growing terms in a function, which
may affect the function values for “small” n, but eventually are overshadowed
by the faster-growing terms. In the above example, we knew that n2 grows faster
than n, but because an extra +90 was added to the latter function, it took a while
for the faster growth rate of n2 to “catch up” to n + 90.

Our final definition combines both of the previous ones, enabling us to ignore
both constant factors and small values of n when comparing functions.

Definition 5.4. Let f , g : N → R≥0. We say that g is eventually dominated by
f up to a constant factor if and only if there exist c, n0 ∈ R+, such that for all
n ∈N, if n ≥ n0 then g(n) ≤ c · f (n).

In this case, we also say that g is Big-Oh of f , and write g ∈ O(f).

We use ∈ O(f) here because formally, we define O(f) to be the set of functions
that are eventually dominated by f up to a constant factor:

O(f) = {g | g : N→ R≥0, ∃c, n0 ∈ R+, ∀n ∈N, n ≥ n0 ⇒ g(n) ≤ c · f (n)}.

Example 5.4. Let f (n) = n3 and g(n) = n3 + 100n + 5000. Prove that g ∈ O(f).5
5 Or in other words,\ n3 + 100n +
5000 ∈ O(n3).

Translation.

∃c, n0 ∈ R+, ∀n ∈N, n ≥ n0 ⇒ n3 + 100n + 5000 ≤ cn3.

Discussion. It’s worth pointing out that in this case, g is neither eventually dom-
inated by f nor dominated by f up to a constant factor.6 So we’ll really need

6 Exercise: prove this!
to make use of both constants c and n0. They’re both existentially-quantified, so
we have a lot of freedom in how to choose them!

Here’s an idea: let’s split up the inequality n3 + 100n + 5000 ≤ cn3 into three
simpler ones:

n3 ≤ c1n3

100n ≤ c2n3

5000 ≤ c3n3

90 david liu and toniann pitassi

If we can make these three inequalities true, adding them together will give us
our desired result (setting c = c1 + c2 + c3). Each of these inequalities is simple
enough that we can “solve’ ’ them by inspection. Moreover, because we have
freedom in how we choose n0 and c, there are many different ways to satisfy
these inequalities! To illustrate this, we’ll look at two different approaches here.

Approach 1: focus on choosing n0.

It turns out we can satisfy the three inequalities even if c1 = c2 = c3 = 1:

• n3 ≤ n3 is always true (so for all n ≥ 0).
• 100n ≤ n3 when n ≥ 10.
• 5000 ≤ n3 when n ≥ 3

√
5000 ≈ 17.1

We can pick n0 to be the largest of the lower bounds on n, 3
√

5000, and then these
three inequalities will be satisfied!

Approach 2: focus on choosing c.

Another approach is to pick c1, c2, and c3 to make the right-hand sides large
enough to satisfy the inequalities.

• n3 ≤ c1n3 when c1 = 1.
• 100n ≤ c2n3 when c2 = 100.
• 5000 ≤ c3n3 when c3 = 5000, as long as n ≥ 1.

Proof. (Using Approach 1) Let c = 3 and n0 = 3
√

5000. Let n ∈ N, and assume
that n ≥ n0. We want to show that n3 + 100n + 5000 ≤ cn3.

First, we prove three simpler inequalities:

• n3 ≤ n3 (since the two quantities are equal).
• Since n ≥ n0 ≥ 10, we know that n2 ≥ 100, and so n3 ≥ 100n.
• Since n ≥ n0, we know that n3 ≥ n3

0 = 5000.

Adding these three inequalities gives us:

n3 + 100n + 5000 ≤ n3 + n3 + n3 = cn3.

�

Proof. (Using Approach 2) Let c = 5101 and n0 = 1. Let n ∈ N, and assume that
n ≥ n0. We want to show that n3 + 100n + 5000 ≤ cn3.

First, we prove three simpler inequalities:

• n3 ≤ n3 (since the two quantities are equal).
• Since n ∈N, we know that n ≤ n3, and so 100n ≤ 100n3.
• Since 1 ≤ n, we know that 1 ≤ n3, and then multiplying both sides by 5000

gives us 5000 ≤ 5000n3.

mathematical expression and reasoning for computer science 91

Adding these three inequalities gives us:

n3 + 100n + 5000 ≤ n3 + 100n3 + 5000n3 = 5101n3 = cn3.

�

One special case of Big-Oh: O(1)

So far, we have seen Big-Oh expressions likeO(n) andO(n2), where the function
in parentheses has grown to infinity. However, not every function takes on larger
and larger values as its input grows. Some functions are bounded, meaning they
never take on a value larger than some fixed constant.

For example, consider the constant function f (n) = 1, which always outputs the
value 1, regardless of the value of n. What would it mean to say that a function
g is Big-Oh of this f ? Let’s unpack the definition of Big-Oh to find out.

g ∈ O(f)

∃c, n0 ∈ R+, ∀n ∈N, n ≥ n0 ⇒ g(n) ≤ c · f (n)

∃c, n0 ∈ R+, ∀n ∈N, n ≥ n0 ⇒ g(n) ≤ c (since f (n) = 1)

In other words, there exists a constant c such that g(n) is eventually always less
than or equal to c. We say that such functions g are asymptotically bounded
with respect to their input, and write g ∈ O(1) to represent this.

Exercise Break!

5.1 Let f : N→ R≥0, and let y ∈ R+ be an arbitrary positive real number. Prove
that if f ∈ O(y), then f ∈ O(1) (this is why we write O(1) and usually never
see O(2) or O(165)).

Omega and Theta

Big-Oh is a useful way of describing the long-term growth behaviour of func-
tions, but its definition is limited in that it is not required to be an exact de-
scription of growth. After all, the key inequality g(n) ≤ c f (n) can be satisfied
even if f grows much, much faster than g. For example, we could say that
n + 10 ∈ O(n100) according to our definition, but this is not necessarily informa-
tive.

In other words, the definition of Big-Oh allows us to express upper bounds on
the growth of a function, but does not allow us to distinguish between an upper
bound that is tight and one that vastly overestimates the rate of growth.

92 david liu and toniann pitassi

In this section, we will introduce the final new pieces of notation for this chapter,
which allow us to express tight bounds on the growth of a function.

Definition 5.5. Let f , g : N → R≥0. We say that g is Omega of f if and only
if there exist constants c, n0 ∈ R+ such that for all n ∈ N, if n ≥ n0, then
g(n) ≥ c · f (n). In this case, we can also write g ∈ Ω(f).

You can think of Omega as the dual of Big-Oh: when g ∈ Ω(f), then f is a lower
bound on the growth rate of g. For example, we can use the definition to prove
that n2 − 5 ∈ Ω(n).

We can now express a bound that is tight for a function’s growth rate quite
elegantly by combining Big-Oh and Omega: if f is asymptotically both a lower
and upper bound for g, then g must grow at the same rate as f .

Definition 5.6. Let f , g : N → R≥0. We say that g is Theta of f if and only if g
is both Big-Oh of f and Omega of f . In this case, we can write g ∈ Θ(f), and
say that f is a tight bound on g.7

7 Most of the time, when people say
“Big-Oh” they actually mean Theta,
i.e., a Big-Oh upper bound is meant to
be the tight one, because we rarely say
upper bounds that overestimate the rate
of growth. However, in this course we
will always use Θ when we mean tight
bounds, because we will see some cases
where coming up with tight bounds
isn’t easy.

Equivalently, g is Theta of f if and only if there exist constants c1, c2, n0 ∈ R+

such that for all n ∈N, if n ≥ n0 then c1 f (n) ≤ g(n) ≤ c2 f (n).

Example 5.5. Let f (n) = n2 and g(n) = n + 10. Then g ∈ O(f), but g /∈ Θ(f).
That is, f is an upper bound for the growth rate of g, but it is not a tight upper
bound.

Exercise Break!

5.2 Prove the statement in the previous example. Note that the correct translation
uses an AND, so you’ll actually need to prove two different statements here.

Properties of Big-Oh, Omega, and Theta

If we had you always write chains of inequalities to prove that one function is
Big-Oh/Omega/Theta of another, that would get quite tedious rather quickly.
Instead, in this section we will prove some properties of this definition which are
extremely useful for combining functions together under this definition. These
properties can save you quite a lot of work in the long run. We’ll illustrate the
proof of one of these properties here; most of the others can be proved in a
similar manner, while a few are most easily proved using some techniques from
calculus.8

8 We discuss the connection between
calculus and asymptotic notation in
the following section, but this is not a
required part of CSC165.Elementary functions

The following theorem tells us how to compare four different types of “elemen-
tary” functions: constant functions, logarithms, powers of n, and exponential
functions.

mathematical expression and reasoning for computer science 93

Theorem 5.1. For all a, b ∈ R+, the following statements are true:

1. If a > 1 and b > 1, then loga n ∈ Θ(logb n).
2. If a < b, then na ∈ O(nb) and na /∈ Ω(nb).
3. If a < b, then an ∈ O(bn) and an /∈ Ω(bn).
4. If a > 1, then 1 ∈ O(loga n) and 1 /∈ Ω(loga n).
5. loga n ∈ O(nb) and loga n /∈ Ω(nb).
6. If b > 1, then na ∈ O(bn) and na /∈ Ω(bn).

Basic properties

Theorem 5.2. For all f : N→ R≥0, f ∈ Θ(f).

Theorem 5.3. For all f , g : N→ R≥0, g ∈ O(f) if and only if f ∈ Ω(g).9
9 As a consequence of this, g ∈ Θ(f) if
and only if f ∈ Θ(g).

Theorem 5.4. For all f , g, h : N→ R≥0:

• If f ∈ O(g) and g ∈ O(h), then f ∈ O(h).
• If f ∈ Ω(g) and g ∈ Ω(h), then f ∈ Ω(h).
• If f ∈ Θ(g) and g ∈ Θ(h), then f ∈ Θ(h).10

10 Exercise: prove this using the first
two.

Operations on functions

Definition 5.7. Let f , g : N → R≥0. We can define the sum of f and g as the
function f + g : N→ R≥0 such that

∀n ∈N, (f + g)(n) = f (n) + g(n).

Theorem 5.5. For all f , g, h : N→ R≥0, the following hold:

1. If f ∈ O(h) and g ∈ O(h), then f + g ∈ O(h).
2. If f ∈ Ω(h), then f + g ∈ Ω(h).
3. If f ∈ Θ(h) and g ∈ O(h), then f + g ∈ Θ(h).11

11 Exercise: prove this using the first
two.

We’ll prove the first of these statements.

Translation.

∀ f , g, h : N→ R≥0,
(

f ∈ O(h) ∧ g ∈ O(h)
)
⇒ f + g ∈ O(h).

Discussion. This is similar in spirit to the divisibility proofs we did in the In-
troduction to Proofs chapter, which used a term (divisibility) that contained a
quantifier.12 Here, we need to assume that f and g are both Big-Oh of h, and

12 The definition of Big-Oh here has
three quantifiers, but the idea is the
same.

prove that f + g is also Big-Oh of h.

Assuming f ∈ O(h) tells us there exist positive real numbers c1 and n1 such
that for all n ∈ N, if n ≥ n1 then f (n) ≤ c1 · h(n). There similarly exist c2 and
n2 such that g(n) ≤ c2 · h(n) whenever n ≥ n2. Warning: we can’t assume that
c1 = c2 or n1 = n2, or any other relationship between these two sets of variables.

94 david liu and toniann pitassi

We want to prove that there exist c, n0 ∈ R+ such that for all n ∈ N, if n ≥ n0

then f (n) + g(n) ≤ c · h(n).

The forms of the inequalities we can assume— f (n) ≤ c1h(n), g(n) ≤ c2h(n)—
and the final inequality are identical, and in particular the left-hand side sug-
gests that we just need to add the two given inequalities together to get the third.
We just need to make sure that both given inequalities hold by choosing n0 to
be large enough, and let c be large enough to take into account both c1 and c2.

Proof. Let f , g, h : N → R≥0, and assume f ∈ O(h) and g ∈ O(h). By these
assumptions, there exist c1, c2, n1, n2 ∈ R+ such that for all n ∈N,

• if n ≥ n1, then f (n) ≤ c1 · h(n), and
• if n ≥ n2, then g(n) ≤ c2 · h(n).

We want to prove that f + g ∈ O(h), i.e., that there exist c, n0 ∈ R+ such that for
all n ∈N, if n ≥ n0 then f (n) + g(n) ≤ c · h(n).

Let n0 = max{n1, n2} and c = c1 + c2. Let n ∈ N, and assume that n ≥ n0. We
now want to prove that f (n) + g(n) ≤ c · h(n).

Since n0 ≥ n1 and n0 ≥ n2, we know that n is greater than or equal to n1 and n2

as well. Then using the Big-Oh assumptions,

f (n) ≤ c1 · h(n)
g(n) ≤ c2 · h(n)

Adding these two inequalities together yields

f (n) + g(n) ≤ c1h(n) + c2h(n) = (c1 + c2)h(n) = c · h(n).

�

Theorem 5.6. For all f : N→ R≥0 and all a ∈ R+, a · f ∈ Θ(f).

Theorem 5.7. For all f1, f2, g1, g2 : N→ R≥0, if g1 ∈ O(f1) and g2 ∈ O(f2), then
g1 · g2 ∈ O(f1 · f2). Moreover, the statement is still true if you replace Big-Oh
with Omega, or if you replace Big-Oh with Theta.

Theorem 5.8. For all f : N→ R≥0, if f (n) is eventually greater than or equal to
1, then b f c ∈ Θ(f) and d f e ∈ Θ(f).

Properties from calculus

[Note: this subsection is not part of the require course material for CSC165. It is
presented mainly for the nice connection between Big-Oh notation and calculus.]

Our asymptotic notation of O, Ω, and Θ are concerned with the comparing the
long-term behaviour of two functions. It turns out that the concept of “long-term

mathematical expression and reasoning for computer science 95

behaviour” is captured in another object of mathematical study, familiar to us
from calculus: the limit of the function as its input approaches infinity.

Formally, we have the following two definitions:13

13 We’re restricting our attention here to
functions with domain N because that’s
our focus in computer science.lim

n→∞
f (n) = L : ∀ε ∈ R+, ∃n0 ∈N, ∀n ∈N, n ≥ n0 ⇒ | f (n)− L| < ε,

(where f : N→ R and L ∈ R)

lim
n→∞

f (n) = ∞ : ∀M ∈ R+, ∃n0 ∈N, ∀n ∈N, n ≥ n0 ⇒ f (n) > M

(where f : N→ R)

Using just these definitions and the definitions of our asymptotic symbols O, Ω,
and Θ, we can prove the following pretty remarkable results:

Theorem 5.9. For all f , g : N → R≥0, if g(n) 6= 0 for all n ∈ N, then the
following statements hold:

(i) If there exists L ∈ R+ such that limn→∞ f (n)/g(n) = L, then g ∈ Ω(f) and
g ∈ O(f). (In other words, g ∈ Θ(f).)

(ii) If limn→∞ f (n)/g(n) = 0, then f ∈ O(g) and g /∈ O(f).
(iii) If limn→∞ f (n)/g(n) = ∞, then g ∈ O(f) and f /∈ O(g).

Proving this theorem is actually a very good (lengthy) exercise for a CSC165

student; they involve keeping track of variables and manipulating inequalities,
two key skills you’re developing in this course! And they do tend to be useful
in practice (although again, not for this course) to proving asymptotic bounds
like n2 ∈ O(1.01n). But note that the converse of these statements is not true; for
example, it is possible (and another nice exercise) to find functions f and g such
that g ∈ Θ(f), but limn→∞ f (n)/g(n) is undefined.

Back to algorithms

Let us return to our example at the beginning of the chapter:

1 def print_items(lst: list) -> None:

2 for item in lst:

3 print(item)

How can we use our asymptotic notation to help us analyze the running time
of this algorithm? Remember that we have proposed expressions like n, 2n, 11n,
11n + 1.5, where n is the length of the input list.

By using asymptotic notation, we no longer need to worry about the constants
involved, and so don’t need to worry about whether a single call to print counts
as one or ten “basic operations.” Moreover, by focusing on the long-term growth,
we can also ignore lower-order terms like the 1.5 in 11n + 1.5.14

14 The formal grounding for this is in
the section of properties of Theta.

96 david liu and toniann pitassi

Just as switching from measuring real time to counting “basic operations” allows
us to ignore the computing environment in which the program runs, switching
from an exact step count to asymptotic notation allows us to ignore machine-
and programming language-dependent constants involved in the execution of
the code.

Having ignored all these external factors, our analysis will concentrate on how
the size of the input influences the running time of a program, where we mea-
sure running time just using asymptotic notation, and not exact expressions.

Warning: the “size” of the input to a program can mean different things depend-
ing on the type of input, or even depending on the program itself. Whenever you
perform a running time analysis, be sure to clearly state how you are measuring
and representing input size.

Because constants don’t matter, we will use a very coarse measure of “basic
operation” to make our analysis as simple as possible. For our purposes, a basic
operation (or step) is any block of code whose running time does not depend
on the size of the input.15

15 To belabour the point a little, this
depends on how we define input size.
For integers, we usually will assume
they have a fixed size in memory
(e.g., 32 bits), which is why arithmetic
operations take constant time. But of
course if we allow numbers to grow
infinitely, this is no longer true, and
performing arithmetic operations will
no longer take constant time.

This includes all primitive language operations like most assignment statements,
arithmetic calculations, and list and string indexing. The one major statement
type which does not fit in this category is a function call—the running time
of such statements depends on how long that particular function takes to run.
We’ll revisit this in more detail later.

The runtime function

print_items is an example of a special type of program: one whose runtime
depends only on the size of the input list, and not the contents of the list. That
is, we expect that print_items takes the same amount of time on every list of
length 100. We can make this a little more clear by introducing one piece of
notation that will come in handy for the rest of the chapter.

Definition 5.8. Let func be an algorithm. For every n ∈ N, we define the set
I f unc,n to be the set of allowed inputs to func of size n.

Example 5.6. For example, Iprint_items,100 is simply the set of all lists of length
100. Iprint_items,0 is the set containing just one input: the empty list.

We can restate our observation about print_items in terms of these sets: for
all n ∈ N, every element of Iprint_items,n has the same runtime when passed to
print_items.

Definition 5.9. Let func be an algorithm whose runtime depends only on its
input size. We define the running time function of func as RTf unc : N → R≥0,
where RTf unc(n) is equal to the running time of func when given an input of
size n.16

16 We will often abbreviate “running
time” to “runtime”.

The goal of a runtime analysis for func is to find a function f (consisting of just
elementary functions) such that RTf unc ∈ Θ(f).

mathematical expression and reasoning for computer science 97

Our first technique for performing this runtime analysis follows four steps:

1. Identify the blocks of code which can be counted as a single basic operation,
because they don’t depend on the input size.

2. Identify any loops in the code, which cause basic operations to repeat. You’ll
need to figure out how many times those loops run, based on the size of the
input. Be exact when counting loop iterations.

3. Use your observations from the previous two steps to come up with an ex-
pression for the number of basic operations used in this algorithm—i.e., find
an exact expression for RTf unc(n).

4. Use the properties of asymptotic notation to find an elementary function f
such that RTf unc ∈ Θ(f (n)).

Because Theta expressions depend only on the fastest-growing term in a sum,
and ignores constants, we don’t even need an exact, “correct” expression for the
number of basic operations. This allows us to be rough with our analysis, but
still get the correct Theta expression.

Example 5.7. Consider the function print_items. We define input size to be the
number of items of the input list. Perform a runtime analysis of print_items.

Proof. For this algorithm, each iteration of the loop can be counted as a single
operation, because nothing in it (including the call to print) depends on the size
of the input list.17

17 This is actually a little subtle. If we
consider the size of individual list
elements, it could be the case that some
take a much longer time to print than
others (imagine printing a string of
one-thousand characters vs. the number
5). But by defining input size purely as
the number of items, we are implicitly
ignoring the size of the individual
items. The running time of a call to
print does not depend on the length of
the input list.

So the running time depends on the number of loop iterations. Since this is a
for loop over the lst argument, we know that the loop runs n times, where n is
the length of lst.

Thus the total number of basic operations performed is n, and so the running
time is RTprint_items(n) = n, which is Θ(n).

�

It is quite possible to have nested loops in a function body, and analyze the run-
ning time in the same fashion. The simplest method of tackling such functions
is to count the number of repeated basic operations in a loop starting with the
innermost loop and working your way out.

Example 5.8. Consider the following function.

1 def print_sums(lst: list) -> None:

2 for item1 in lst:

3 for item2 in lst:

4 print(item1 + item2)

Perform a runtime analysis of print_sums. (For the remainder of this course,
we will assume input size for a list is always its length, unless something else is
specified.)

98 david liu and toniann pitassi

Proof. Let n be the length of lst.

The inner loop (for item2 in lst) runs n times (once per item in lst), and each
iteration is just a single basic operation.

But the entire inner loop is itself repeated, since it is inside another loop. The
outer loop runs n times as well, and each of its iterations takes n operations.

So then the total number of basic operations is

RTprint_sums(n) = steps for the inner loop× number of times inner loop is repeated

= n× n

= n2

So the running time of this algorithm is Θ(n2).

�

Students often make the mistake, however, that the number of nested loops
should always be the exponent of n in the Big-Oh expression.18 However, things

18 E.g., two levels of nested loops always
becomes Θ(n2).are not that simple, and in particular, not every loop takes n iterations.

Example 5.9. Consider the following function:

1 def f(lst: List[int]) -> None:

2 for item in lst:

3 for i in range(10):

4 print(item + i)

Perform a runtime analysis of this function.

Proof. Let n be the length of the input list lst. The inner loop repeats 10 times,
and each iteration is again a single basic operation, for a total of 10 basic oper-
ations. The outer loop repeats n times, and each iteration takes 10 steps, for a
total of 10n steps. So the running time of this function is Θ(n). (Even though it
has a nested loop!)

Alternative, more concise analysis. The inner loop’s running time doesn’t depend
on the number of items in the input list, so we can count it as a single basic
operation.

The outer loop runs n times, and each iteration takes 1 step, for a total of n steps,
which is Θ(n).

�

When we are analyzing the running time of two blocks of code executed in se-
quence (one after the other), we add together their individual running times.
The sum theorems are particularly helpful here, as it tells us that we can simply
compute Theta expressions for the blocks individually, and then combine them

mathematical expression and reasoning for computer science 99

just by taking the fastest-growing one. Because Theta expressions are a sim-
plification of exact mathematical function expressions, taking this approach is
often easier and faster than trying to count an exact number steps for the entire
function.19

19 E.g., Θ(n2) is simpler than 10n2 +
0.001n + 165.

Example 5.10. Analyze the running time of the following function, which is a
combination of two previous functions.

1 def combined(lst: list) -> None:

2 # Loop 1

3 for item in lst:

4 for i in range(10):

5 print(item + i)

6 # Loop 2

7 for item1 in lst:

8 for item2 in lst:

9 print(item1 + item2)

Proof. Let n be the length of lst. We have already seen that the first loop runs
in time Θ(n), while the second loop runs in time Θ(n2).20

20 By “runs in time Θ(n),” we mean that
the number of basic operations of the
second loop is a function f (n) ∈ Θ(n).By Theorem 5.5, we can conclude that combined runs in time Θ(n2). (Since

n ∈ O(n2).)

�

Loop iterations with changing costs

Consider the following function:

1 def all_pairs(lst: list) -> None:

2 i = 0

3 while i < len(lst):

4 j = 0

5 while j < i:

6 print(i + j)

7 j = j + 1

8 i = i + 1

Like previous examples, this function has a nested loop. However, unlike those
examples, here the inner loop’s running time depends on the current value of i,
i.e., which iteration of the outer loop we’re on.

This means we cannot take the previous approach of calculating the cost of the
inner loop, and multiplying it by the number of iterations of the outer loop; this
only works if the cost of each outer loop iteration is the same.

100 david liu and toniann pitassi

So instead, we need to manually add up the cost of each iteration of the outer
loop, which depends on the number of iterations of the inner loop. More specif-
ically, since j goes from 0 to i− 1, the number of iterations of the inner loop is i,
and each iteration of the inner loop counts as one basic operation. So the cost of
the i-th iteration of the outer loop is i + 1, where the 1 comes from counting the
assignment statements in the outer loop.

Let n be the length of the input list, and RTall_pairs(n) be the running time of
all_pairs on a list of length n. We add the cost of the first assignment statement
i = 0 (1 step) the cost of each iteration for the outer loop.

RTall_pairs(n) = 1 +
n−1

∑
i=0

(i + 1) = 1 +
n

∑
i′=1

i′ = 1 +
n(n + 1)

2
∈ Θ(n2).

Helper functions

Finally, let us return to how we deal with helper functions in our analysis. Sup-
pose we are asked to analyze the running time of the following function under
the assumption that the helper functions do not change the size of lst:

1 def uses_helpers(lst: list) -> None:

2 x = helper1(lst)

3 y = helper2(lst)

4 return x + y

As with analyzing any other sequential program, we simply take the sum of
each individual code block’s running time. That is, we take the running time of
helper1 when given input lst, the running time of helper2 when given input
lst, and the single basic operation for return x + y, and add these together.
We do not need to add any “extra overhead” for calling functions: while this
overhead often exists, it does not depend on the size of the input, and so we
treat this as a single basic operation that can be ignored.21

21 Any constant number of basic opera-
tions is dominated by terms that grow
with the size of the input.Example 5.11. Prove that if helper1 runs in time Θ(n2) and helper2 runs in time

Θ(n3), where the n in both cases is the size of their input list, then uses_helper

runs in time Θ(n3).

Proof. Let n be the size of the input to uses_helpers. Then because helper1

is called on the same input, it takes time Θ(n2). Similarly, helper2 takes time
Θ(n3). Finally, the cost of the return statement is Θ(1).

Taking the sum of these yields a total running time of Θ(n3).

�

Note that unlike previous examples, this analysis was an implication: the run-
ning time of uses_helpers depends on the running times of helper1 and helper2.
It is important to keep this in mind when both writing and analyzing your code:

mathematical expression and reasoning for computer science 101

it is easy to skim over a helper function call because it takes up so little visual
space, but that one call might make the difference between a Θ(n) and Θ(2n)

running time.

Some trickier examples

Students often get the impression that runtime analysis is all about counting the
level of nested loops. Our goal here is to convince you that runtime analysis
isn’t always straight-forward, and in fact can lead to surprising results, even for
simple-looking algorithms!

Example 5.12. Let us analyze the runtime of the following function, which de-
termines whether a number is prime.

1 def is_prime(n: int) -> bool:

2 if n < 2:

3 return False

4

5 d = 2

6 while d < n:

7 if n % d == 0:

8 return False # Since d divides n, n cannot be prime.

9 d = d + 1

10

11 return True # If the loop doesn't find a divisor, n is prime.

While this code is structurally very simple, consisting of a just a single loop
with a standard increment, its runtime function is unlike any other we have seen
before. This loop can return early, but in a way which is quite unpredictable, as
it depends on when a divisor of n is found. It is possible to be more precise,
and say that “the number of loop iterations is equal to one less than the smallest
divisor of n greater than 1,” but this isn’t expressible in terms of elementary
mathematical functions!

To the right, we show a graph of the running times (measured as number of loop
iterations) of this function for the first 100 values of n. This nicely illustrates the
difficulty with trying to summarize the runtime of is_prime in a single Theta
expression. There is an upper bound of n− 2 iterations (this is what occurs when
no divisor between 1 and n is found), and a lower bound of a single iteration
(when the first number, d = 2, is a divisor of n), and some other dots in between.
So we could say that the runtime of is_prime is O(n) and Ω(1), but in fact it is
neither Θ(n) nor Θ(1)!22

22 So our goal of finding an elementary
Theta expression for an algorithm’s
runtime isn’t always possible.Example 5.13. Let’s go one step further with the previous example, and study a

function that uses is_prime as a helper.

102 david liu and toniann pitassi

1 def print_primes(n: int) -> None:

2 for k in range(2, n + 1):

3 if is_prime(k):

4 print(k)

What is the asymptotic running time of print_primes as a function of n? It
seems at first glance this should be straightforward to analyze, as the code in
this function’s body is structurally simple.

The problem, of course, lies in the is_prime helper. Because it stops as soon as
it finds a factor of n between 2 and n − 1, the number of iterations that occur
can vary between 1 and n− 2. Note that is_prime only goes through all n− 2
iterations if n is prime.

So if we want to analyze the running time of print_primes, we need to add
up the cost of running is_prime for each number between 2 and n − 1.23 Let

23 We can ignore the other constant-
time operations in print_primes and
is_prime.

RTprint_primes(n) represent the running time of print_primes(n), and RTis_prime(n)
represent the running time of is_prime(n).

RTprint_primes(n) =
n

∑
k=2

RTis_prime(k)

How do we evaluate this sum? We could say that the running time of is_prime(k)
is at most k− 2, but this forces us to change the equality into an inequality:

RTprint_primes(n) ≤
n

∑
k=2

(k− 2)

=
n

∑
k=2

k− 2(n− 1)

=
n

∑
k=1

k− 2(n− 1)− 1

=
n(n + 1)

2
− 2n + 1

In other words, we get a quadratic (n2) running time here. But because our
analysis over-estimated the running time of is_prime(k), this is only an upper
bound on the running time: RTprint_primes(n) ∈ O(n2).

In fact, this analysis did not take into account is_prime stopping early at all!
However, it is not at all obvious how to take this into account in our analysis,
since we lack the mathematical tools required to think about when and how
is_prime stops early for the different values of k.

However, here is one simple argument that we could use to get a lower bound on
the running time of this function. We observed that when is_prime’s input k is
prime, its runtime is k− 2. So what do we get if we take the original expression

mathematical expression and reasoning for computer science 103

for RTprint_primes(k) and throw out all the terms except when k is prime?

RTprint_primes(n) =
n

∑
k=2

RTis_prime(k)

≥ ∑
k≤n

k is prime

RTis_prime(k)

= ∑
k≤n

k is prime

(k− 2)

=
(

∑
k≤n

k is prime

k
)
− 2×

(
of primes ≤ n

)

We know from number theory that the sum of the primes ≤ n is roughly n2

log n ,
and the number of primes≤ n is roughly n

log n . This means that RTprint_primes(n) ∈

Ω
(

n2

log n

)
.

Notice that this doesn’t match our upper bound! Does that mean that one of
these is wrong? Not quite—it means that the true running time is somewhere
between n2

log n and n2, but we would need to perform a better analysis to deter-
mine what it is.24

24 And of course, there’s no guaran-
tee that the runtime is Theta of any
elementary function!Our next example considers a standard loop, with a twist in how the loop vari-

able changes at each iteration.

1 def twisty(n: int) -> None:

2 x = n

3 while x > 1:

4 if x % 2 == 0:

5 x = x / 2

6 else:

7 x = 2*x - 2

Even though the individual lines of code in this example are simple, they com-
bine to form a pretty complex situation. The challenge with analyzing the run-
time of this function is that, unlike previous examples, here the loop counter
x does not always get closer to the loop stopping condition; sometimes it does
(when divided by two), and sometimes it increases!

The key insight into analyzing the runtime of this function is that we don’t just
need to look at what happens after a single loop iteration, but instead perform
a more sophisticated analysis based on multiple iterations.25 More concretely,

25 As preparation, try tracing twisty on
inputs 7, 9, and 11.we’ll prove the following claim.

Claim 3. For any value of x greater than 2, after two iterations of the loop the
value of x decreases by at least one.

Proof. Let x0 be the value of variable x at some iteration of the loop, and assume
x0 > 2. Let x1 be the value of x after one loop iteration, and x2 the value of x
after two loop iterations. We want to prove that x2 ≤ x0 − 1.

104 david liu and toniann pitassi

We divide up this proof into four cases, based on the remainder of x0 when
dividing by four.26 We’ll only do two cases here to illustrate the main idea, and

26 The intuition here is that this deter-
mines whether x0 is even/odd, and
whether x1 is even/odd.

leave the last two cases as an exercise.

Case 1: Assume 4 | x0, i.e., ∃k ∈ Z, x0 = 4k.

In this case, x0 is even, so the if branch executes in the first loop iteration, and
so x1 = x0

2 = 2k. And so then x1 is also even, and so the if branch executes
again: x2 = x1

2 = k.

So then x2 = 1
4 x0 ≤ x0 − 1 (since x0 ≥ 4), as required.

Case 2: Assume 4 | x0 − 1, i.e., ∃k ∈ Z, x0 = 4k + 1.

In this case, x0 is odd, so the else branch executes in the first loop iteration, and
so x1 = 2x0 − 2 = 8k. Then x1 is even, and so x2 = x1

2 = 4k.

So then x2 = 4k = x0 − 1, as required.

Cases 3 and 4: left as exercises.

�

So this claim tells us that after every two iterations, the value of x decreases by
at least 1. Since x starts at n and the loop terminates when x reaches 1 (or less),
there are at most 2(n − 1) loop iterations.27 So then since each loop iteration

27 Contrast this with earlier examples
that had the loop counter increase/de-
crease by 1 at every iteration.

takes constant time, the total running time of this algorithm is O(n).

Exercise Break!

5.3 The analysis we performed in the previous example is incomplete for a few
reasons; our goal with this set of exercises is to complete it here.

(a) Complete the last two cases in the proof of the claim.
(b) State and prove an analogous statement for how much x must decrease by

after three loop iterations.
(c) Find an exact upper bound on the number of loop iterations taken by this

algorithm. Your upper bound should be smaller (and therefore more accu-
rate) than the one given in the example.

(d) Finally, find, with proof, a good lower bound on the number of loop itera-
tions taken by this algorithm.

Worst-case and best-case running times

In the previous section, we saw how to use asymptotic notation to characterize
the rate of growth of the number of “basic operations” as a way of analyzing
the running time of an algorithm. This approach allows us to ignore details of
the computing environment in which the algorithm is run, and machine- and

mathematical expression and reasoning for computer science 105

language-dependent implementations of primitive operations, and instead char-
acterize the relationship between the input size and number of basic operations
performed.

However, this focus on just the input size is a little too restrictive. Even though
we can define input size differently for each algorithm we analyze, we tend not
to stray too far from the “natural” definitions (e.g., length of list). In practice,
though, algorithms often depend on the actual value of the input, not just its
size. For example, consider the following function, which searches for an even
number in a list of integers.

106 david liu and toniann pitassi

1 def has_even(numbers: List[int]) -> bool:

2 for number in numbers:

3 if number % 2 == 0:

4 return True

5 return False

Because this function returns as soon as it finds an even number in the list, its
running time is not necessarily proportional to the length of the input list.

The running time of a function can vary even when the input size is fixed.
Or using the notation of the previous section, the inputs in Ihas_even,10 do not all
have the same runtime. The question “what is the running time of has_even on
an input of length n?” does not make sense, as for a given input the runtime
depends not just on its length but on which of its elements are even.

And because our asymptotic notation is used to describe the growth rate of
functions, we cannot use it to describe the growth of a whole range of values
with respect to increasing input sizes. A natural approach to fix this problem
is to focus on the maximum of this range, which corresponds to the slowest the
algorithm could run for a given input size.

Definition 5.10. Let func be a program. We define the following function, called
the worst-case running time function of func:28

28 Here, “running time” is measured in
exact number of basic operations. We
are taking the maximum/minimum of a
set of numbers, not a set of asymptotic
expressions.

WC f unc(n) = max
{

running time of executing func(x) | x ∈ I f unc,n
}

Note that WC f unc is a function, not a (constant) number: it returns the maximum
possible running time for an input of size n, for every natural number n. And
because it is a function, we can use asymptotic notation to describe it, saying
things like “the worst-case running time of this function is Θ(n2).”

The goal of worst-case runtime analysis for func is to find an elementary func-
tion f such that WC f unc ∈ Θ(f).

However, it takes a bit more work to obtain tight bounds on a worst-case running
time than on the runtime functions of the previous section. Let’s think about just
the worst-case running time for now. It is difficult to compute the exact maximum
number of basic operations performed by this algorithm for every input size,
which requires that we identify an input for each input size, count its maximum
number of basic operations, and then prove that every input of this size takes at
most this number of operations. Instead, we will generally take a two-pronged
approach: proving matching upper and lower bounds on the worst-case running
time of our algorithm.

Upper bounds on the worst-case runtime

Definition 5.11. Let func be a program, and WC f unc its worst-case runtime func-
tion. We say that a function f : N→ R≥0 is an upper bound on the worst-case
runtime if and only if WC f unc is absolutely dominated by f .

mathematical expression and reasoning for computer science 107

We use absolute dominance rather than the more refined Big-Oh because there’s
a very intuitive way to unpack this definition.

∀n ∈N, WC f unc(n) ≤ f (n)

⇐⇒∀n ∈N, max
{

running time of executing func(x) | x ∈ I f unc,n
}
≤ f (n)

⇐⇒∀n ∈N, ∀x ∈ I f unc,n, running time of executing func(x) ≤ f (n)

The last line comes from the fact that if we know the maximum of a set of
numbers is less than some value K, then all numbers in that set must be less
than K. Thus an upper bound on the worst-case runtime is equivalent to an
upper bound on the runtimes of all inputs.

But how do we find such an upper bound? And what does it mean to upper
bound all runtimes of a given input size? We’ll illustrate the technique in our
next example.

Example 5.14. Prove that f (n) = n + 1 is an upper bound for the worst-case
runtime of has_even.

Translation. To translate this statement, we can use the equivalent form we just
discussed, keeping in mind that all lists are valid inputs to has_even:

“For every n ∈N and every list numbers of length n, the runtime of has_even(numbers)
is ≤ n + 1.”

Discussion. Before starting our proof, there is only one point we want to high-
light: even though we’re in a completely different context, all the techniques
of proof we learned earlier still apply! In particular, the translated statement
begins with two universal quantifiers, and just knowing this alone should antic-
ipate how we’ll start our proof.

Proof. We will let n ∈ N, and let numbers be an arbitrary list of length n. We
want to show that has_even(numbers) takes at most n + 1 basic operations.

Note that we can’t assume anything about the values inside numbers. However,
we can still make some observations about the code:

• The loop (for number in numbers) iterates at most n times. Each loop iter-
ation counts as a single basic operation, so the loop takes at most n basic
operations.

• The return False statement (if it is executed) counts as 1 basic operation.

The total number of basic operations possible is simply their sum: n + 1.

�

Note that we did not prove that has_even(numbers) takes exactly n + 1 basic
operations for an arbitrary input numbers (this is false); we only proved an upper

108 david liu and toniann pitassi

bound on the number of operations. And in fact, we don’t even care that much
about the exact number: what we ultimately care about is the asymptotic growth
rate, which is linear for n + 1. This allows us to conclude that the worst-case
running time of has_even is O(n), where n is the length of the input list. Note
that we must use Big-Oh here, not Theta: we don’t yet know that this upper
bound is tight.29

29 If this is surprising, note that we
could have done the above proof but
replaced n + 1 by 5000n + 165 and it
would still have been valid.Lower bounds on the worst-case runtime

So how do we prove our upper bound is tight? Since we’ve just shown that
WC(n) ∈ O(n), we need to prove the corresponding lower bound WC(n) ∈
Ω(n). But what does it mean to prove a lower bound on the maximum of a set
of numbers? Suppose we have a set of numbers S, and say that “the maximum
of S is at least 50.” This doesn’t tell us what the maximum of S actually is, but
it does give us one piece of information: there has to be a number in S which is
at least 50.

The key insight is that the converse is also true—if I tell you that S contains the
number 50, then you can conclude that the maximum of S is at least 50.

max(S) ≥ 50⇔ (∃x ∈ S, x ≥ 50).

Using this idea, we’ll give a formal definition for a lower bound on the worst-
case runtime of an algorithm.

Definition 5.12. Let func be a program, and WC f unc is worst-case runtime func-
tion. We say that a function f : N → R≥0 is a lower bound on the worst-case
runtime if and only if f is absolutely dominated by WC f unc.

In an analogous fashion to the upper bound, we unpack this definition:

∀n ∈N, WC f unc(n) ≥ f (n)

⇐⇒∀n ∈N, max
{

running time of executing func(x) | x ∈ I f unc,n
}
≥ f (n)

⇐⇒∀n ∈N, ∃x ∈ I f unc,n, running time of executing func(x) ≥ f (n)

Remarkably, the crucial difference between this definition and the one for upper
bounds is a change of quantifier: now the input x is existentially quantified,
meaning we get to pick it. Or really, our goal is to find a whole set of inputs, one
per input size, whose runtime is larger than a lower bound. So to find a lower
bound on the worst-case running time, we need a set of inputs, one per input
size, whose running time is “large” (i.e., close to the upper bound of n + 1).
Technically, we need an input family whose runtime is Ω(n + 1), but in this
case, it’s actually possible to obtain exactly this number of steps.

Prove that the function f (n) = n + 1 is a lower bound on the worst-case runtime
of has_even.

Translation. We’ll state the equivalent form in English, mainly to remind you
about the intuition here.

"For every n ∈N, there exists an input list numbers such that has_even(numbers)
takes at least n + 1 basic operations.

mathematical expression and reasoning for computer science 109

Proof. Let n ∈ N. Let numbers be the list of length n consisting of all 1’s. We’ll
prove that has_even(numbers) takes at least n + 1 basic operations.

In this case, the if condition in the loop is always false, so the loop never stops
early. Therefore it iterates exactly n times (once per item in the list), with each
iteration taking one basic operation.

Finally, the return False statement executes, which is one basic operation. So
the total number of basic operations for this input is n + 1, which is Ω(n).

�

Putting it all together

Finally, we can combine our upper and lower bounds on WChas_even to obtain a
tight asymptotic bound.

Example 5.15. The worst-case running time of has_even is Θ(n), where n is the
length of the input list.

Proof. Since we’ve proved that WChas_even is in O(n) and in Ω(n), it is in Θ(n).

�

To summarize, to obtain a tight bound on the worst-case running time of a
function, we need to do two things:

• Use the properties of the code to obtain an asymptotic upper bound on the
worst-case running time. We would say something like WC f (n) ∈ O(g(n)).

• Find a family of inputs whose running time is Ω(g(n)) (with proof, of course).
This will prove that WC f (n) ∈ Ω(g(n)), and so we can conclude that WC f (n) ∈
Θ(g(n)).

A note about best-case runtime

In this section, we focused on worst-case runtime, the result of taking the maxi-
mum runtime for every input size. It is also possible to define a best-case runtime
function by taking the minimum possible runtimes, and obtain tight bounds on
the best case through an analysis that is completely analogous to the one we
just performed. In practice, however, the best-case runtime of an algorithm is
usually not as useful to know—we care far more about knowing just how slow
an algorithm is than how fast it can be.

Don’t assume bounds are tight!

It is likely unsatisfying to hear that upper and lower bounds really are distinct
things that must be computed separately. Our intuition here pulls us towards

110 david liu and toniann pitassi

the bounds being “obviously” the same, but this is really a side effect of the
examples we have studied so far in this course being rather straightforward. But
this won’t always be the case: the study of more complex algorithms and data
structures exhibits quite a few cases where obtaining an upper bound involves
a completely different argument from a lower bound.

Let’s look at one such example that deals with manipulating strings.

Example 5.16. We say that a string is a palindrome when it can be read the same
forwards and backwards; example of palindromes are “abba”, “racecar”, and
“z”.30 We say that a string s1 is a prefix of another string s2 when s1 is a substring

30 Every string of length 1 is considered
a palindrome.of s2 that starts at index 0 of s2. For example, the string “abc” is a prefix of

“abcdef”.

The algorithm below takes a non-empty string as input, and returns the length
of the longest prefix of that string that is a palindrome. For example, the string
“attack” has two non-empty prefixes that are palindromes, “a” and “atta”, and
so our algorithm will return 4.

1 def palindrome_prefix(s: str) -> int:

2 n = len(s)

3 for prefix_length in range(n, 0, -1): # goes from n down to 1

4 # Check whether s[0:prefix_length] is a palindrome

5 is_palindrome = True

6 for i in range(prefix_length):

7 if s[i] != s[prefix_length - 1 - i]:

8 is_palindrome = False

9 break

10

11 # If a palindrome prefix is found, return the current length.

12 if is_palindrome:

13 return prefix_length

Note that even though the only return statement is inside the for loop, this
algorithm is guaranteed to find a palindrome prefix, since the first letter of s by
itself is a palindrome.

The code presented here is structurally simple, with a nested for loop. Indeed,
it is not too hard to prove that the worst-case runtime of this function is O(n2),
where n is the length of the input string. What is harder, however, is showing
that the worst-case runtime is Ω(n2). To do so, we must find an input family
whose runtime is Ω(n2). There are two points in the code that can lead to
fewer than the maximum loop iterations occurring, and we want to find an input
family that avoids both of these. The difficulty is that these two points are caused
by different types of inputs! The inner break statement occurs as soon as the
algorithm detects that a prefix is not a palindrome, while the return statement
occurs when the algorithm has determined that a prefix is a palindrome! To
make this tension more explicit, let’s consider two extreme input families that
seem plausible at first glance, but which do not have a runtime that is Ω(n2).

mathematical expression and reasoning for computer science 111

• The entire string s is a palindrome. In this case, in the first iteration of the
outer loop, the entire string is checked. The inner loop indeed does not break,
but unfortunately this means that the is_palindrome variable remains true
after the inner loop occurs, and the outer loop returns during its very first
iteration. Since the inner loop runs for n iterations and all of the individual
operations are constant time, this input family takes Θ(n) time to run.

• The entire string s consists of different letters. In this case, the only palin-
drome prefix is just the first letter of s itself. This means that the outer
loop will run for all n iterations, only returning in its last iteration (when
prefix_length is 1). However, the inner loop will always stop after its first
iteration, since it starts by comparing the first letter of s with another letter,
which is guaranteed to be different by our choice of input family. This again
leads to a Θ(n) running time.

The key idea is that we want to choose an input family that doesn’t contain a
long palindrome (so the outer loop runs for many iterations), but whose prefixes
“look” like palindromes (so the inner loop runs for many iterations). Let n ∈ Z+.
We define the input sn as follows:

• sn[dn/2e] = b
• Every other character in sn is equal to a.

Note that sn is very close to being a palindrome: if that single character b were
changed to an a, then sn would be the all-a’s string, which is certainly a palin-
drome. But by making the centre character a b, we not only ensure that the
longest palindrome of sn has length roughly n/2 (so the outer loop iterates
roughly n/2 times), but also that the “outer” characters of each prefix of sn

containing more than n/2 characters are all the same (so the inner loop iterates
many times to find the mismatch between a and b). It turns out that this input
family does indeed have an Ω(n2) runtime! We’ll leave the details as an exercise.

Average-case analysis

So far, we have only been concerned with the extremes of algorithm analysis.
However, in practice this type of analysis sometimes ends up being mislead-
ing, with a variety of algorithms and data structures having a poor worst-case
performance still yet performing well on the vast majority of inputs.

Some reflection makes this not too surprising; focusing on the maximum of a
set of numbers says very little about the “typical” number in that set, or, more
precisely, nothing about the distribution of numbers in that set.

A bit more concretely, suppose we have an algorithm func, and we look at the
set of running times

Times f unc,n = {running time of executing func(x) | x ∈ I f unc,n}.

We have seen that we define the worst-case running time with the maximum
running time in this set.31 Our final topic of this chapter will be to look at

31 Don’t forget that the worst-case
running time is a function that uses not
just one but all of the Times f unc,n sets.

112 david liu and toniann pitassi

another measure of the running time: taking the average of the numbers in this
set.

A first example

Consider the following algorithm, which searches for a particular item in a list.

1 def search(lst: List[int], x: int) -> bool:

2 for item in lst:

3 if item == x:

4 return True

5 return False

Let n represent the length of lst. The loop body counts as one basic operation,
and so the running time of this algorithm is proportional on the number of loop
iterations. The loop can iterate between 1 and n times, leading to an upper
bound on the worst-case of O(n) and a lower bound on the best-case of Ω(1).
We’ll leave it as an exercise to show that these bounds are tight (this is basically
the same analysis we did in the previous section). But what can we say about
the average of all possible inputs of length n?

Well, for one thing, we need to precisely define what we mean by “all possible
inputs of length n.” Because we don’t have any restrictions on the elements
stored in the input list, it seems like there could be an infinite number of lists
of length n to choose from, and we cannot take an average of an infinite set of
numbers.

So let us focus on one particular set of allowable inputs. We define the set In

of inputs to be pairs (lst, 1) where lst is any permutation of the numbers
{1, 2, . . . , n}, and we are always searching for the number 1 in the list.32

32 Since 1 is always in lst, we might
hope that the average running time is
faster because of early returns.Example 5.17. Given this set of inputs In, prove that the average-case running

time of search is Θ(n).

Proof. We first want to calculate an exact expression for

Avgsearch(n) =
1
|In| ∑

(lst,1)∈In

running time of search(lst, 1).

Note that |In| = n!, since this is the number of permutations of {1, . . . , n}.

Avgsearch(n) =
1
n! ∑

(lst,1)∈In

running time of search(lst, 1).

Also, we want to make explicit that the summation ranges over values for lst,
so we define Sn to be the set of all permutations of {1, . . . , n}, and write

Avgsearch(n) =
1
n! ∑

lst∈Sn

running time of search(lst, 1).

mathematical expression and reasoning for computer science 113

Now, the running time of search(lst, 1) is the number of loop iterations per-
formed, and this is exactly equal to one plus the index that 1 appears in lst.33

33 The “one plus” is because list index-
ing starts at 0, not 1.

So we can rewrite the sum as follows:

Avgsearch(n) =
1
n! ∑

lst∈Sn

(1 + index of 1 in lst)

Now, it might be challenging to compute this sum, since 1 could appear in any
position in lst. However, we can split up Sn based on the index that 1 appears:

Avgsearch(n) =
1
n!

n−1

∑
i=0

∑
lst∈Sn

1 is at lst[i]

(1 + index of 1 in lst)

=
1
n!

n−1

∑
i=0

∑
lst∈Sn

1 is at lst[i]

(1 + i)

For the inner summation, we are not using lst in the summation, so it just adds
up i a bunch of times. To figure out the number of times i is added together, we
need to count the number of lists lst which have 1 at index i. There are (n− 1)!
such lists: once we have fixed index i to be 1 in the list, the remaining spots can
be any of the (n− 1)! permutations of {2, . . . , n}. Using this allows us to obtain
a final expression for Avgsearch(n):

Avgsearch(n) =
1
n!

n−1

∑
i=0

∑
lst∈Sn

1 is at lst[i]

(1 + i)

=
1
n!

n−1

∑
i=0

(1 + i)(n− 1)!

=
1
n

n−1

∑
i=0

(1 + i)

=
1
n

n

∑
i′=1

i′ (setting i′ = i + 1)

=
1
n
· n(n + 1)

2

=
n + 1

2

In other words, the average running time of search on this set of inputs is n+1
2 ∈

Θ(n).

�

Example 5.18. Now consider the set of inputs I ′n, which contains all pairs (lst,
x) where lst is a permutation of {1, . . . , n} and x is any number between 1 and
n.34

34 Note that x is still guaranteed to be in
lst.

Proof. While we want to perform the basically same calculation:

Avgsearch(n) =
1
|I ′n|

∑
(lst,x)∈I ′n

running time of search(lst, x).

114 david liu and toniann pitassi

Note that this seems like a generalization of the previous set of inputs: we now
have |I ′n| = n · n!, since now for each permutation we have n choices for x. How-
ever, we can do some manipulation of the sum to obtain the exact expression we
computed in the previous example:

Avgsearch(n) =
1
|I ′n|

∑
(lst,x)∈I ′n

running time of search(lst, x)

=
1

n · n! ∑
(lst,x)∈I ′n

running time of search(lst, x)

=
1

n · n!

n

∑
x=1

∑
lst∈Sn

running time of search(lst, x)

=
1
n

n

∑
x=1

(
1
n! ∑

lst∈Sn

running time of search(lst, x)

)

We have done two main things: explicitly pulled out the summation over x, so
now the part in parentheses has a fixed x value; we pulled in the constant 1/n!,
which makes the term in parentheses look exactly like our previous calculation,
except with 1 replaced by x.

Why is this useful? Well, we already know that

1
n! ∑

lst∈Sn

running time of search(lst, 1) =
n + 1

2
.

But in our above proof, we didn’t really use any special properties of 1 at all,
other than the fact it was one of the numbers guaranteed to be in the list. So in
fact, for any value of x between 1 and n, the same equality holds:

1
n! ∑

lst∈Sn

running time of search(lst, x) =
n + 1

2
.

This results in an absolutely massive simplification of our original expression:

Avgsearch(n) =
1
n

n

∑
x=1

(
1
n! ∑

lst∈Sn

running time of search(lst, x)

)

=
1
n

n

∑
x=1

n + 1
2

=
n + 1

2

This leads to an average-case running time of n+1
2 steps, which is Θ(n).35

35 Given the symmetry for different
possible x values, it is perhaps not too
surprising that the exact step count is
the same for the two examples. You
would expect this to change, however,
if we expanded the possible values of x
to, say, 1, . . . , 2n.

�

Notice that we do not need to compute an upper and lower bound separately,
since in this case we have computed an exact average. (Much like if we had the
exact set of inputs, we can compute the exact max and exact min, and don’t need
to compute upper and lower bounds separately.)

mathematical expression and reasoning for computer science 115

Like worst-case and best-case running times, the average-case running time is a
function which relates input size to some measure of program efficiency. In this
particular example, we found that for the given set of inputs In for each n, the
average-case running time is asymptotically equal to that of the worst-case.

This might sound a little disappointing, but keep in mind the positive informa-
tion this tells us: the worst-case input family here is not so different from the
average case, i.e., it is fairly representative of the algorithm’s running time as a
whole.

It is not always the case that the average-case running time is asymptotically the
same as the worst-case running time. It is certainly possible for the average-case
to be asymptotically the same as the best-case, or lie somewhere in between
best- and worst-cases. It is also very sensitive to the set of inputs you choose to
analyze, as you’ll explore in the exercise. In CSC263/CSC265, you will return to
this idea of average-case input with more sophisticated examples, looking not
just at more complex functions, but also introducing the notions of probability
into the analysis, allowing different inputs to be chosen more frequently than
others.

Exercise Break!

5.4 Consider this alternate set of inputs for search: Jn, where for each input
(lst, x) ∈ Jn, lst has length n, and x and the elements of lst are all between
the numbers 1 and 10 (of course, lst can now contain duplicates).

Show that the average-case running time of search on this set of inputs is
Θ(1), i.e., is constant with respect to the length of the input list.

You’ll find the following formula helpful:

n−1

∑
i=0

iri =
nrn

r− 1
+

r− rn+1

(r− 1)2 .

6 Graphs and Trees

Our final mathematical domain of study is a powerful and ubiquitous way of
representing entities and the relationships between them. If this sounds generic,
that’s because it is: this type of representation is abstract enough that we can
use it to model concepts as varied as geographic locations and routes, animals
and plants in an ecosystem, or people in a social network.

In this chapter, you will begin your study of graph theory, learning how to pre-
cisely define different types of these models, called graphs, and (of course) state
and prove properties of these entities. While we are only scratching the surface
in this chapter, the material you learn here will serve as a useful foundation in
many future courses in computer science.

Initial definitions

Let us start with some basic definitions.

Definition 6.1. A graph is a pair of sets (V, E), which are defined as follows:

• V is a set of objects; each element of V is called a vertex of the graph.

• a set E of pairs of objects from V, where each pair {v1, v2} is a set consisting
of two distinct vertices—i.e., v1, v2 ∈ V and v1 6= v2—and is called an edge of
the graph.

Order does not matter in the pairs, and so {v1, v2} and {v2, v1} represent the
same edge.1

1 In future courses, you’ll study a
variants of graphs called directed graphs,
where vertex order in an edge does
matter.The conventional notation to introduce a graph is to write G = (V, E), where G

is the graph itself, V is its vertex set, and E is its edge set.

Intuitively, the set of vertices of a graph represents a collection of objects, and
the set of edges of a graph represent the relationships between those objects. For
example, if we wanted to use the terminology of graphs to describe Facebook,
we could say that each Facebook user is a vertex, while each friendship between
two Facebook users is an edge between the corresponding vertices.

We often draw graphs using dots to represent vertices, and line segments to
represent edges. We have drawn some examples of graphs below.

118 david liu and toniann pitassi

1 2

3

A B

CD
a

b
c

d
e

Example 6.1. Consider the graph on the right. How many vertices and how
many edges does it have?

A

B

C

D E

F G

Discussion. This isn’t a proof question, but just an exercise in terminology. To
answer this, I have to be comfortable with the terminology vertices and edges, as
well as pictorial representations of graphs. I just need to remember that dots
correspond to vertices, and lines correspond to edges. (There are seven vertices
and eleven edges.)

Now that we have these definitions in hand, let us prove our first general graph
property. Unlike the previous example, here we will not have a concrete graph
to work with, but instead have to work with an arbitrary graph.2

2 Reading this, you should immediately
expect to see a universal quantification
over the set of all possible graphs.Example 6.2. Prove that for all graphs G = (V, E), |E| ≤ |V|(|V|−1)

2 .

Translation. The statement we’re proving universially quantifies G. Since how we
declare a graph variable looks syntactically different (“G = (V, E)”) than declar-
ing a numeric variable, we’ll adopt an assumed domain of “set of all graphs” for
the rest of this chapter rather than introducing a “set of all graphs” explicitly.

∀G = (V, E) ∈ G, |E| ≤ |V|(|V| − 1)
2

.

Note that the structure of the statement is pretty straightforward, with the only
tricky bit being that G is not an arbitrary number, but an arbitrary graph.

Discussion. So I’m trying to prove a relationship between the number of edges
and vertices in any possible graph. I can’t assume anything about the structure
of the graph: it could have any number of vertices and edges, and this property
should still hold. A graph with all possible edges.

A graph with no edges.

Because the inequality says that |E| is less than or equal to some expression, we
can try to figure out what the maximum possible number of edges in G is. So the
question is: Given n vertices, how many different edges could there be?

The answer is a straightforward application of the counting work we did earlier:
each edge is formed by choosing two vertices, where order does not matter, and
duplicate edges are not allowed.

Proof. Let G = (V, E) be an arbitrary graph. We want to prove that |E| ≤
|V|(|V|−1)

2 .

Each edge in G consists of a pair of vertices from V, where order does not
matter. There are exactly |V|(|V|−1)

2 possible pairs of vertices, and so there are a
maximum of this many possible edges.

mathematical expression and reasoning for computer science 119

So |E| ≤ |V|(|V|−1)
2 .

�

Our next set of definitions introduces one of the key properties of a vertex in a
graph: how many edges that vertex is a part of.

Definition 6.2. Let G = (V, E), and let v1, v2 ∈ V. We say that v1 and v2 are
adjacent if and only if there exists an edge between them, i.e., {v1, v2} ∈ E.
Equivalently, we can also say that v1 and v2 are neighbours.3

3 Remember that order doesn’t matter
in the edge pairs, so this is a symmetric
relationship.Definition 6.3. Let G = (V, E), and let v ∈ V. We say that the degree of v,

denoted d(v), is its number of neighbours, or equivalently, how many edges v is
a part of.

Our next example is one somewhat surprising property of graphs, and is a great
illustration of the technique of proof by contradiction.

Example 6.3. Prove that for all grpahs G = (V, E), if |V| ≥ 2 then there exist
two vertices in V that have the same degree.

Translation. ∀G = (V, E), |V| ≥ 2⇒ (∃v1, v2 ∈ V, d(v1) = d(v2))

Proof. Assume for a contradiction that this statement is False, i.e., that there
exists a graph G = (V, E) such that |V| ≥ 2 and all of the vertices in V have a
different degree. We’ll derive a contradiction from this. We also let n = |V|.

First, let v be an arbitrary vertex in V. We know that d(v) ≥ 0, and because there
are n− 1 other vertices not equal to v that could be potential neighbours of v,
d(v) ≤ n− 1. So every vertex in V has degree between 0 and n− 1, inclusive.

Since there are n different vertices in V and each has a different degree, this
means that every number in {0, 1, . . . , n− 1} must be the degree of some vertex
(note that this set has size n). In particular, there exists a vertex v1 ∈ V such that
d(v1) = 0, and another vertex v2 ∈ V such that d(v2) = n− 1.

Then on the one hand, since d(v1) = 0, it is not adjacent to any other vertex, and
so {v1, v2} /∈ E.

But on the other hand, since d(v2) = n− 1, it is adjacent to every other vertex,
and so {v1, v2} ∈ E.

So both {v1, v2} /∈ E and {v1, v2} ∈ E are true, which gives us our contradiction!

�

Exercise Break!

6.1 What is the fewest number of edges a graph could have, in terms of its number
of vertices?

120 david liu and toniann pitassi

6.2 Let n ∈ Z+. Find, with proof, the number of distinct graphs with the vertex
set V = {1, 2, . . . , n}.

We say two such graphs are distinct when one of them has an edge (u, v) and
the other one does not have this edge with the same vertices.

Paths and connectedness

Often when we use graphs in modelling the real world, it is not sufficient to
capture just a single relationship between entities. Our goal now is to use in-
dividual edges, which represent some sort of relationship between vertices, to
build up extended, indirect connections between vertices. In a social network,
for example, we want to be able to go from friends to “friends of friends,” and
even “friends of friends of friends of friends.” In a graph representing roads
between cities, we want to be able to go from “a route between cities using one
road” to “a route between cities using k roads.” We use the following definitions
to make precise these notions of “indirect” relationships.

Definition 6.4. Let G = (V, E) and let u, u′ ∈ V. A path between4 u and u′ is
4 Like edges, paths are directionless; a
path from u to u′ is also a path from u′

to u.
a sequence of distinct vertices v0, v1, v2, . . . , vk ∈ V which satisfy the following
properties:

• v0 = u and vk = u′. (The endpoints of the path are u and u′.)
• Each consecutive pair of vertices are adjacent. (So v0 and v1 are adjacent, and

so are v1 and v2, v2 and v3, etc.)

We allow k to be zero; this path would be just a single vertex v0.

The length of a path is one less than the number of vertices in the sequence (so
the above sequence would have length k); more intuitively, the length of the path
is the number of edges which are used by this sequence.

We say that u and u′ are connected if and only if there exists a path between
u and u′.5 Because we allow zero-length paths, a vertex is always connected to

5 This definition is existentially-
quantified; there could be more than
one path between u and u′.

itself.

We say that graph G is connected if and only if for all pairs of vertices u, v ∈ V,
u and v are connected.

Being connected is a fundamental property of graphs. Imagine, for example, a
geographical representation where each graph vertex is a city, and each edge a
road between two cities. If this graph is not connected, then there is at least one
pair of cities for which it is not possible to get from one to the other by road.

Example 6.4. Consider the graph on the right.

A

B

C

D E

F G

1. Are the vertices A and B adjacent?
2. Are the vertices A and B connected?
3. What is the length of the shortest path between vertices B and F?

mathematical expression and reasoning for computer science 121

4. Prove that this graph is not connected.

Discussion. Parts (1) through (3) are exercises in understanding the definitions
we’ve just read.

1. A and B are not adjacent: there is no edge between them.
2. A and B are connected: there is a path A, F, G, B between them.
3. There is a path of length two between B and F: B, G, F. How do we know this

is the shortest one? The only path of length one that could be between B and
F is simply the sequence B, F; but this is not a path because B and F are not
adjacent.

Part 4 is a bit more complicated, and warrants a formal proof.

Translation. Let us first translate the statement “this graph is not connected.”
We’ll let G = (V, E) refer to this graph (and corresponding vertex and edge
sets). So we can write this statement as “G is not connected,” but that’s not
very illuminating. Let us unpack the definition of connected for graphs, which
requires every pair of vertices in the graph to be connected:6

6 This is both a review of logical ma-
nipulation rules and of practicing
unpacking definitions!

G is not connected

⇐⇒ ¬(G is connected)

⇐⇒ ¬(∀u, v ∈ V, u and v are connected)

⇐⇒ ∃u, v ∈ V, u and v are *not* connected

⇐⇒ ∃u, v ∈ V, there is no path between u and v

We actually went a step further and unpacked the definition of connected for
vertex pairs as well. Hopefully this makes it clear what it is we need to show:
that there exist two vertices in the graph which do not have a path between
them.

Proof. Let u = B and v = E be vertices in the above graph. We will show that B
and E are not connected.

Suppose for a contradiction that there exists a path v0, v1, . . . , vk between B and
E, where v0 = E. Since v0 and v1 must be adjacent, and C is the only vertex
adjacent to E, we know that v1 = C. Since we know vk = B, the path cannot be
over yet; i.e., k ≥ 2.

So what about v2? By the defiinition of path, we know that v2 must be adjacent
to C, and must be distinct from E and C. But the only vertex that’s adjacent to
C is E, and so v2 cannot exist, which gives us our contradiction.

�

Exercise Break!

122 david liu and toniann pitassi

6.3 Let n ∈ Z+. Find, with proof, the maximum length of a path in a graph with
n vertices. (For extra practice, first express the problem in predicate logic.)

Now let us look at one extremely useful property of connectedness: the fact that
if two vertices in a graph are both connected to a third vertex, then they are also
connected to each other.

Example 6.5. Let G = (V, E) be a graph, and let u, v, w ∈ V. If v is connected to
both u and w, then u and w are connected.7

7 In other words, vertex-connectedness
is a transitive property.

Translation. Once again, after we get over the fact that we are quantifying over
the set of all possible graphs, the translation is pretty straightforward, as the
statement’s structure is not that complex. To make the formula even more con-
cise, we’ll use the predicate Conn(G, u, v) to mean that “u and v are connected
vertices in G.”

∀G = (V, E), ∀u, v, w ∈ V, (Conn(G, u, v) ∧ Conn(G, v, w))⇒ Conn(G, u, w).

Discussion. Let’s examine the structure of the statement first. We have an arbi-
trary graph and three vertices in that graph. Because we’re proving an implica-
tion, we assume its hypothesis: that u and v are connected, and that v and w are
connected. We need to prove that u and w are also connected.

Let’s rephrase that by unpacking the definition of “connected.” We can assume
that there is a path between u and v, and between v and w. We need to prove
that there is a path between u and w. Phrased that way, it may seem obvious
what to do: create a path between u and w by joining the path between u and v
and the one between v and w.

There’s only one problem with this: the paths between u and v and v and w
might contain some vertices in common, and paths are not allowed to have
duplicate vertices. We can fix this, however, by using a simple idea: find the first
point of intersection between the paths, and join them at that vertex instead.

Proof. Let G = (V, E) be a graph, and u, v, w ∈ V. Assume that u and v are
connected, and v and w are connected. We want to prove that u and w are
connected.

Let P1 be a path between u and v, and P2 be a path between v and w. (By the
definition of connectedness, both of these paths must exist.)

u

w

v

· · ·

· · ·

u v′

w

v

· · ·

. . .

Handling multiple shared vertices: Let S ⊆ V be the set of all vertices which appear
on both P1 and P2. Note that this set is not empty, because v ∈ S. Let v′ be the
vertex in S which is closest to u in P1. This means that no vertex in P1 between u
and v′ is in S, or in other words, is also on P2.

Finally, let P3 be the path formed by taking the vertices in P1 from u to v′, and
then the vertices in P2 from v′ to w. Then P3 has no duplicate vertices, and is
indeed a path between u and w. By the definition of connectedness, this means
that u and w are connected.

mathematical expression and reasoning for computer science 123

�

Exercise Break!

6.4 Prove or disprove the following statement: For all graphs G = (V, E) and
vertices v1, v2, v3 ∈ V, if v1 and v2 are not connected and v1 and v3 are not
connected, then v2 and v3 are not connected.

A limit for connectedness

Intuitively, since connectivity is based on paths between vertices, which in turn
are built from edges, it is natural to think that we can “force” a graph to be
connected by simply adding more edges to it. In this section, we will investigate
this by trying to answer the question: “how many edges does it take to ensure
that a graph is connected?”

Example 6.6. For all n ∈ Z+, there exists an M ∈ Z+ such that for all graphs
G = (V, E), if |V| = n and |E| ≥ M, then G is connected.

Translation. The structure of this statement is a little more complex, but you
should be able to handle this with all the work you’ve previously done. Keep in
mind that we have three alternating quantifications—n, M, and G = (V, E)—as
well as a couple of hypotheses in an implication.

∀n ∈ Z+, ∃M ∈ Z+, ∀G = (V, E), (|V| = n ∧ |E| ≥ M)⇒ G is connected.

Since this is already a little long, we won’t unpack the definition of connected
here, but be ready to do so in the discussion/proof to follow.

Discussion. There are two important things to note in the statement structure.
The first is that because M is existentially-quantified, we get to pick its value.
The second is that because this quantification happens after n, the value of M is
allowed to depend on n. This turns out to be a great power indeed.

For example, if we set M = n2, then because we know that no graph exists with
n vertices and n2 or more edges,8 the implication becomes vacuously true. This

8 By our example on the maximum
number of edges a graph can have.is a valid proof, but not that interesting.

Instead, let’s set M = n(n−1)
2 , i.e., force the graph G to have all possible edges.

The proof will still be straight-forward, but at least such a graph exists.

Proof. Let n ∈ Z+, let M = n(n−1)
2 , and let G = (V, E) be a graph. Assume that

|V| = n and |E| ≥ M. We need to prove that G is connected.

Because the maximum number of edges in a graph with n vertices is exactly
n(n−1)

2 , this means that G must have all possible edges. Then any two vertices
u, v ∈ V are adjacent, and hence connected. So then G is connected.9

9 Review the definitions of “connected”
if you aren’t sure about the last two
sentences here.�

124 david liu and toniann pitassi

The previous example shows the danger of making statements using existential
quantifiers: often it is easy to prove that a particular value exists, but what we
really care about is the “best” possible value. We don’t want just any M, but
the smallest possible one which forces a graph to be connected. For instance,
it would be much more interesting if we could prove the following statement,
with M = 2n:

∀n ∈ Z+, ∀G = (V, E), (|V| = n ∧ |E| ≥ 2n)⇒ G is connected.

Unfortunately, this statement is false, and in fact the value M = 2n is not even
close, as we’ll prove next.

Example 6.7. Let n ∈ Z+, and assume n > 1. Then there exists a graph G =

(V, E), such that |V| = n and |E| = (n−1)(n−2)
2 , and G is not connected.

Translation.

∀n ∈ Z+, n > 1⇒
(
∃G = (V, E), |V| = n ∧ |E| = (n− 1)(n− 2)

2
∧ G is not connected

)
.

Discussion. This statement looks a little different than the one from the previous
example, but in fact is essentially its negation.10 Here, we are asked to show

10 More precisely, the parts starting with
the quantification of G are negations of
each other.

that for any n, there is a graph with n vertices and (n−1)(n−2)
2 edges, but which

is still not connected.

So how do we prove this? This time we can choose the graph, though we are
constrained by the number of vertices and edges the graph must have. The
expression (n−1)(n−2)

2 is a big hint, as it looks suspiciously like the maximum
number of edges on n− 1 vertices. . .

Proof. Let n ∈ Z+, and assume n > 1. Let G = (V, E) be the graph defined as
follows:11

11 This is the first time we’re defining a
concrete graph in a proof, rather than
introducing an arbitrary graph.• V = {v1, v2, . . . , vn}.

• E = {{vi, vj} | i, j ∈ {1, . . . , n− 1} and i < j}. That is, E consists of all edges
between the first n− 1 vertices, and has no edges connected to vn.

We need to show three things:

(i) |V| = n.
(ii) |E| = (n−1)(n−2)

2 .
(iii) G is not connected.

For (i), we have explicitly labelled the n vertices in V, and so it is clear that
|V| = n.

For (ii), we have chosen all possible pairs of vertices from {v1, v2, . . . , vn−1} for
the edges. There are exactly (n−1)(n−2)

2 such edges.

For (iii), because vn is not adjacent to any other vertex, it cannot be connected to
any other vertex. So G is not connected.

�

mathematical expression and reasoning for computer science 125

We have now proved that a graph with a fairly large number of edges can still
not be connected. It is worth noting that (n−1)(n−2)

2 = n(n−1)
2 − (n− 1). That is,

there is a graph that is missing only n− 1 edges from the set of all possible of
edges, but is still not connected. The question becomes: can we go higher still?
Is it possible for a graph on n vertices to have more than (n−1)(n−2)

2 edges and
yet still be not connected? Or is the best possible M from our original question
indeed (n−1)(n−2)

2 + 1?

It turns out that the latter is true, and this will be the last, and most challenging,
proof we do in this section.

Example 6.8. Let n ∈ Z+. For all graphs G = (V, E), if |V| = n and |E| ≥
(n−1)(n−2)

2 + 1, then G is connected.

Translation.

∀n ∈ Z+, ∀G = (V, E),
(
|V| = n ∧ |E| ≥ (n− 1)(n− 2)

2
+ 1
)
⇒ G is connected.

Discussion. So we are back to our original example, except now the M has
been picked for us, and we are using an edge number of (n−1)(n−2)

2 + 1. It
is tempting for us to base our proof on the previous example: after all, if we
start with a graph that has n − 1 of its vertices all adjacent to each other, and
then add one more edge to the remaining vertex, the new graph is certainly
connected. However, this line of thinking relies on a particular starting point
for the structure of G, which we cannot assume anything about (other than the
number of vertices and edges, of course).

The problem is that even with these restrictions on the number of edges and ver-
tices, it is hard to conceptualize enough common structure among such graphs
to use in a proof.12

12 If that’s too abstract, just imagine
trying to complete the statement “Every
graph with n vertices and at least
(n−1)(n−2)

2 + 1 edges is/has. . . ”

What is more promising, though, is trying to take a graph which satisfies the
constraints on its number of edges and vertices, and then remove a vertex to
make the graph smaller, and argue two things:

• the smaller graph is connected
• the vertex we removed is adjacent to at least one vertex in the smaller graph

This idea of “removing a vertex” from a graph to make the problem smaller
and simpler can be formalized using induction, and is in fact one of the most
common proof strategies when dealing with graphs.13 The one thing to keep

13 We weren’t kidding about the useful-
ness of induction.in mind here is that we’re doing induction on n, but the predicate we need to

prove—contains quantifiers, making it more complex.

You’ll notice that the inductive step in this proof is more complicated, and is
split up into cases, and involves a sub-proof inside. As you read through this
proof, look for both the structure as well as content of the proof: both are vital to
understand.

Proof. We will proceed by induction on n. More precisely, define the following

126 david liu and toniann pitassi

predicate over the positive integers:

P(n) : ∀G = (V, E),
(
|V| = n ∧ |E| ≥ (n− 1)(n− 2)

2
+ 1
)
⇒ G is connected.

In words, P(n) says that for every graph G with n vertices and at least (n−1)(n−2)
2 +

1 edges, G must be connected. We want to prove that ∀n ∈ Z+, P(n) using in-
duction.

Base Case: Let n = 1. This is a good exercise in substitution:

P(1) : ∀G = (V, E), (|V| = 1∧ |E| ≥ 1)⇒ G is connected

This statement is vacuously true: no graph exists that has only one vertex and
at least one edge, since an edge requires two vertices.

Inductive Step: Let k ∈ Z+, and assume that P(k) holds. We need to prove that
P(k + 1) also holds, i.e.:

P(k + 1) : ∀G = (V, E),
(
|V| = k + 1∧ |E| ≥ k(k− 1)

2
+ 1
)
⇒ G is connected.

Let G = (V, E), and assume that |V| = k + 1 and |E| ≥ k(k−1)
2 + 1. We now need

to prove that G is connected. We will split up this proof into two cases.

Case 1: Assume |E| = (k+1)k
2 , i.e., G has all possible edges. In this case, G is

certainly connected.

Case 2: Assume |E| < (k+1)k
2 . We now need to prove the following claim.

Claim 4. G has a vertex in G with between one and k− 1 neighbours, inclusive.14

14 Since there are k + 1 vertices total, this
claim is saying that there exists a vertex
that has at least one neighbour, but not
the maximum number of neighbours.

Proof. Since G has fewer than the maximum number of possible edges, there
exists a vertex pair (u, v) which is not an edge. Both u and v have at most k− 1
neighbours, since there are k− 1 vertices in G other than these two.

We leave showing that both u and v have at least one neighbour as an exercise.

�

Using this claim, we let v be a vertex which has at most k− 1 neighbours. Let
G′ = (V′, E′) be the graph which is formed by taking G and removing v from V,
and all edges in E which use v. Then |V′| = |V| − 1 = k, i.e., we’ve decreased
the number of vertices by one. This is good because we’re trying to do induction
on the number of vertices.

However, in order to use P(k), we need not just that the number of vertices to
be k, but that the number of edges is at least (k−1)(k−2)

2 + 1.15 This is what we’ll
15 Remember that P(k) is an implica-
tion: if the graph has the appropriate
number of vertices and edges, then it is
connected.

show next.

|E′| = |E| − number of removed edges

≥ |E| − (k− 1) (at most k− 1 edges removed)

≥ k(k− 1)
2

+ 1− (k− 1) (assumption on |E|)

=
(k− 2)(k− 1)

2
+ 1

mathematical expression and reasoning for computer science 127

Now that we have this, we can finally use the induction hypothesis: since |V′| =
k and |E′| ≥ (k−2)(k−1)

2 + 1, we conclude that G′ is connected. G′

w vFinally, let us use the fact that G′ is connected to show that G is also connected.
First, any two vertices not equal to v are connected in G because they are con-
nected in G′. What about v, the vertex we removed from G to get G′? Recall our
claim: v has at least one neighbour, so call it w. Then v is connected to w, but
because G′ is connected, w is connected to every other vertex in G. By a previous
example, we know that v must be connected to all of these other vertices.

�

Exercise Break!

These questions concern the proof that we just saw.

6.5 Let n ∈ Z+, and let G = (V, E) be a graph. Prove that if |V| = n and
|E| ≥ (n−1)(n−2)

2 + 1, then every vertex in G has at least one neighbour.

6.6 It may have struck you as a little strange that we used cases in our proof of
the inductive step.

What goes wrong with the argument in the second case if we try to include
the case when G has all (k+1)k

2 possible edges? (Hint: this is actually quite
subtle, and took us a while to pinpoint ourselves!)

Cycles and trees

We spent the last section investigating how many edges a graph would need to
force it to be connected.16 We will now turn to the dual question: how many

16 Or, how many edges are sufficient for
graph connectedness.edges is a graph forced to have if it is connected?17 Rather than taking a graph

17 Or, how many edges are necessary for
graph connectedness.

and adding edges to it to see how far we can go without it becoming connected,
we now ask how many edges can we remove from a connected graph without
disconnecting it.

We might consider some simple examples to gain some intuition here. For ex-
ample, suppose we have a graph with n vertices which is just a path.

This has n− 1 edges, and if you remove any edge from it, the resulting graph
will be disconnected (we leave a proof of this as an exercise).

But this isn’t the only possible configuration for such a graph. The one on the
right certainly isn’t a path; you may recognize it as a “tree,” though we won’t
define this term formally until later in this chapter.

Indeed, removing any edge from this graph disconnects it, and you might notice
by counting that the number of edges is again one fewer than the number of
vertices.

128 david liu and toniann pitassi

It turns out that these examples do give us the right intuition: any connected
graph G = (V, E) must have |E| ≥ |V| − 1.18 The tricky part is proving this.

18 The contrapositive is also an interest-
ing statement: if a graph has fewer than
|V| − 1 edges, it cannot be connected.

Once again, we must struggle with the fact that even though the previous ex-
amples gave us some intuition, it is a challenge to generalize these examples to
obtain an argument that works on all graphs satisfying these vertex and edge
counts.

To get a formal proof, we’ll need some way of characterizing exactly when we
can remove an edge from a graph without disconnecting it. The following defi-
nition is an excellent start.

Definition 6.5. Let G = (V, E) be a graph. A cycle in G is a sequence of vertices
v0, . . . , vk satisfying the following conditions:

• k ≥ 3
• v0 = vk, and all other vertices are distinct from each other and v0

• each consecutive pair of vertices is adjacent

In other words, a cycle is like a path, except it starts and ends at the same vertex.
The length of a cycle is the number of edges used by the sequence, which is also
the number of distinct vertices in the sequence (the above notation describes a
cycle of length k). Cycles must have length at least three; two adjacent vertices
are not considered to form a cycle.

To use our example of cities and roads, if there is a cycle in the graph, it is
possible to make a trip which starts and ends at the same city, and travels no
road or city more than once.

Getting back to our motivation, cycles are a form of “connectedness redun-
dancy” in a graph. Vertices in a cycle are all obviously connected to each other,
but even if one edge is removed, the result is a path. In this case, the cycle’s
vertices are still connected to each other—albeit with possibly a much longer
path to travel. Even though the diagrams on the right illustrate this property for
a cycle itself, we will now show that this property holds even when this cycle is
part of a larger graph.

Example 6.9. Let G = (V, E) be a graph and e ∈ E. If G is connected and e is in
a cycle of G, then the graph obtained by removing e from G is still connected.

Translation. There are a lot of quantified variables here, and some assumptions
which are perhaps not obvious from the English. It is certainly a worthwhile
exercise to translate this statement explicitly. The trickiest part is the condition
on e (that it is part of a cycle of G); remember that we generally represent such
conditions as assumptions in a logical implication.

For brevity, we will use the notation G − e to represent the graph obtained by
removing edge e from G.

∀G = (V, E), ∀e ∈ E, (G is connected∧ e is in a cycle of G)⇒ G− e is connected.

Case 1

w1 w2· · ·

u v

Case 2

w1 w2

.

u v

Discussion. This is a statement about a particular transformation: if we start with
a connected graph and remove an edge in a cycle, then the resulting graph is
still connected.

mathematical expression and reasoning for computer science 129

We get to assume that the original graph is connected and has a cycle, but that’s
it. We don’t know anything else about the graph’s structure, nor even which
edge in the cycle e is.

That said, it seems like we should be able to simply make an argument based on
the transitivity of connectedness: if we remove the edge {u, v} from the cycle,
then we already know that u and v are still connected, so all the other vertices
should still be connected too).

Proof. Let G = (V, E) be a graph, and e ∈ E be an edge in the graph. Assume
that G is connected and that e is in a cycle. Let G′ = (V, E\{e}}) be the graph
formed from G by removing edge e. We want to prove that G′ is also connected,
i.e., that any two vertices in V are connected in G′.

Let w1, w2 ∈ V. By our assumption, we know that w1 and w2 are connected in
G. We want to show that they are also connected in G′, i.e., there is a path in G′

between w1 and w2.

Let P be a path between w1 and w2 in G (such a path exists by the definition of
connectedness). We divide our proof into two cases: one where P uses the edge
e, and another where it does not.

Case 1: P does not contain the edge e. Then P is a path in G′ as well (since the
only edge that was removed is e).

Case 2: P does contain the edge e. Let u be the endpoint of e which is closer to
w1 on the path P, and let v be the other endpoint.

This means that we can divide the path P into three parts: P1, the part from w1

to u, the edge {u, v}, and then P2, the part from v to w2. Since P1 and P2 cannot
use the edge {u, v}—no duplicates—they must be paths in G′ as well. So then
w1 is connected to u in G′, and w2 is connected to v in G′. But we know that u
and v are also connected in G′ (since they were part of the cycle), and so by the
transitivity of connectedness, w1 and w2 are connected in G′.

�

This example tells us that if we have a connected graph with a cycle, it is always
possible to remove an edge from the cycle and still keep the graph connected.
Since we are interested in talking about the minimum number of edges necessary
for connecting a graph, we’ll now think about graphs which don’t have any
cycles.

Definition 6.6. A tree is a graph that is connected and has no cycles.

We would like to say that trees are the “minimally-connected” graphs: that is, the
graphs which have the fewest number of edges possible but are still connected.
It may be tempting to simply assert this based on the definition and what we
have already proven, but let G be a connected graph, and consider the following
statements carefully:

1. If G has a cycle, then there exists an edge e in G such that G− e is connected.

130 david liu and toniann pitassi

2. If G is a tree, then it does not have a cycle.
3. If G does not have a cycle, then there does not exist an edge e in G such that

G− e is connected.

We know that (1) is true by the previous example. (2) is true simply by the
definition of “tree.” How do we know (3) is true?

In fact, we don’t. The statements (1) and (3) may look very similar, but they are
not logically equivalent. In fact, (3) is logically equivalent to the converse of (1):
if we let P be the statement “G has a cycle” and Q be the statement “there exists
an edge e in G such that G − e is connected,” then (1) is simply P ⇒ Q, while
(3) is ¬P⇒ ¬Q.

So we actually need to prove (3) directly, which is what we’ll do next.

Example 6.10. Let G be a graph. Prove that if G does not have a cycle, then there
does not exist an edge e in G such that G− e is connected.

Translation.

∀G = (V, E), G does not have a cycle⇒ ¬
(
∃e ∈ E, G− e is connected

)
.

In general, having to prove that there does not exist some object satisfying some
given conditions is challenging; it is often easier to assume such an object exists,
and then prove that its existence violates one or more of the given assumptions.
This can be formalized by writing the contrapositive form of our original state-
ment.

∀G = (V, E),
(
∃e ∈ E, G− e is connected

)
⇒ G has a cycle.

Discussion. So we can assume that there exists an edge e with this nice property
that removing it keeps the graph connected. From this, we need to prove that G
has a cycle. Note that we only need to show that a cycle exists—it may or may
not have anything to do with e, but it is probably a good bet that it does.

The key insight is that if we remove e, we remove one possible path between its
endpoints. But since the graph must still be connected after removing e, there
must be another path between its endpoints.

Proof. Let G = (V, E) be a graph. Assume that there exists an edge e ∈ E such
that G− e is still connected.

Let G′ = (V, E\{e}) be the graph obtained by removing e from G. Our assump-
tion is that G′ is connected.

Let u and v be the endpoints of e. By the definition of connectedness, there exists
a path P in G′ between u and v; this path does not use e, since e isn’t in G′. Then
taking the path P and adding the edge e to it is a cycle in G.

�

Thus we now can state and prove the following fact about trees.

mathematical expression and reasoning for computer science 131

Example 6.11. Let G be a tree. Prove that removing any edge from G disconnects
the graph.

Proof. This follows directly from the previous claim. By definition, G does not
have any cycles, and so there does not exist an edge that can be removed from
G without disconnecting it.

�

We can say that a tree is the “backbone” of a connected graph. While a con-
nected graph may have many edges and many cycles, it is possible to identify
an underlying tree structure in the graph that, if it remains unchanged, ensures
the graph remains connected, regardless of any other edges removed.19

19 In fact, many such trees may exist.
This insight is the basis of minimum
spanning trees, a well-studied problem
in computer science that you will learn
about in future courses.

Now, let us return to our original motivation of counting edges to prove the fol-
lowing remarkable result, which says that the number of edges in a tree depends
only on the number of vertices.

Theorem 6.1. Let G = (V, E) be a tree. Then |E| = |V| − 1.

Translation.
∀G = (V, E), G is a tree⇒ |E| = |V| − 1.

Discussion. We have previously observed that this property seems to hold on
trees that we drew ourselves. But of course this is not a formal proof, since we
cannot assume anything about the particular structure of a tree.

A natural alternate strategy is to take a tree, remove a vertex from it, and use
induction to show that the resulting tree satisfies this relationship between its
numbers of vertices and edges.

This only works, though, if we can pick a vertex whose removal from G results
in a tree—and in particular, results in a connected graph. To do this, we need to
pick a vertex that is at the “end” of the tree.

Rather than proceeding with the proof directly, we recognize that a likely claim
we’ll need to use in our proof is that picking such an “end” vertex is always
possible. Rather than embedding a subproof within the main proof, we will do
it separately first.

Lemma 6.2. Let G = (V, E) be a tree. If |V| ≥ 2, then G has a vertex that has
exactly one neighbour.

Translation.

∀G = (V, E),
(
G is a tree∧ |V| ≥ 2

)
⇒
(
∃v ∈ V, v has exactly one neighbour

)
.

Discussion. What does it mean for a vertex to have exactly one neighbour? Intu-
itively, it means that we’re at the “end” of the tree, and can’t go any further. This
makes sense visually on a diagram, but how can we formalize this? Suppose we
start at an arbitrary vertex, and traverse edges to try to get as far away from it as
possible. Because there are no cycles, we cannot revisit a vertex. But the path has
to end somewhere, so it seems like its endpoint must have just one neighbour.

132 david liu and toniann pitassi

Proof. Let G = (V, E) be a tree. Assume that |V| ≥ 2. We want to prove that
there exists a vertex v ∈ V which has exactly one neighbour.

Let u be an arbitrary vertex in V. Let v be a vertex in G that is at the maximum
possible distance from u, i.e., the path between v and u has maximum possible
length (compared to paths between u and any other vertex). We will prove that
v has exactly one neighbour.

Let P be the shortest path between v between u. We know that v has at least one
neighbour: the vertex immediately before it on P. v cannot be adjacent to any
other vertex on P, as otherwise G would have a cycle. Also, v cannot be adjacent
to any other vertex w not on P, as otherwise we could extend P to include w,
and this would create a longer path.

And so v has exactly one neighbour (the one on P immediately before v).

�

With this lemma in hand, we can now give a complete proof of the number of
edges in a tree. The key will be to use induction, removing from the original
graph a vertex with just one neighbour, so that the number of edges also only
changes by one. But how can we use induction on a statement that starts with
∀G = (V, E)? We are used to seeing induction used with a statement of the
form ∀n ∈ N or ∀n ∈ Z+. To this end, we introduce a variable n to stand for
the number of vertices in a graph, and then apply induction using the number
of vertices. The statement that we will prove becomes

∀n ∈ Z+, ∀G = (V, E), (G is a tree∧ |V| = n)⇒ |E| = n− 1.

Proof. We will proceed by induction on n, the number of vertices in the tree. Let
P(n) be the following statement (over positive integers):

P(n) : ∀G = (V, E), (G is a tree∧ |V| = n)⇒ |E| = n− 1.

We want to prove that ∀n ∈ Z+, P(n).

Case 1: Let n = 1. Let G = (V, E) be an arbitrary graph, and assume that G is a
tree with one vertex.

In this case, G cannot have any edges. Then |E| = 0 = n− 1.

Case 2: Let k ∈ Z+, and assume that P(k) is true, i.e., for all graphs G = (V, E),
if G is a tree and |V| = k, then |E| = k− 1. We want to prove that P(k + 1) is
also true. Unpacking P(k + 1), we get:

∀G = (V, E), (G is a tree∧ |V| = k + 1)⇒ |E| = k.

So let G = (V, E) be a tree, and assume |V| = k + 1. We want to prove that
|E| = k.

By the previous tree Lemma, since k + 1 ≥ 2, there exists a vertex v ∈ V that has
exactly one neighbour. Let G′ = (V′, E′) be the graph obtained by removing v
and the one edge on v from G. Then |V′| = |V| − 1 = k and |E′| = |E| − 1.

v

G′

mathematical expression and reasoning for computer science 133

We know that G′ is also a tree. Then the induction hypothesis applies, and we
can conclude that |E′| = |V′| − 1 = k− 1.

This means that |E| = |E′|+ 1 = k, as required.

�

Combining everything together, we can conclude the following required number
of edges for any connected graph.

Since every connected graph contains at least one tree (just keep removing edges
in cycles until you cannot remove any more), this constraint on the numbers of
edges in a tree translates immediately into a lower bound on the number of
edges in any connected graph (in terms of the number of vertices of that graph).

Theorem 6.3. Let G = (V, E) be a graph. If G is connected, then |E| ≥ |V| − 1.

Exercise Break!

6.7 Adapt the proof of the tree Lemma to prove that for any tree G = (V, E), if
|V| ≥ 2 then G has at least two vertices with exactly one neighbour.

6.8 Prove the following claim. Let G = (V, E) be a tree, and let v be a vertex in G
that has exactly one neighbour. Prove that the graph obtained by removing v
from G is also a tree.

6.9 (Longer) Let G = (V, E) be a graph. We say that a graph is approximately
connected when it is connected, or when there exists a pair of distinct vertices
u, v ∈ V such that G′ = (V, E ∪ {{u, v}}) is connected.

a) Find, with proof, the minimum number M (in terms of |V|) such that if G
has at least M edges, it must be approximately connected.

b) Find, with proof, the maximum number m (in terms of |V|) such that if G
has fewer than m edges, it cannot be approximately connected.

Rooted trees

The definition of “tree” that we have used so far—a connected graph with no
cycles—is actually more general than what you may be familiar with from typ-
ical computer science applications. This is because trees themselves do not en-
force an orientation or ordering amongst vertices, while in practice almost all of
their uses involve a notion of hierarchy that elevates some vertices above others.

For this type of application, we specialize our more general definition to add
this notion of hierarchy. Note that this definition is a “cosmetic” one in the
sense that it does not actually say anything different about the structure of a
graph, but merely how we interpret the vertices of the graph.

Definition 6.7. A rooted tree is either an empty tree, or a tree that has exactly
one vertex labelled as its root.20

20 So when you hear the typical com-
puter scientist talking about trees,
they’re really talking about rooted trees.

134 david liu and toniann pitassi

Simply by designating one vertex in a tree as special, we immediately obtain
a sense of direction in the tree; we can now use distance from the root as a
partial ordering of the vertices, and talk about moving “away from the root”
or “towards the root” when traversing edges. We typically represent this sense
of direction visually by drawing rooted trees with the root vertex at the top,
although of course this is merely a convention.

We will now introduce some new terminology that emerge naturally from this
orientation. Note that much of the terminology matches our intuition for rela-
tionships among relatives in a family tree.

Definition 6.8. Let G = (V, E) be a non-empty rooted tree, and r ∈ V be the
root of the tree. Let v ∈ V be an arbitrary vertex (including, but not limited to, r
itself).

The parent of v is its neighbour which is closer to r than v is. A child of v is any
of its other neighbours (which are further from r than v is).21

21 Equivalently, the parent is the vertex
immediately before v on the path from
r to v.An ancestor of v is any vertex on the path between r and v, not including v

itself. (Equivalently, an ancestor of v is its parent, its parent’s parent, its parent’s
parent’s parent, etc.)

A descendant of v is any vertex w such that v is on the path between r and w.
(Equivalently, a descendant of v is its child, its child’s child, its child’s child’s
child, etc.)

A leaf of a rooted tree is any vertex which has no children.22

22 Note that all leaves of a rooted tree
have at most one neighbour. The
previous tree lemma can be used to
show that each rooted tree has at least
one leaf.

D

V C

F A R F

E B K I G

Example 6.12. Consider the rooted tree on the right.

1. What is the parent of A?
2. What are the children of C?
3. What are the ancestors of B?
4. What are the ancestors of D?
5. What are the descendants of C?
6. What are the descendants of B?

Discussion. This is another simple check on the terminology.

The only ones of note are (4) and (6). Since vertex D is the root of the tree (re-
member the convention of drawing the root of the tree at the top of the diagram),
it has no ancestors, and similarly, because B is a leaf, it has no descendants.

Definition 6.9. The height of a non-empty rooted tree is one plus the length of
the longest path between the root and a leaf.23 The “one plus” is to ensure that

23 Many texts define height as just the
length of the longest path, which counts
edges rather than vertices. It doesn’t
make a big difference, but counting
vertices makes some of our future
calculations look a little cleaner.

we are counting vertices instead of edges—e.g., a tree which consists of just the
root vertex has height 1, not height 0.

The height of the empty rooted tree (i.e., a rooted tree with no vertices) is defined
to be zero.

We have already studied the relationship between the numbers of vertices and
edges in connected graphs. This question is far less interesting when it comes to

mathematical expression and reasoning for computer science 135

trees, because there is an exact relationship between the number of vertices and
edges in a tree (|E| = |V| − 1).

But for rooted trees, we get another fundamental relationship to study: how the
number of vertices influences the height of the tree. This is a question which
is fundamental to many computer science applications of rooted trees, which
typically traverse a tree by starting at its root and going down. Such algorithms
take a longer amount of time depending on how tall the tree is.

Theorem 6.4. Let n ∈ N, and assume n ≥ 2. Then the following statements
hold.

1. Every rooted tree with n vertices has height ≥ 2.
2. There exists a rooted tree with n vertices with height equal to 2.
3. Every rooted tree with n vertices has height ≤ n.
4. There exists a rooted tree G with n vertices with height equal to n.

Discussion. Note that there are four different things to prove here. Two of
them are universally-quantified statements, establishing universal bounds on the
height of any rooted tree. Two of them are existentially-quantified statements,
saying that the proposed bounds are tight, i.e., they can be met exactly.

These proofs are not very challenging, and we’ll leave them as an exercise.24

24 Hint: think about the “extreme” of
possible tree structures.

What is more interesting, and what is often done in practice, is to try to restrict
the structure of a rooted tree by restricting the number of children each vertex
can have. The following definition is one of the most common such restrictions.

Definition 6.10. A binary rooted tree is a rooted tree where every vertex has at
most two children.25

25 This means each vertex has at most
three neighbours in total: one parent,
two children.Our last proof in this course is captures one such relationship between height

and number of vertices in binary rooted trees.

Example 6.13. Let h ∈ N. Let G = (V, E) be a binary rooted tree, and assume
that the height of G is ≤ h. Then |V| ≤ 2h − 1.

Translation.

∀h ∈N, ∀G = (V, E),
(
G is a binary rooted tree∧G has height ≤ h

)
⇒ |V| ≤ 2h− 1.

Discussion. The key insight here is that binary rooted trees are themselves com-
posed of smaller binary rooted trees. If we take G and remove its root, then
we get obtain two binary rooted trees, both of which have height ≤ h− 1. We
should then be able to use induction to prove the inequality.

Proof. We will prove this statement by induction on h. More precisely, let P(h)
be the statement that for every binary rooted tree G = (V, E) of height ≤ h,
|V| ≤ 2h − 1.

Base case: Let h = 0. In this case, the only binary rooted tree of height 0 is
empty, i.e., has no vertices. Then |V| = 0 and 2h− 1 = 0, so the inequality holds.

136 david liu and toniann pitassi

Inductive Step: Let k ∈ N, and assume that P(k) holds. We want to prove that
P(k + 1) is also true. More precisely, we can write:

P(k+ 1) : ∀G = (V, E),
(
G is a binary rooted tree∧G has height ≤ k + 1

)
⇒ |V| ≤ 2k+1− 1.

So let G = (V, E) be a binary rooted tree which has height ≤ k + 1. We will
show that |V| ≤ 2k+1 − 1.

r

T1 T2Let r ∈ V be the root of G. Consider what happens when we remove r from G.
We are left with two smaller binary rooted trees, T1 = (V1, E1) and T2 = (V2, E2).
Note that one or both of these trees could be empty (i.e., have no vertices or
edges), and this is perfectly acceptable.

Since these two trees have height at most k, the induction hypothesis applies:
|V1| ≤ 2k − 1 and |V2| ≤ 2k − 1.

Then |V| = |V1| + |V2| + 1 (the number of vertices in each of the two smaller
trees, plus the root):

|V| = |V1|+ |V2|+ 1

≤ (2k − 1) + (2k − 1) + 1

= 2 · 2k − 1

= 2k+1 − 1

�

7 Looking Ahead

There are many beautiful ideas in Computer Science that make fundamental
use of mathematical expression and reasoning. While we cannot do justice to
these topics in these notes (many of them are deep), we would like to give you
a glimpse of the power of mathematical reasoning in Computer Science. You
will learn these and other topics in depth in other Computer Science courses
at University of Toronto, including CSC236/CSC240, CSC263/CSC265, CSC373,
CSC438, CSC448, CSC463, and CSC473.

Turing’s legacy: the limitations of computation

What are the limits of computation? Are there functions that we want to get
a computer to calculate but that are beyond the capability of computers? This
abstract and fuzzy question was formalized precisely by Alan Turing even before
computers were invented! Namely, he defined a Turing machine, which is a
purely mathematical model of computation. It is simple enough to reason about,
yet powerful enough to capture any conceivable computational device!

After defining Turing machines, Turing proved that there are important prob-
lems that cannot be computed by any Turing machine. Because of the universal-
ity of the Turing machine, this then implies that these problems cannot be solved
on any computer!

Before we try to explain the main ideas behind the proof, we would like to point
out that mathematical expression is fundamental to even formulate the question.
The abstraction of computation via the mathematical Turing machine model is
essential to express a statement that talks about whether a given function can be
computed.

The most famous problem that cannot be solved by any Turing machine (and
thus by any computer) is called the Halting Problem. Informally, the input to
the Halting Problem is a program, P, written in some programming language,
together with an input to the program, x. The Halting Problem should output
True for the pair (P, x) if and only if program P halts on input x.1 The obvious

1 By halt we mean that if we had an in-
finite amount of memory, then running
P on x would eventually stop—that is,
it would not get into any infinite loops.

way to try to solve the Halting Problem on input (P, x) is to simply run or
simulate P on the input x and see what happens. If P does halt on x, then
our simulation will also halt and we will eventually discover that P halts on x.
But what happens when P does not halt on x? In this case we are in trouble!

138 david liu and toniann pitassi

What Turing proved is that it is basically impossible for a computer program to
figure out with certainty whether an arbitrary program P will halt on a particular
input x.2 That is, there is no clairvoyant way to examine a program to determine

2 This is a worst-case result: there is no
procedure that can decide for all pro-
grams P and for all inputs x whether or
not P halts on x. But in special cases,
it may be easy to determine what will
happen.

whether not it will halt on an input. Essentially the only thing that one can do
is to run the program and see what happens.

We will focus on decision problems; that is, on problems that compute functions
f from the natural numbers to {0, 1}. Since we want to prove a negative result,
we can pick any problem that we’d like, so we aren’t cheating by focusing on
decision problems.3 Furthermore, we will assume that the input to our decision

3 Indeed, decision problems turn out
to be powerful enough anyway! That
is, for any f : N → N, there is a
corresponding decision problem such
that this problem can be computed if
and only if the original function f can
be computed.

problem is encoded in binary, so the input is just some finite-length string of
zeroes and ones, and the output is either zero (False) or one (True). We are going
to try to explain the main ideas behind the halting problem without getting into
too much notation.

First, we have to define our formal model of computation, the Turing machine
(TM). We won’t go into any details of Turing machines. They are a beautiful ab-
straction of computation, but these details aren’t really necessary to understand
the main thing that we want to prove in this chapter—that certain natural and
important functions are beyond the power of computation. The only thing that
you will need to know about Turing machines is that they are just programs in
a simple programming language where we will assume an unbounded amount
of computational memory. If M is a TM for computing a decision problem, it
takes as input an arbitrary natural number, encoded by a binary string, s. For
each s, the TM may or may not halt on s. If it does halt, then it outputs either
zero (reject) or one (accept). Turing machines satisfy the following important
properties:

1. Turing machines are a universal model of computation—any program written
in any standard programming language can be converted to an equivalent
Turing machine (TM) program.

2. Turing machines can be enumerated.4
4 By enumerated we mean that there is an
algorithm that on input i can output the
first i TM’s, M1, M2, . . . , Mi .

Both of these properties are not unreasonable—if you think of your favorite
programming language, such as Python, it should be clear that both of these
properties hold.

The first main idea is to come up with one explicit decision problem that cannot
be computed by a TM. This first problem will not be the Halting Problem but
will instead be a problem that we will construct to make the proof easier for us.5

5 The proof method is called diagonal-
ization, and was first used by Cantor
in order to argue there is no bijective
mapping from the natural numbers to
the real numbers.

By property (2) above, TM programs can be enumerated, so let us write them
as M1, M2, . . ., where Mi is the ith TM in the enumeration. Now consider the
following decision problem, called D (for the diagonal language): The input to
D is, as usual, a natural number i (encoded in binary). The output is 1 if either
Mi does not halt on input i, or if Mi halts and outputs 0 on input i. Otherwise,
if Mi halts and outputs 1 on i, then D on i outputs 0. In other words, D does
the opposite of what Mi does on input i—if Mi rejects i (either by not halting or
by halting and not accepting), then D accepts i, and if Mi accepts input i, then
D rejects i. The very cool thing is that we can prove that the decision problem

mathematical expression and reasoning for computer science 139

D is not computed by any TM! Why is this? We want to prove that for every
j ∈ N, that Mj does not compute D. So fix some arbitrary j ∈ N, and consider
Mj on input j—by construction it does the opposite thing that D does on input
j, and therefore Mj does not compute D. Since we have proven this for every j,
it follows that there is no Turing machine that computes D!6

6 The main point here is that the set of
all functions from the natural numbers
to {0, 1} is huge—much, much larger
than the set of all Turing machines
since we have assumed that they can
be enumerated Thus, at a high level the
idea is the same as Cantor’s, but here
we are showing that there is no bijective
mapping from the set of all TM’s to the
set of all such functions.

Okay, so thus far we have found one explicit decision problem, D, that cannot
be computed by any TM. Now we want to prove that some specific decision
problem (the Halting Problem) also cannot be computed by any TM. At this
point, we need to be more precise about what we mean by the Halting Problem.
We define the Halting Problem H, as follows. The input is a pair (i, j) where
both i and j are natural numbers. The output should be 1 (accept) if Mi halts on
input j, and should be 0 (reject) otherwise.7

7 But we said that inputs should be
single numbers and not pairs of num-
bers! To handle this, we can encode
a pair of numbers (i, j) by the single
number 2i × 3j. Check that i and j can
be uniquely extracted from 2×3j.

To show that H is not computable by any TM, we will introduce a second idea
called a reduction that is extremely powerful and used extensively in Computer
Science. In fact, you’ve seen this idea already although it didn’t have this fancy
name—it is none other than a proof by contradiction. Say that we want to prove
¬A, and we already know ¬B. Suppose that we can prove A⇒ B. Then assume
for sake of contradiction that A is true, thus by modus ponens it follows that B
is true, which contradicts ¬B. To instantiate this in our setting, we let B be the
statement that D is computable by some TM, and let A be the statement that H
is computable by a TM. Since we have already proven ¬B, it is just left to prove
A ⇒ B; that is, we want to prove that if H is computable by a TM, then B is
also computable by a TM, in order to get a contradiction and therefore conclude
that H is not computable. For this choice of A and B, proving A ⇒ B is called
a reduction (from B to A) because we are showing that computing B essentially
reduces to the task of computing A.

So our remaining task is therefore to show that if we can computeH, then we can
compute D by a TM. Here we will have to wave our hands a little bit, since we
haven’t even formally defined Turing machines! But we did say that they satisfy
property (1), and thus we will argue informally that if we have an algorithm
for H, then we can also construct an algorithm for D. How would we compute
D in the first place? Remember that the input is a number i, and we want to
determine of Mi halts and accepts i. The first step on input i is to actually find
the TM program Mi. This can be carried out by enumerating all TMs until we
get to the ith one.8

8 This is very inefficient by it will suffice
for our purposes here. There are much
more efficient ways to do this.Now that we have Mi, how can we tell if Mi accepts i? If we just simulate Mi on

input i, we may run into a problem if Mi doesn’t halt on i since in that case our
simulation will run forever and we will never know when to stop the simulation
and output 1. But we are saved by the fact that we are assuming that we have
an algorithm for H! Thus we can first run the algorithm for H on the input pair
(i, i). If it accepts, then we know that Mi halts on i, so in this case we can go
ahead and simulate Mi on i, and return the opposite answer. If on the other
hand the algorithm for H on (i, i) rejects, then we know that Mi does not halt
on i, so we should just return 1 (and not bother to do the simulation). Thus
informally we have argued that if H is computed by some TM, then D is also
computed by some TM, so we can conclude that H is not computable!

140 david liu and toniann pitassi

Other undecidable problems

Using this idea of a reduction, we can now prove that many other problems
of interest are also not computable by any Turing machine. One of the most
famous of these problems is called Hilbert’s Tenth Problem. In 1900, the Sec-
ond International Congress of Mathematicians was held in Paris, France, where
David Hilbert, one of the greatest mathematicians in the world, was invited to
deliver one of the main lectures. His lecture has become very famous because
in his lecture, entitled “Mathematical Problems,” he formulated 23 major math-
ematical problems that he felt were the most important open problems in all of
mathematics to be studied in the coming century. Several of them have turned
out to be very influential for mathematics of the 20th century. Some famous
examples are: determining the truth or falsity of the continuum hypothesis, the
Reimann hypothesis, formulating the axioms of physics, and proving that the
axioms of arithmetic are consistent.

One of the most important is his tenth problem, called “Determining the solv-
ability of a Diophantine equation” and asks, given a polynomial equation with
any number of variables and integer coefficients, to devise an algorithm to de-
termine whether the equation has an integer solution. This was open for a very
long time until in 1970 Yuri Matiyasevich finally resolved Hilbert’s tenth prob-
lem by proving that it has no solution since it is undecidable! The proof is a
complicated reduction using insights from Julia Robinson, and a connection to
Fibonacci numbers.

Gödel’s legacy: the limitations of proofs

Another very famous problem that is not computable is called the Entschei-
dungsproblem.9 Informally, this is the problem of determining whether or not

9 Entscheidung is the German word for
“decision.”a mathematical statement is valid. We start with a fixed set of axioms (such

as the axioms of Peano arithmetic, the most standard set of axioms for reason-
ing in number theory). The input is a mathematical sentence s, and the output
should be 0 (reject) if s is not a logical consequence of the axioms, and 1 (ac-
cept) if s is a logical consequence of the axioms. This problem is undecidable by
Matiyasevich’s theorem, since the existence of solutions for Diophantine equa-
tions are a special type of mathematical statement. However, it is also possible
give a simpler reduction showing that the Entscheidung problem is undecidable.
Philosophically this is quite interesting as it proves that mathematics cannot be
fully automated.

Closely connected to the Entscheidung problem is Hilbert’s second problem, to
prove that the axioms of arithmetic are consistent. In 1931 Kurt Gödel proved
his famous incompleteness theorems, essentially showing that there is no rea-
sonable set of axioms that can capture10 all sentences that are true about the

10 By “capture” we mean that the
set of sentences that are logically
consequences of the axioms should be
exactly those sentences that are true
over the natural numbers.

natural numbers. While his proof did not mention anything about computers or
computability, we now know that his theorems are in fact very closely connected
to undecidability, and can be proven using the ideas of reductions.

mathematical expression and reasoning for computer science 141

P versus NP

In the 60’s and 70’s, the complexity class P emerged. It captures those decision
problems that can be computed efficiently—where the number of basic compu-
tation steps in order to arrive at the answer is at most polynomial in the input
length. That is, the runtime is nO(1). There are many examples of important
problems in P and you will study them in many of your courses. For exam-
ple all of these problems have polynomial-time algorithms: detecting whether a
graph contains a cycle, determining whether a graph contains a perfect match-
ing, and computing the greatest common divisor of two numbers. A larger
class of decision problems is known as NP11 and contains important problems

11NP stands for nondeterministic
polynomial timesuch as whether a graph contains a clique of size n/2, and whether there is a

boolean assignment to the variables of a propositional formula forcing it to true.
NP-complete problems are the hardest problems in the class NP and the best
algorithms for these problems run in time that is exponential in n—that is, in time
2O(n). The classNP is very important because it contains many many important
problems that range across all disciplines, including fundamental problems in
computational biology, physics, machine learning, and of course computer sci-
ence. For all of these problems, all known algorithms run in exponential time,
which makes them completely infeasible to solve. On the other hand, it is not
known if it is possible to solve these problems much more efficiently, say in
polynomial time. The P versus NP problem is the open problem of whether or
not any of the NP-complete problems can be solved in polynomial time, and is
one of the most important open problems in mathematics and computer science
today.12

12 It turns out that if one can get a
polynomial-time algorithm for any NP-
complete problem, then all problems
in NP also have efficient algorithms.
This was proving by Cook and indepen-
dently by Levin in the early 70’s.

Other cool applications: Cryptography

As we mentioned in the introduction to these notes, cryptography is the study of
algorithms and protocols for doing cool things across the Internet in the presence
of adversaries. The techniques and tools that have been developed in cryptogra-
phy are often very surprising and incredibly creative. Cryptography is in some
sense the flip side of complexity theory. Whereas lower bounds in complexity
theory prove that certain problems are inherently hard in that they require an
infeasible amount of time in order to solve, cryptography uses this hardness in
order to develop protocols! That is, who are these adversaries anyway? They are
people or other computers, and thus they are limited to performing polynomial-
time computation. In cryptography, the computational hardness of problems
is used to an advantage—to build protocols for various tasks, where the secu-
rity of the protocols can be proven under the assumptions that the adversaries
are polynomially-bounded, and that certain problems in complexity theory are
infeasible.

	Prologue: what is this course about, and why should I care?
	Why mathematical expression and reasoning in computer science?
	Course overview

	Mathematical Expression
	Sets
	Functions
	Summation and product notation
	Inequalities
	Propositional logic
	Predicate logic
	Writing sentences in predicate logic
	Defining predicates
	Our conventions for writing formulas

	Introduction to Proofs
	Some basic examples
	What goes into a proof?
	A new domain: number theory
	Alternating quantifiers revisited
	False statements and disproofs
	Proof by cases
	Generalizing statements
	Proof by contrapositive
	Characterizations
	Greatest common divisor
	Modular arithmetic
	Proof by contradiction

	Induction
	The principle of induction
	Examples from number theory
	Combinatorics
	Incorrect proofs by induction
	Looking ahead: strong induction (optional)

	Representations of Natural Numbers
	Decimal representation of natural numbers
	Binary representation of natural numbers
	Properties of binary representation

	Analyzing Algorithm Running Time
	A motivating example
	Asymptotic growth
	One special case of Big-Oh: \cO(1)
	Omega and Theta
	Properties of Big-Oh, Omega, and Theta
	Back to algorithms
	Worst-case and best-case running times
	Don't assume bounds are tight!
	Average-case analysis

	Graphs and Trees
	Initial definitions
	Paths and connectedness
	A limit for connectedness
	Cycles and trees
	Rooted trees

	Looking Ahead
	Turing's legacy: the limitations of computation
	Gödel's legacy: the limitations of proofs
	P versus NP
	Other cool applications: Cryptography

